
King Saud University

College of Engineering

IE – 462: “Industrial Information Systems”

Fall – 2020 (1st Sem. 1442H)

Chapter 2

Information System Development – p1

Prepared by: Ahmed M. El-Sherbeeny, PhD 1

Lesson Overview

• System Development Life Cycle (SDLC)

• Programming Languages

2

3

System Development Life Cycle
(SDLC)

System Development Life Cycle (SDLC)

• System Development Life Cycle (SDLC):
o traditional methodology/process followed in an organization

o used to plan, analyze, design, implement and maintain
information systems

o System analyst is responsible for analyzing and designing an
information system

4IE462

• Phases in SDLC:
o Planning

o Analysis

o Design

o Implementation

o Maintenance

5IE462

SDLC‐ Cont.

SDLC‐ Cont.

• Planning – an organization’s total information
system objectives or purposes are identified,
analyzed, prioritized, and arranged

• Analysis – system requirements are studied and
structured (this’s called system analysis)
Includes feasibility analysis:
o technical feasibility

o economic feasibility

o legal feasibility

6IE462

• Design – a description of the recommended
solution is converted into logical and then physical
system specifications

o Logical design: all functional features of the system chosen
for development in analysis are described independently
of any computer platform

o Physical design: transforming the logical specifications of
the system into technology-specific details

7IE462

SDLC‐ Cont.

• Design – cont.
o See below: difference between physical and logical design

8IE462

SDLC‐ Cont.

Skateboard ramp blueprint (logical design) A skateboard ramp (physical design)

• Implementation – information system is:
o coded (i.e. programmed)

o tested (includes unit test, system test, user-acceptance test)

o installed (training users, providing documentation, and
conversion from previous system to new system)

• Maintenance – information system is systematically
repaired and improved
o structured support process: reported bugs are fixed, requests

for new features are evaluated and implemented

o system updates/backups are performed on a regular basis

9IE462

SDLC‐ Cont.

Types of SDLCs

• SDLC can be performed in several different ways:
o Traditional Waterfall SDLC

o Iterative SDLC

o Rapid Application Development (RAD)

o Agile Methodologies

o Lean Methodology

10IE462

SDLC Types: 1. Traditional Waterfall SDLC

• One phase begins when another completes, with
little backtracking and looping

11IE462

Problems with Waterfall Approach

• Quite rigid: system requirements can't change after
being determined

• No software is available until after the programming
phase

• Limited user cooperation (only in requirements
phase)

• Projects can sometimes take months/years to
complete

12IE462

SDLC Types: 2. Iterative SDLC

• Development phases are repeated as required
until an acceptable system is found

• User participates

• Spiral (evolutionary)
development SDLC
in which we constantly
cycle through phases
at different levels of details

13IE462

3. Rapid Application Development (RAD)

• Systems-development methodology that focuses on
quickly:
o building working model of software

o getting feedback from users

o using that feedback to update the working model

o making several iterations of development

o developing/implementing a final version

• This greatly decreases design / implementation time
 shortened development (compressed process)

• Uses extensive user cooperation, prototyping,
integrated CASE tools, and code generators 14

Rapid Application Development (RAD) – cont

15IE462

• Requirements planning:
o overall requirements for system are defined

o team is identified, and

o feasibility is determined (similar to analysis/design phases in
Waterfall Approach)

• User design:
o prototyping the system with the user using CASE tools in

creating interfaces/reports

o e.g. JAD (joint application development) session: all
stakeholders have a structured discussion about design of the
system

16IE462

Rapid Application Development (RAD) – cont

• Construction:
o coding the system using CASE tools

o it is an interactive, iterative process

o and changes can be made as developers are working on the
program

• Cutover:
o delivery of developed system (i.e. implementation)

17IE462

Rapid Application Development (RAD) – cont

SDLC Types: 4. Agile Methodologies

• Group of methodologies that utilize incremental
changes with a focus on quality, details (started: 2001)

• Each increment is released in a specified time (called a
“time box”) regular release schedule with very
specific objectives

• Share some RAD principles:
o iterative development

o user interaction

o ability to change

• Goal: provide flexibility of iterative approach, while
ensuring a quality product

18IE462

SDLC Types: 5. Lean Methodology

• Lean Methodology:
o New concept

o Focus is on taking initial idea and developing minimum viable
product (MVP)

o MVP: working software application with just enough
functionality to demonstrate
the idea behind the project

o MVP is given to potential users
for review; team then determines
whether to continue in same
direction or rethink idea
behind project new MVP

o Iterative process: until
final product is completed

19IE462

Note: Quality Triangle

• Simple concept: for any product/service
being developed, you can only address
2 of the following:
o Time
o Cost
o Quality

• e.g. you cannot complete a low-cost, high-quality
project in a small amount of time

• Also, if you can spend a lot of money project can
be completed quickly with high-quality results

• If completion date is not a priority, then it can be
completed at a lower cost with higher-quality results

20
IE462

21

Programming Languages

Programming Languages

• One way to characterize programming languages
is by their “generation”:
o First-generation languages

o Second-generation languages

o Third-generation languages

o Fourth-generation languages

22IE462

Programming Languages (cont.)

