King Saud University
College of Engineering
IE — 462: “Industrial Information Systems”

Fall — 2020 (15t Sem. 1442H)

Chapter 2

Information System Development — pl

Prepared by: Ahmed M. El-Sherbeeny, PhD

Lesson Overview

« System Development Life Cycle (SDLC)

 Programming Languages

o2

System Development Life Cycle
(SDLC)

O

System Development Life Cycle (SDLC)

« System Development Life Cycle (SDLC):
o traditional methodology/process followed in an organization

0 used to plan, analyze, design, implement and maintain
iInformation systems

o0 System analyst is responsible for analyzing and designing an
iInformation system

® |[E462 o4

* Phases in SDLC:

O

O

O

O

O

® |[E462

Planning
Analysis

Design
Implementation

Maintenance

SDLC- Cont.

‘ Analysis

/

Planning
Maintenance
II'I"IPIEI'I'IEI'I'tﬂtiDI'I —

Design

e5

SDLC- Cont.

« Planning — an organization’s total information
system objectives or purposes are identified,
analyzed, prioritized, and arranged

« Analysis - system requirements are studied and
structured (this’s called system analysis)
Includes feasibility analysis:

o technical feasibility

o0 economic feasibility

o legal feasibility

® |[E462

®6

SDLC- Cont.

Design — a description of the recommended
solution is converted into logical and then physical
system specifications

o Logical design: all functional features of the system chosen
for development in analysis are described independently
of any computer platform

o0 Physical design: transforming the logical specifications of
the system into technology-specific details

® |[E462 L

SDLC- Cont.

« Design - cont.
o0 See below: difference between physical and logical design

1. QUANTITY REQUIRED: 2
NNNNN ; DRAWN BY:

CAD FILE:

2,..,Skateboard ramp blueprint (logical design) A skateboard ramp (physical desigrg)

SDLC- Cont.

* Implementation — information system is:
0 coded (i.e. programmed)

o tested (includes unit test, system test, user-acceptance test)

o installed (training users, providing documentation, and
conversion from previous system to new system)

« Maintenance - information system is systematically
repaired and improved

o structured support process: reported bugs are fixed, requests
for new features are evaluated and implemented

o system updates/backups are performed on a regular basis

® |[E462 ®9

Types of SDLCs

« SDLC can be performed in several different ways:
o Traditional Waterfall SDLC

o Iterative SDLC
o Rapid Application Development (RAD)
o Agile Methodologies

o Lean Methodology

® |[E462 ®10

SDLC Types: 1. Traditional Waterfall SDLC

 One phase begins when another completes, with

little backtracking and looping

Planning _w

Analysis H

Logical

Design _w

Physical
Design

® |[E462

B

Implementation

hMaintenance ‘

11

Problems with Waterfall Approach

* Quite rigid: system requirements can't change after
being determined

* No software is available until after the programming
phase

e Limited user cooperation (only in requirements
phase)

Projects can sometimes take months/years to
complete

® |[E462 ®12

SDLC Types: 2. Iterative SDLC

 Development phases are repeated as required
until an acceptable system is found

Design —

« User participates

T—__ Implementation
e

« Spiral (evolutionary) |
development SDLC s
In which we constantly
cycle through phases
at different levels of details

Planning —~—— /

® |[E462 ®13

3. Rapid Application Development (RAD)

« Systems-development methodology that focuses on
guickly:
o building working model of software

o getting feedback from users
o using that feedback to update the working model
0 making several iterations of development

0 developing/implementing a final version

« This greatly decreases design / implementation time
= shortened development (compressed process)

« Uses extensive user cooperation, prototyping,
. Integrated CASE tools, and code generators ol

Rapid Application Development (RAD) - cont

Requirements
Planning

‘ UserDesign Construction

® |[E462 e15

Rapid Application Development (RAD) - cont

« Requirements planning:
o overall requirements for system are defined

o team is identified, and

o feasibility is determined (similar to analysis/design phases in
Waterfall Approach)

« User design:

0 prototyping the system with the user using CASE tools in
creating interfaces/reports

o e.g. JAD (joint application development) session: all
stakeholders have a structured discussion about design of the

system

® |[E462 016

Rapid Application Development (RAD) - cont

« Construction:
0 coding the system using CASE tools

O itis an interactive, iterative process

o and changes can be made as developers are working on the
program

 Cutover:
o delivery of developed system (i.e. implementation)

