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A B S T R A C T

Highly colloidal luminescent Gd2O3:Tb nanoparticles(NPs) were prepared by urea-based homogeneous co-pre-
cipitation process. X-ray diffraction pattern (XRD), transmission electron microscopy(TEM), energy dispersive x-
ray analysis(EDX), thermogravimetric analysis(TGA), zeta potential, Fourier transform infrared(FTIR), FT-
Raman, UV/Visible and photoluminescence spectroscopy to examine the crystallographic, phase purity, shape &
size, thermal stability, surface chemistry, optical and photoluminescence properties. XRD results exhibited the
single phase, highly pure cubic phase Gd2O3:Tb nanocrystals with an average grain size of 10–20 nm. The
Gd2O3:Tb NPs exhibits attractive thermal, optical and luminescent properties for their use in long-term biolo-
gical studies because of high thermal, photo-stability and strong emission sensitivities in the visible region.
Optical features of Gd2O3:Tb NPs were examined in aqueous media and estimated energy band gap on the basis
of absorption spectra. An observed strong peak located at 359 cm−1 is assigned to the Fg Raman active mode of
cubic phase of nanocrystalline Gd2O3. The luminescence spectra show well dominant green emission transition
in between 535–560 nm (5D4→

7F5) under monitoring UV light (325 nm). Optically active, aqueous sensitivities,
porous surface and strong luminescent NPs as revealed from TEM micrographs could be a promising candidate
for future fluorescent biomedical applications.

1. Introduction

Along with the rapid development in nanotechnology, most in-
tensive research activities have been focused on luminescent nanoma-
terials [1–5]. Luminescent nanomaterials are most promising because of
their diversified applications in the different field of applied material
and biomedical sciences such as solar cells, laser, penal display, optical
diode, bio-photonic, photodynamic therapy, biolabeling/optical bio-
probe and drug delivery etc [6–21]. Up to now various luminescent
nanomaterials have been applied for this diversified material and bio-
medical applications such as quantum dots, plasmonic nanoparticles,
silica, and organic dyes etc [3,22–24]. However, they are not photo-
chemically stable, narrow absorption, broad emission transition, auto-
fluorescence and allow short observation time because of their easy
photo-bleaching. In order to resolve this problem, various lanthanide
nanomaterials have been applied for applied biomedical sciences, due
to their high photo-chemical thermal stability, bright photo-
luminescence, large Stocke's shift, less auto-fluorescence, narrow ab-
sorption and emission lines in the visible region, good biocompatibility
and less toxic nature [10,25–27]. Among the rare-earth nanomaterials

family, gadolinium oxide (Gd2O3) and yttrium oxide (Y2O3) are re-
garded much attention because of its superior long-term thermal,
photochemical stability, low phonon energy [28–30]. Both oxides are
isostructural belong to the cubic fluorite structure (Space group Ia
3(206)) [31]. Luminescent lanthanide activated Gd2O3 NPs exhibited
robust charge transfer, good emission lines and shifting of charge
transfer band edge towards longer wavelength relatively luminescent
rare-earth activated yttrium oxide (Y2O3) NPs due to smaller electro-
negativity, larger atomic radius of the Gd(III) allows an easier charge
transfer from the 2p orbital of O2 to the 4f-orbital of luminescent Eu and
Tb metal ions [32–34]. Besides that, the 8S→6D (at ∼250 nm) and 8S7/
2→

6IJ (at ∼270 nm) transitions of Gd(III) overlap the charge transfer
band, which greatly improve the emission transition via efficient energy
transfer from Gd to luminescent Eu and Tb ions. Furthermore, because
of unpaired 4f -orbital in Gd(III) exhibited excellent magnetic proper-
ties, which is well known for their applications in magnetic resonance
imaging(MRI) as a contrast agent [30,31,35–39]. These outstanding
photo-physical features make them an ideal matrix for substitution of
luminescent metal ions. However, Gd3+ ion is related with wide for-
bidden energy band gap semiconductor and its neighbors Eu3+ and
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Tb3+ have moderate gaps due to the existence of mid-gap levels. The
substitution of Eu(III) and Tb(III) ions into wide energy bandgap
semiconductor oxides could offer prominent spectral features with
much-improved emission lines and selective 5d-4f transitions with long
emission lifetime response [30,40–44].