• First-generation languages
o Called machine code: specific to the type of hardware to

be programmed

o Each type of computer hardware has a
different low-level programming language

o Uses actual ones and zeroes (bits)
in the program, using binary code

o Example here: adds ‘1234’ and ‘4321’
using machine language

23IE462

Programming Languages (cont.)

• Second-generation languages
o Called Assembly language (also low-level language)

o Gives English-like phrases to machine-code instructions,
making it easier to program

o Run through an assembler, which converts it into machine
code

o See here program that adds
‘1234’ and ‘4321’
using assembly language

24IE462

Programming Languages (cont.)

• Third-generation languages
o Not specific to type of hardware on which they run

o Much more like spoken languages

o Most third-generation languages must be compiled, a
process that converts them into machine code

o Well-known third-generation languages:
BASIC, C, Pascal, and Java

o Here is a program (in BASIC) that adds
‘1234’ and ‘4321’

25IE462

Programming Languages (cont.)

• Fourth-generation languages
o Class of programming tools that enable fast application

development using intuitive interfaces and environments

o Have very specific purpose, such as database interaction
or report-writing

o Can be used by those
with very little training in
programming; allow for
quick development
of applications
and/or functionality

o Examples:
Clipper, FOCUS,
FoxPro, SQL, and SPSS

26IE462

Programming Languages (cont.)

• Higher vs. Lower Level Languages
o Lower-level languages (e.g. assembly language): much

more efficient and execute much more quickly; you have
finer control over the hardware as well

o Sometimes, combination of higher- and lower-level
languages are mixed “best of both worlds”: overall
structure and interface using a higher-level language, but
use lower-level languages for parts of program that are
used many times or require more precision

27IE462

Programming Languages (cont.)

• Compiled vs. Interpreted
o Another way to classify programming languages

o Compiled language: code is translated into a machine-
readable form called an “executable” that can be run on
the hardware (e.g. C, C++, and COBOL)

o Interpreted language: requires a “runtime program” to be
installed in order to execute; this program then interprets
the program code line by line and runs it; generally easier
to work with but slower (e.g. BASIC, PHP, PERL, and Python)

o Web languages (HTML and Javascript) also considered
interpreted because they require a browser in order to run

o Note, Java programming language: interesting exception
to this classification (hybrid of the two)

28IE462

Programming Languages (cont.)

• Procedural vs. Object-Oriented
o Procedural programming language: designed to allow a

programmer to define a specific starting point for the
program and then execute sequentially (include all early
programming languages)

o Object-oriented programming language: uses interactive
and graphical user interfaces (GUI) to allow the user to
define the flow of the program

• programmer defines “objects” that can take certain
actions based on input from the user

o Procedural program focuses on sequence of activities to
be performed, while object-oriented program focuses on
the different items being manipulated

29IE462

Programming Languages (cont.)

• Procedural vs. Object-Oriented (cont.)
o Example of object-oriented code (human resource system)

o object (“EMPLOYEE”) is created in program to retrieve or
set data regarding an employee

o Every object has properties: descriptive fields associated
with the object (“Name”, “Employee number”, “Birthdate”
and “Date of hire”)

o Object also has methods
which can take actions related
to the object:
“ComputePay()”: money owed to person
“ListEmployees()”: who works under
that employee

30IE462

Programming Languages (cont.)

• Programming Tools
o Traditional Tools: text editor, checking syntax, code

compiler

o Additional tools:
• Integrated Development Environment (IDE)

• Computer-Aided Software-Engineering (CASE) tools

31IE462

Programming Languages (cont.)

• Programming Tools (cont.)
Integrated Development Environment (IDE) provides:
o an editor for writing the program that will color-code or

highlight keywords from the programming language

o help system

o compiler/interpreter

o debugging tool (to resolve problems)

o check-in/check-out mechanism (so that more than one
programmer can work on code)

o e.g. Microsoft Visual Studio: IDE for Visual C++, Visual BASIC

32IE462

Programming Languages (cont.)

• Programming Tools (cont.)
Integrated Development Environment (IDE) example

33IE462

Programming Languages (cont.)

• Programming Tools (cont.)
Computer-aided software-engineering (CASE) Tools:
o Allows a designer to develop software with little or no

programming

o Writes the code for the designer

o Goal is to generate quality code based on input created
by the designer

34IE462

Programming Languages (cont.)

35IE462

Programming Languages (cont.)

• Programming Tools (cont.)
Computer-aided software-engineering (CASE) example:

36IE462

Programming Languages (cont.)

• Programming Tools (cont.)
Computer-aided software-engineering (CASE) Tools (cont.):
o Diagramming tools enable graphical representation

o e.g. Unified Modeling Language (UML): general-purpose,
developmental, modeling language used to visualize the
design of a system

o Computer displays and report generators help prototype
how systems “look and feel”

o Code generators enable automatic generation of
programs and database code directly from design
documents, diagrams, forms, and reports

37IE462

Sources

• Modern Systems Analysis and Design. Joseph S.
Valacich and Joey F. George. Pearson. Eighth Ed.
2017. Chapter 1: The Systems Development
Environment.

• Information Systems for Business and Beyond. David
T. Bourgeois. The Saylor Academy. 2014. Chapter
10: Information Systems Development.

38IE462