® |[E462 e17

SDLC Types: 4. Agile Methodologies

Group of methodologies that utilize incremental
changes with a focus on quality, details (started: 2001)

Each increment is released in a specified time (called a
“time box) = regular release schedule with very
specific objectives

Share some RAD principles:
O iterative development

O user interaction

o ability to change

Goal: provide flexibility of iterative approach, while
ensuring a quality product

® E462 018

SDLC Types: 5. Lean Methodology

 Lean Methodology:
0 New concept

0 Focus is on taking initial idea and developing minimum viable
product (MVP)

o MVP: working software application with just enough
functionality to demonstrate

the idea behind the project
o MVP is given to potential users
for review; team then determines

whether to continue in same
direction or rethink idea
behind project = new MVP

O Iterative process: until

final product is completed Data
® [E462 ®19

Note: Quality Triangle

Time

Simple concept: for any product/service
being developed, you can only address
2 of the following:
o Time
o Cost

o Quality Quality Cost

e.g. you cannot complete a low-cost, high-quality
project in a small amount of time

Also, if you can spend a lot of money = project can
be completed quickly with high-quality results

If completion date is not a priority, then it can be
completed at a lower cost with higher-quality results

o e 20
[E462

Programming Languages

e21

Programming Languages

« One way to characterize programming languages
Is by their “generation”:
o First-generation languages

o0 Second-generation languages
o Third-generation languages

o Fourth-generation languages

® |[E462 022

Programming Languages (cont.)

« First-generation languages
o Called machine code: specific to the type of hardware to

be programmed

o Each type of computer hardware has a

different low-level programming language

0 Uses actual ones and zeroes (bits)

In the program, using binary code

o Example here: adds ‘1234’ and ‘4321’

® |[E462

using machine language

10111001
110100160
00000100
10001001
00001110
00000000
00000000
(5lo]oo]e1515]%)
10111001
11100001
00010000
10001001
00001110
0000010

00000000
10100001
00000000
00000000
10001011
00011110
00011110
00000010
5[oo]o]%]%]5]%
00000011
11000011
10100011
00000100
5[oo]ol%]%]5]%

®23

Programming Languages (cont.)

« Second-generation languages
Called Assembly language (also low-level language)

O

O

® |[E462

Gives English-like phrases to machine-code instructions,

making it easier to program

Run through an assembler, which converts it into machine

sode MOV CX,1234

See here program that adds MOV DS:[@],CX

‘1234’ and ‘4321’ MOV CX,4321

using assembly language MOV AX,DS : [@]
MOV BX,DS:[2]
ADD AX,BX

MOV

DS:[4],AX

24

Programming Languages (cont.)

« Third-generation languages

O

O

O

® |[E462

Not specific to type of hardware on which they run
Much more like spoken languages

Most third-generation languages must be compiled, a
process that converts them into machine code

Well-known third-generation languages: A=1234
BASIC, C, Pascal, and Java

B=4321
Here is a program (in BASIC) that adds C=A+B

‘1234’ and ‘4321’
END

® 25

Programming Languages (cont.)

« Fourth-generation languages

Class of programming tools that enable fast application
development using intuitive interfaces and environments

O

® |[E462

Have very specific purpose, such as database interaction

or report-writing

Can be used by those
with very little training in
programming; allow for
guick development

of applications

and/or functionality

Examples:
Clipper, FOCUS,
FoxPro, SQL, and SPSS

. Ermptoer - Employer 000100 WOTC DESEREL MALL ==

=

—
1 - Employer List il 2-EmployerDefails | 3-Owners& Comments | 4-Annual Summary | 5-Retwnsfiled | 6-Misc Payments 1-Retum Transactions |
Bisplay Satus Jidcve dnly inacke Oaly () Glosed Only (@) Al Louk for Empl. 1D | - H
{7} Actien Emplagers whia have notfiled retisms for the prevous
Filter H

- Hame aks Hencwal Mallo Riala Hambat His B AR edad ramer fast Ladid Asddar ~
ME ADDEDEYC] ¢ | | [TUNK] | | ”

'uﬂ J"H-\ll-_fﬂ.ﬁf. Sooat Socunty Masfor | Add SING

- = 1 _Master List 2- Appicant Detalks 3_Benefits and ther SSHO 2inio

Social Security Number 4 For Employment [See page 4 for history and to modify)

| tasthame |rrmnoR Hame af Birin

| | | General Nielvery
F mall Aakirass

Zip Codw | 96040 Phone:

Cannenl Lucabon DILAU [PALALY stte []
TR | 4 Occupanon
) —
0,
0 ritad St Fmployer at Application
ooozi fo Purents
000z1-11
TR 447 T =

[AGE S 108 ISty
Foamtry and to medity)

Save Cancel

26

Programming Languages (cont.)

