

THE S	TRUCT	URES (OF ALKANE	S						
Names	Names and Molecular Formulas of the First Ten Alkanes									
Name	Number of carbons	Molecular formula	Structural formula	Number of structural isomers	0	Alkanes with carbon chains that				
methane	1	CH ₄	CH ₄	1	Ŭ	are unbranched are called normal				
ethane	2	C ₂ H ₆	CH ₃ CH ₃	1		alkanes or n-alkanes.				
propane	3	C ₃ H ₈	CH ₃ CH ₂ CH ₃	1	0	Each member of this series differs				
butane	4	C_4H_{10}	CH ₃ CH ₂ CH ₂ CH ₃	2		from the next higher and the next lower member by a -CH ₂ - group				
pentane	5	C_5H_{12}	CH ₃ (CH ₂) ₃ CH ₃	3		(called a methylene group).				
hexane	6	C ₆ H ₁₄	CH ₃ (CH ₂) ₄ CH ₃	5	0	Members of such a series have				
heptane	7	C ₇ H ₁₆	CH ₃ (CH ₂) ₅ CH ₃	9		similar chemical and physical				
octane	8	C ₈ H ₁₈	CH ₃ (CH ₂) ₆ CH ₃	18		gradually as carbon atoms are				
nonane	9	C ₉ H ₂₀	CH ₃ (CH ₂) ₇ CH ₃	35		added to the chain.				
decane	10	C ₁₀ H ₂₂	CH ₃ (CH ₂) ₈ CH ₃	75		General Line 6 Dr Mohamed E Neweby				

THE STRUCTURES OF ALKANES

9

• The molecular formula of a substance tells us the numbers of different atoms present.

• Structural formula tells us how those atoms are arranged.

ISOMERISM

- **Isomers** are molecules with the same number and kinds of atoms but different arrangements of the atoms.
- **Structural (or constitutional) isomers** are compounds that have the same molecular formula, but different structural formulas.

5

IUPAC RULES FOR NAMING ALKANES GENERAL NOTES

- **1.** The general name for acyclic saturated hydrocarbons is **alkanes**. The **-ane** ending is used for all saturated hydrocarbons.
- 2. Alkanes without branches are named according to the number of carbon atoms.
- **3.** For alkanes with branches, the root name is that of the longest continuous chain of carbon atoms.
- 4. Groups attached to the main chain are called substituents.
- 5. Saturated substituents that contain only carbon and hydrogen are called alkyl groups.
- 6. The main chain is numbered in such a way that the first substituent along the chain receives the lowest possible number.

14

15

IUPAC RULES FOR NAMING ALKANES

- 7. Each substituent is then located by its name and by the number of the carbon atom to which it is attached.
- 8. When two or more identical groups are attached to the main chain, prefixes such as *di-, tri-,* and *tetra-* are used.
- **9.** If two or more different types of substituents are present, they are listed **alphabetically,** except that prefixes such as *di* and *tri* are not considered when alphabetizing.
- **10.** Punctuation is important when writing IUPAC names.
 - IUPAC names for hydrocarbons are written as one word.
 - Numbers are separated from each other by commas and are separated from letters by hyphens.
 - There is no space between the last named substituent and the name of the parent alkane that follows it.

<section-header> PHYSICAL PROPERTIES OF ALKANES Income properties that can be observed without the compound undergoing a chemical reaction. Physical State Akanes occur at room temperature are gases, liquids, and solids. I che cha are gases, C to ch are gases, C to ch are gases, C to ch are liquids, C to ch are liquids, C to cha are gases are wax - like solids. Poublity Alkanes are nonpolar compounds. Alkanes are soluble in the nonpolar solvents; C arbon tetrachloride, CCl₄ and benzene, Alkanes are insoluble in polar solvents like water.

SOURCES OF ALKANES

• The two principal sources of alkanes are petroleum and natural gas.

Petroleum

- Petroleum is at present our most important fossil fuel.
- **Petroleum** is a complex mixture of hydrocarbons formed over eons of time through the gradual decay of buried animal and vegetable matter.
- Crude oil is a viscous black liquid that collects in vast underground pockets in sedimentary rock.
- $\circ\,$ It must be brought to the surface via drilling and pumping. To be most useful, the crude oil must be refined.
- The first step in petroleum refining is usually **distillation**.

30

31

SOURCES OF ALKANES

Petroleum Refining

- **Refining** is a process done by distilling the petroleum into fractions of different boiling and then treating the distilled petroleum in various ways to remove the undesirable components.
- $\circ~$ The most volatile components come out first

The less volatile components come out next

And the highest boiling components (those that boil at temperatures above 400°C) remain behind as residues.

 \circ The refined products of petroleum, known as petrochemicals,

They are used as raw materials in the manufacture of many useful finish products.

SOURCES OF ALKANES

Boiling range, °C	Name	Range of carbon atoms per molecule	Use
<20	gases	C ₁ to C ₄	heating, cooking, petrochemical raw material
20–200	naphtha; straight-run gasoline	C_5 to C_{12}	fuel; lighter fractions (such as petroleum ether, bp 30°C–60°C) also used as laboratory solvents
200-300	kerosene	C ₁₂ to C ₁₅	fuel
300-400	fuel oil	C ₁₅ to C ₁₈	heating homes, diesel fuel
>400		over C ₁₈	lubricating oil, greases, paraffin waxes, asphalt

SOURCES OF ALKANES

Octane Number

- Octane numbers decrease with increasing chain length and increase with increasing branching.
- $\circ\,$ The octane number of a poor fuel can also be improved by blending it with small amounts of additives.
- Tetraethyllead, $(C_2H_5)_4$ Pb, is an efficient antiknock agent.

but has one disadvantage:

its combustion product, lead oxide, is reduced to metallic lead that clogs the cylinder valves of an engine.

• Other additives such as TCP (tricresyl phosphate) and boron hydrides have also enhanced the performance of many gasolines.

34

PREPAR	ATION OF ALKANES	
3. Reductio	on of Alkyl halides By lithium dialkyl cuprate	
	(CH ₃ CH ₂) ₂ CuLi + CH ₃ Br → CH ₃ CH ₂ CH ₃	
4. The Wur two alkyl ha	tz reaction lides are reacted with sodium to form a new carbon-carbon bond.	
	$2R-X + 2Na \rightarrow R-R + 2Na^+X^-$	
2	H_3C Br + 2 Na \rightarrow H_3C CH_3 + 2 NaBr	
		Dr Mohamed El-New

REACTIONS OF ALKANES • All of the bonds in alkanes are single, covalent, and nonpolar. • Hence alkanes are relatively inert and they are called Paraffinic hydrocarbons. (Latin parum, little; affinis, affinity). • Alkanes ordinarily do not react with most common acids, bases, or oxidizing and reducing agents. • Alkanes can be used as solvents. • Alkanes do react with some reagents, such as molecular oxygen and the halogens. **Combustion** $- \stackrel{H}{C} - + o_2 \xrightarrow{heat} CO_2 + H_2O + heat$ $- \stackrel{H}{C} - + X_2 \xrightarrow{heat} \stackrel{Heat}{Or} - \stackrel{H}{C} + HX (X_2=G_2 or Br_2)$ An alkane

