

Introduction to Methods Engineering

and Operations Analysis

Sections:

- Evolution and Scope of Methods Engineering – part 1
- How to Apply Methods Engineering part
 1
- 3. Basic Data Collection and Analysis Techniques – part 2
- Automation and Methods Engineering part 2

Introduction to Methods Engineering

and Operations Analysis

1. Evolution and Scope of Methods Engineering

- Analysis and design of work methods and systems, including the tooling, equipment, technologies, workplace layout, plant layout, and work environment
- Other names for methods engineering:
 - Work study
 - Work simplification
 - Methods study
 - Process re-engineering
 - Business process re-engineering

Objectives in Methods Engineering

- Increase productivity and efficiency
- Reduce cycle time
- Reduce product cost
- Reduce labor content

- Improve customer satisfaction
- Improve product and/or service quality
- Reduce lead times and improve work flow
- Increase flexibility of work system
- Improve worker safety
- Apply more **ergonomic** work methods
- Enhance the environment (both inside and outside the facility)

- Study of an operation or group of related operations for the purpose of analyzing their efficiency and effectiveness so that improvements can be developed
- Objectives in operations analysis
 - Increase productivity
 - Reduce time and cost
 - Improve safety and quality
- Same basic objectives as methods engineering

Methods Engineering

Can be divided into two areas:

- **1.** Methods analysis
- 2. Methods design

- Concerned with the study of an existing method or process
- Objectives:
 - Eliminate unnecessary and non-valueadding work elements
 - Combine elements and operations
 - Rearrange elements into more logical sequence
 - Simplify remaining elements and operations

Concerned with either of the following situations:

- 1. Design of a new method or process
 - Required for new product or service and there is **no existing precedent**
 - Method must be designed from scratch, using best existing practice for similar operations
- 2. Redesign of an existing method or process based on a preceding methods analysis

Introduction to Methods Engineering

and Operations Analysis

2. How to Apply Methods Engineering

Systematic Approach

- 1. **Define** the problem and objectives
- 2. Analyze the problem
- 3. Formulate alternatives
- Evaluate alternatives and select the best solution
- 5. **Implement** the best method
- 6. Audit the study
 - A systematic approach is more likely to yield operational improvements than an undisciplined approach

Techniques of Methods Engineering

- Data gathering and statistical tools
- Charting and diagramming techniques
- Motion study and work design
- Facility layout planning
- Work measurement techniques
- New approaches

Charting & Diagramming Techniques

- Network diagrams
- Traditional industrial engineering charting techniques
 - Operation charts
 - Process charts
 - Flow diagrams
- Block diagrams
 - Process maps

Motion Study and Work Design

- Concerned with basic motions of a human worker while performing a given task
- Examples of basic motion elements:
 - Reach
 - Grasp
 - Move
 - Release
- Guidelines for work design include "principles of motion economy"

- Facility layout refers to:
 - Size and shape of a facility
 - Arrangement of the different departments and equipment within the facility
- Problem area includes:
 - Design of a new facility
 - Installing new equipment, retiring old equipment
 - Expanding (or contracting) an existing facility

Work Measurement Techniques

- Four basic work measurement techniques:
 - 1. Direct time study
 - Predetermined motion time systems (PMTS)
 - 3. Standard data systems
 - 4. Work sampling
- PMTS and work sampling can be used in methods engineering to make improvements in the work methods

New Approaches

- Lean production
 - Based on the Toyota production system
 - Embraced by U.S. companies due to its success at Toyota
- Six Sigma and other quality-focused programs
 - Widely adopted in industry for improving quality of work processes

Selecting Among Alternative Proposals

- Need for a systematic procedure to decide among alternative proposals
- To begin, list the technical features and functional specifications for the application
 - Must features
 - Desirable features
- Criteria matrix to evaluate alternatives
 - Drop candidates that do not satisfy "must features"
 - Develop scores for desirable features

Evaluation of Robots for Welding

	Industrial Robot Candidates			
	Model A	Model B	Model C	Model D
Must features:				
Continuous path control	OK	OK	OK	OK
Six-axis robot arm	OK	OK	Not OK	OK
Walkthrough programming	OK	OK	OK	OK
Desirable features:				
Ease of programming (0-9)	6	4		6
Capability to edit program (0- 5)	4	2		5
Multi-pass features (0-4)	2	2		2
Work volume (0-9)	5	8		6
Repeatability (0-5)	5	2		4
Lowest price (0-5)	4	5		3
Delivery (0-3)	1	1		3
Evaluation of vendor (0-9)	6	5		8
Totals:	33	29		37