Up to now, several synthesis routes have been developed for the
fabrication of Gd2O3 NPs, including combustion, sol-gel chemical, co-
precipitation, hydrothermal/solvothermal, microwave, micro-emul-
sion, thermal decomposition, and surfactant-assisted assembly me-
chanism etc [1,28,45–48]. All these synthesis methods are well-known
and consistently applied for the synthesis of luminescent oxide nano-
materials. Among all these synthesis methods, thermal decomposition
process at low temperature is an important technique for the synthesis
of low dimension Gd2O3 nanostructures [31,34,49–52]. The thermal
decomposition process for the synthesis of luminescent NPs has become
most attractive due to high purity, low processing temperature, eco-
friendly process, homogeneous mixing, uniform, and nearly spherical
shaped particles. Besides that, low energy consumption makes them the
most suitable technique for large-scale production of luminescent
Gd2O3 NPs. The Tb-substituted Gd2O3 NPs produced vast interest due to
their outstanding luminescent properties in the visible region [53–55].

In the present study, we demonstrated the synthesis of Gd2O3 NPs
using a weak base (urea) based homogeneous co-precipitation process
and systematically characterized by different physic-chemical techni-
ques to inspect the photophysical properties of the as-synthesized NPs.
Our finding shows the remarkable strong green emission 5D4→

7F5
transition in the middle of a visible region in between 535–560 nm.
Here, we presented deeper insight for the understanding colloidal sta-
bility, solubility, and biocompatible nature of the as-synthesized lumi-
nescent Gd2O3:Tb NPs. It is an effort to exploit the 5d-4f mediated
optoelectronic properties as well as Raman active modes of cubic
structure Gd2O3:Tb NPs. It is fact that Tb-mediated NPs are well known
for good emission characteristics from 5D4→

7Fj transitions in the visible
region. In literature, very few studies were reported and investigated
their photophysical properties [56,57]. The main advantage of these
non-surfaces modified luminescent NPs are good colloidal solubility in
aqueous media, porous structure, excellent biocompatibility, and re-
markable luminescent efficiencies could be a future candidate for
fluorescent biological applications.

2. Experimental

2.1. Materials

Gd2O3(99%, BDH chemicals,UK), Tb3O7 (99.99%, Alfa Aesar,
Germany), ethanol (E-Merck, Germany), nitric acid and (NH2)2CO were
utilized as the beginning materials without any assist filtration. Gd
(NO3)36H2O and Tb(NO3)36H2O were prepared by dissolving the cor-
responding oxides in minimum amount of 1 pH concentrated nitric acid
(2M, 50ml), which were further diluted with distilled water. Milli-Q
(Millipore, Bedford, MA, USA) water was utilized for synthesis and
characterization.

2.2. Preparation of Tb-doped gadolinium oxide NPs

For the synthesis of Gd2O3:Tb3+ NPs (Gd0.95Tb0.05O3), 0.2 M stock
solutions of Gd(NO3)36H2O and Tb(NO3)36H2O were prepared in dist.
H2O. Briefly, 9.5ml of Gd(NO3)36H2O and 0.5ml of Tb(NO3)36H2O
were dissolved in 50ml of dist. water. Then 5 g urea dissolved in aqu-
eous solution was introduced into the vigorously mechanically stirred
metal nitrates solution at ambient temperature for homogeneous
mixing. After that this transparent solution was kept under a refluxed
condition at 150 °C for 4 h until complete precipitation [58–62]. On
cooling to room temperature, the white precipitates then segregated to
the bottom, which was isolated by centrifugation washed with Milli Q
H2O to remove unreacted reactants. The willing sample was dried in an

oven at 80 °C for 6 h for advanced characterization.

