

o Ali	phatic hydrocarbons are	subdivided into:		
\succ	Saturated hydrocarbons			
	 Alkanes; C_nH_{2n+2} 	(contain carbon-carbon single bond)		
	 Cycloalkanes: C_nH_{2n} 	(contain carbon-carbon single bond in a single ring		
	Alkanes and cycloalkanes are so similar that many of their properties can be considered side by side.			
≻	Unsaturated hydrocarbons			
	 Alkenes : C_nH_{2n} 	(contain carbon-carbon double bond)		
	 Alkynes : C_n H_{2n-2} 	(contain carbon-carbon triple bond)		

Alkanes

- General formula is $C_n H_{2n+2}$
- \circ In alkanes, the four *sp*³ orbitals of carbon repel each other into a TETRAHEDRAL arrangement with bond angles of 109.5° like in CH₄.
- $\circ~$ Each sp^3 orbital in carbon overlaps with the 1s orbital of a hydrogen atom to form a C-H bond.

٦

olecular form	ulas and Number of Isor	mers of the first ten Alk
Name	Molecular Formula	Number of isomers
Methane	CH_4	1
Ethane	C_2H_6	1
Prop <mark>ane</mark>	C ₃ H ₈	1
Butane	C_4H_{10}	2
Pentane	$C_{5}H_{12}$	3
Hexane	C_6H_{14}	5
Hept <mark>ane</mark>	$C_{7}H_{16}$	9
Octane	C_8H_{18}	18
Non <mark>ane</mark>	C ₉ H ₂₀	35
Decane	$C_{10}H_{22}$	75

Г

Alkanes; Nomenclature

- $\circ~$ Most organic compounds are known by two or more names:
 - > The older unsystematic names, (Common names).
 - > The IUPAC names.

International Union of Pure & Applied Chemistry

9

Alkanes; Nomenclature

The IUPAC Rules

<u>Note that</u> each substituent is given a number corresponding to its location on the longest chain. The substituent groups are listed alphabetically.

Refining		
Some compo	nents of refined	
Fraction	Boiling range (°C)	Caron content
Gas	Below 20	C1 - C4
Petroleum ether	20 - 60	C5 - C6
Naphtha	60 - 100	C6 – C7
Gasoline	40 - 200	C5 - C10
Kerosine	175 - 325	C11 - C18
Gas oil	300 - 500	C15 - C40
Lubricating oil, asphalt, petroleum coke and paraffins	Above 400	C15 - C40

Physical Properties of Alkanes, Alkenes and Alkynes

Those properties that can be observed without the compound undergoing a chemical reaction.

A. Physical States

C1 (C2) to C4 are gases, C5 to C17 are liquids, C18 and larger alkanes are wax –like solids.

B. Solubility

- **o** Alkanes, Alkenes and Alkynes are nonpolar compounds.
- Their solubility " Like dissolve like"
- Alkanes, Alkenes and Alkynes are soluble in the nonpolar solvents; carbon tetrachloride, CCl₄ and benzene,
- Alkanes, Alkenes and Alkynes are insoluble in polar solvents like water.

<section-header><section-header><text><text><text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><text>

Alkanes; Reactions of Alkanes

1) Halogenation

• Chlorination of an alkane usually gives a mixture of products

Η heat Cl-Cl + H-C-H + HCl H-C-Cl or Η̈́ UV light Ĥ Chlorine Methane Chloromethane (Methyl chloride) heat or UV light Cl-Cl + H-Ċ-Cl ► Cl-+ HCl Cl Ĭ Ĥ Chlorine Methane

Dichloromethane (Methylene chloride)

NOTES	ules			
The root of the (-ane, -ene, or No numb	e name (eth- or pro -yne) tells us whetl per is necessary in structure is possibl	pp-) tells us the nur her the bonds are these cases, bec	nber of carbons, and single, double, or trip ause in each instan	the ending lle. ce,
	CH ₃ CH ₃ ethane	CH ₂ =CH ₂ ethene	HC≡CH ethyne	
	CH ₃ CH ₂ CH ₃ propane	CH ₂ =CHCH ₃ propene	HC≡CCH ₃ propyne	