2.3. Characterization

The crystal structure and phase purity of the powder was checked
by X-ray diffraction (XRD) at ambient temperature with the utilize of
Rigaku X-ray diffractometer prepared with a Ni channel utilizing Cu Kα
(λ=1.54056 Å) radiations working with 30 kV accelerating voltage,
25mA current and 5° 2θ/min in the 2θ range 20-80°. Morphology of the
sample was assessed employing a field emission transmission electron
microscope (FE-TEM) equipped with the energy dispersive x-ray (EDX,
JEM-2100 F, JEOL, Japan) working at an accelerating voltage of
200 kV. EDX examination was utilized to confirm the presence of the
components. FE-TEM sample was prepared by depositing a drop of
colloidal ethanol solution of the luminescent sample onto carbon-
coated copper grid through micropipette. Zeta potential of the as-syn-
thesized NPs suspended in water was measured utilizing Zeta Buddies
90 additionally molecule measure analyzer (Brookhaven instruments
corporation Holtsville, NY, USA) at temperature 25 °C.
Thermogravimetric analysis (TGA) was recorded from the thermo-
gravimetric analyzer (Mettler Toledo, Expository CH-8603
Schwarzenbach, Switzerland) heating rate of 10°/min between room
temperature to 800 °C. Infrared spectra were measured on a Perkin-
Elmer 580B FTIR spectrometer using KBr pellet procedure within the
frequency range from 4000-400 cm−1. KBr pellet was prepared by
mixing of very little amount of sample powder for measuring the FTIR
spectrum. The UV/Vis absorption spectra were measured from the
Perkin-Elmer Lambda-40 spectrophotometer with the sample contained
in a 1 cm3 stopper quartz cell of 1 cm path length in the range
200–600 nm wavelength. Photoluminescence spectra were recorded on
Horiba Synapse 1024×256 pixels, measure of the pixel: 26 μm, de-
tection range: 300 (effectiveness 30%) to 1000 nm (efficiency:35%).
For all estimations, an opening width of 100 μm is utilized, guaran-
teeing a ghastly determination way better than 1 cm−1.

3. Results and discussion

The synthesis of luminescent NPs via urea-based homogeneous co-
precipitation method was first developed by Matijević and his co-
workers [63]. Urea is well known the weak base and which is homo-
geneously decompose in the very slow process with lanthanide metal
ions into hydroxyl and carbonate at elevated temperature (∼100 °C).
XRD pattern was performed to determine the phase purity, crystal
structure, and crystallinity of the as-synthesized material. In Fig. 1,
diffractogram of Gd2O3:Tb NPs display all diffraction planes such as

Fig. 1. X-ray diffraction pattern of Gd2O3:Tb NPs.
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(222), (400), (431), (440) and (622), which are closely matched to the
pure cubic Gd2O3 (JCPDS Card No. 043-1014) [56,64,65]. The reflec-
tion lines positions and intensity are perfectly matched with the lit-
erature reports. The reflection lines positions and intensified are per-
fectly coordinated with the previous reports The reflection lines
positions and escalated are flawlessly coordinated with the writing

reports. No additional peak related to any impurities such as (Tb2O3)
over the entire XRD pattern is observed, it indicated the phase purity
and homogeneous dispersion of the terbium ions into the Gd2O3 crystal
lattice and formation of Gd-O-Tb solid solution. As illustrate in Fig. 1,
the reflection peaks widths are broadened compare to the macro-crys-
talline materials, it suggests the small grain size with a high crystallinity

Fig. 2. TEM micrographs of (a) low magnification (b) high magnification (c) High resolution (d) high resolution single particle Gd2O3:Tb nanoparticles(f) EDX
analysis of the Gd2O3:Tb NPs.

Fig. 3. Zeta potential value of the as-prepared Gd2O3:Tb NPs.
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of the material. The average grain size of the NPs was estimated from
the full-width half maxima (0.46°) of the most dominant peak observed
in XRD pattern at 2θ=28.67° is 15–17 nm.

Morphology of the as-prepared luminescent NPs was inspected from
high-resolution transmission electron miscopy. As seen in TEM image
Fig. 2a, in the prepared sample NPs are nearly spherical shaped, highly
crystalline, rough surface, irregular shape& size, narrow size distribu-
tion with an average grain size 10–20 nm, which is in good agreement
with the XRD results. Although, the surface of the NPs is fairly irregular
greatly porous as seemingly observed in TEM micrographs (Fig. 2c&d).
The surface porosity of the luminescent NPs is assisting for the high
dispersibility in organic media. As shown in Fig. 2a-c, the luminescent

NPs are highly aggregated, it likely due to the rough surface of the NPs,
which promises to enhance accumulation process through hydrogen
bonding in aqueous media. The higher magnification image in Fig. 2c&
d, clearly revealed the lattice fringes with single particle inter-planar
spacing of 0.311 nm corresponding to the D-spacing for the (222) crystal
lattice plane of the cubic fluorite structure of the Gd2O3 material. The
chemical composition of the as-prepared luminescent NPs was de-
termined from energy dispersive x-ray analysis (EDX). EDX spectrum in
Fig. 2e, illustrates the presence of all expected constituents such as
gadolinium (Gd), oxygen (O) and terbium (Tb) ions, indicating the
homogeneous distribution inside the crystal matrix. Notably, observed
strong peaks of C and Cu are belonging to the carbon-coated copper
grid. No other impurity peak is evident over the entire EDX spectrum, it
further verified the phase purity of the as-prepared material. Due to
rough surface and high porosity of the as-prepared luminescent NPs, the
luminescent NPs are hydrophilic in nature and easily dispersed in polar
organic solvents such as water and alcohols. After treatment in aqueous
media, the luminescent NPs dispersed well and forming a semi-trans-
parent colloidal solution. The observed zeta potential value of the lu-
minescent NPs at physiological pH is 21.7mV, it endorses the superior

Fig. 4. Thermo-gravimetric analysis of Gd2O3:Tb NPs.

Fig. 5. FTIR spectra of the as-prepared Gd2O3:Tb NPs.

Fig. 6. FT-Raman spectra of the Gd2O3:Tb NPs.

Fig. 7. UV–vis absorption spectra of Gd2O3:Tb NPs suspended in dist. water and
ethanol.

Fig. 8. The plot of (αhν)2 vs. photon energy(hν) of the Gd2O3:Tb NPs in dist.
water and ethanol.
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dispersion of the porous luminescent NPs (Fig. 3).
Thermal analysis was performed to certify the phase purity, surface-

attached to water molecules or organic moieties and thermal stability of
the as-prepared metal oxide. TGA analysis was recorded at room tem-
perature to 800 °C under a nitrogen atmosphere at a heating rate 10 °C/
min. As observed in Fig. 4, an exothermic decomposition of the bare
NPs proceeded gradually from 100 °C up to 500 °C. The observed weight
loss is calculated to be 6%, due to the decomposition of physically
surface adsorbed water molecules which are in trace amounts and
surface organic moieties. It is well-known fact that, water molecules are
generally found in two form first one is in non-crystalline surface ad-
sorbed oxygen vacancies and second one crystalline form or lattice
oxygen vacancies. According to the previous literature reports, the
lattice oxygen vacancies are decomposed at a higher temperature. The
thermogram curve illustrates further continuous weight loss (∼2.8%)
between 600–800 °C, which is attributed to the burning and removal of
dangling bonds and carbon monoxide (Fig. 4). These results are well
consistent with FTIR spectral results.

The infrared spectra allow more insight into the surface attached
organic moieties of the as-prepared Gd2O3:Tb NPs. The occurrence of

the diffused band at 3435 cm−1 along with middle-intensity peak lo-
cated at 1510 &1396 cm−1 are attributed to the stretching and bending
vibrational modes of surface adsorbed residual traces of water mole-
cules (Fig. 5). A sharp intensity infrared absorption peak is observed at
550 cm−1 is assigned to the metal oxygen network in the as-prepared
Gd2O3:Tb NPs [25,54,55,66]. Raman spectroscopy was employed for
examining the structural disorder in the as-prepared nanomaterials
through Raman-active vibrational modes. The Raman spectrum in
Fig. 6 demonstrates three major peaks located at 359, 443 and
626 cm−1. The spectrum shows very strong Raman-active mode located
at 359 cm−1, which is a well-known Fg mode for the cubic phase of
nanostructured gadolinium oxide (Fig. 6) [36,40,65].

Absorption spectra were recorded in water and alcohol to inspect
the optical features and solubility character of the sample over the
200–650 nm UV/visible range. The absorption spectra of Gd2O3:Tb NPs
in aqueous media exhibited strong absorption in the ultraviolet region,
which is attributed to the 5d⟵4f transition [40,56]. Additionally, a
small shoulder is observed at 230 nm is assigned to the transition from
the ground state of 8S7/2 to the excited state of 6Ij for Gd(III) (Fig. 7). In
comparative results, ethanol suspended Gd2O3:Tb NPs shows good

Fig. 9. Photoluminescence spectra of the Gd2O3:Tb Ns.
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colloidal stability and solubility then their respective water suspended
NPs. We speculate that the high polarity of ethanol is responsible for
easily coordinate with porous materials, which make electrostatic in-
teraction through hydrogen bonding. The optical energy band gap was
estimated by using the following equation (αhν)n = β(hν - Eg), where hν
is the photon energy, α is the absorption coefficient, β is a constant
relative to the material, and n is either two for a direct transition or 1/2
for an indirect transition. The intercept of the tangent to the plot will
give a worthy estimate of the straight band gap energies of the sample.
The experimentally calculated Eg values for H2O and ethanol are 1.76
and 1.72 eV, respectively (Fig. 8).

Photoluminescence spectra were carried out to confirm the sub-
stitution of luminescent Tb(III) ion in the Gd2O3 crystal lattice. The
emission spectrum of Gd2O3:Tb NPs was achieved at an ambient tem-
perature in the middle of the visible region from 450 to 700 nm under
monitoring 325 nm(3.82 eV) excitation wavelength. PL spectrum of
luminescent NPs in Fig. 9 displays all intra-configurationally emission
transitions in visible region located at 480-505(5D4→

7F6), 535-
560(5D4→

7F5), 577-600(5D4→
7F4), 610-630(5D4→

7F3), 650-
670(5D4→

7F2), 675-700(5D4→
7F1) and 700-715(5D4→

7F0) of terbium
ion, respectively [53–55,57]. Among the emission transitions, green
region emission transition located at 535-560(5D4→

7F5) is most domi-
nant, which is a so-called hypersensitive transition [56,59,67]. The
hypersensitive transition is the true impression of the characteristic 4f-
4f transitions, which is induced due to the alteration of surrounding
chemical environment through the creation of a new chemical bond
between chelate and Tb(III) ions. It is observed in Fig.9, most of the
emission lines are highly perturb and display inhomogeneous broad-
ening along with multiple splitting because of crystal field effect. I
could be due to small crystallinity and porous surface of the lumines-
cent NPs material. Furthermore, the peak positions are shifted com-
pared to the other Tb3+-doped matrices, since the 4f energy levels of
the Tb(III) is shielded by the 5s2p6 outer sub-shell electrons, which af-
fect the crystal field.

4. Conclusion

In summary, Gd2O3:Tb NPs were successfully synthesized by
thermal decomposition process via a weak base (urea) at low tem-
perature. Luminescent NPs were nearly spherical shaped, narrow size
distributed, porous, highly purified, well-crystalline, single cubic phase
with an average crystallite size of 10–20 nm. The XRD and Raman ac-
tive modes result clearly revealed the cubic phase of the luminescent
Gd2O3:Tb NPs. Because of small grain size and porous surface, the lu-
minescent NPs are hydrophilic in nature and showed aggregated in
aqueous media. Optical energy band gap values are varied in both
solvents because of polarity and coordination nature of the solvents
with luminescent NPs. Our finding of the basic photo-physical features
of the as-prepared Gd2O3:Tb NPs are highly attractive for future fab-
rication of large-scale highly efficient nano-phosphors. The highly col-
loidal luminescent NPs revealed strong green emission transition in
between 535–560 nm (5D4→

7F5) with high thermal and photochemical
stability is advantageous in the conjugation of bio-macromolecules for
fabrication of optical bio-probe/ optical biosensor.
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