« Higher vs. Lower Level Languages

o Lower-level languages (e.g. assembly language): much
more efficient and execute much more quickly; you have
finer control over the hardware as well

o0 Sometimes, combination of higher- and lower-level
languages are mixed = “best of both worlds”: overall
structure and interface using a higher-level language, but
use lower-level languages for parts of program that are
used many times or require more precision

Low-level languages High-level languages
iachine-dependent Machine-Independent
< "
mMachine Third-generation Fourth-generation
Language languagea {C, Basic, languages (SQL,
C++, Java) ABAP,
— ColdFuslon)

® [E462 La::u"‘mz ot

Programming Languages (cont.)

« Compiled vs. Interpreted

O

O

® |[E462

Another way to classify programming languages

Compiled language: code is translated into a machine-
readable form called an “executable” that can be run on
the hardware (e.g. C, C++, and COBOL)

Interpreted language: requires a “runtime program” to be
iInstalled in order to execute; this program then interprets
the program code line by line and runs it; generally easier
to work with but slower (e.g. BASIC, PHP, PERL, and Python)

Web languages (HTML and Javascript) also considered
iInterpreted because they require a browser in order to run

Note, Java programming language: interesting exception
to this classification (hybrid of the two)

®28

Programming Languages (cont.)

 Procedural vs. Object-Oriented
0 Procedural programming language: designed to allow a

® |[E462

programmer to define a specific starting point for the
program and then execute sequentially (include all early
programming languages)

Object-oriented programming language: uses interactive
and graphical user interfaces (GUI) to allow the user to
define the flow of the program

« programmer defines “objects” that can take certain
actions based on input from the user

Procedural program focuses on sequence of activities to
be performed, while object-oriented program focuses on
the different items being manipulated

@29

Programming Languages (cont.)

 Procedural vs. Object-Oriented (cont.)
o Example of object-oriented code (human resource system)

o0 object (“EMPLOYEE”) is created in program to retrieve or
set data regarding an employee

0 Every object has properties: descriptive fields associated
with the object (“Name”, “Employee number”, “Birthdate”
and “Date of hire”)

o Obiject also has methods Object: EMPLOYEE
which can take actions related N
: _ ame
to the object: Employee number
“ComputePay()”: money owed to person | Birthdate
“ListEmployees()”: who works under Date of hire

that employee
ComputePay()

ListEmployees()

® |[E462

Programming Languages (cont.)

 Programming Tools

o Traditional Tools: text editor, checking syntax, code
compiler

o Additional tools:
* Integrated Development Environment (IDE)

« Computer-Aided Software-Engineering (CASE) tools

® |[E462 e31

Programming Languages (cont.)

 Programming Tools (cont.)
Integrated Development Environment (IDE) provides:

O

® |[E462

an editor for writing the program that will color-code or
nighlight keywords from the programming language

help system
compiler/interpreter
debugging tool (to resolve problems)

check-in/check-out mechanism (so that more than one
programmer can work on code)

e.g. Microsoft Visual Studio: IDE for Visual C++, Visual BASIC

®32

Programming Languages (cont.)

 Programming Tools (cont.)
Integrated Development Environment (IDE) example

Session Project Run Navigation

(&) Build [¥] Execute [Debug

Projects o4 Q

B2 B & @ @

[bazaar
[classbrowser
[codeutils
[contextbrowser
[cvs
[documentswitcher
[documentview
[execute
[kdevexecute
2 CMakeLists.txt
h debugh
* executeplugin.cpp
executeplugin.h
iexecuteplugin.h
_ kdevexecute json
’_ Messages.sh
¢’ nativeappconfig.cpp
h nativeappconfig.h
4 nativeappconfig.ui
i)
h

& Documents ¥ Classes

§ v v

[Projects

v o o0,

** nativeappjob.cpp
nativeappjob.h
" projecttargetscompb...
h projecttargetscomb...
> [F executescript
> [externalscript
> [filemanager
> [filetemplates
» [genericprojectmanager
> A git
> [grepview
> [konsole
> [E openwith

Build Sequence A

Name Path

[kdevplatf... kdevplatform

® |[E462

File Edit Tools View Bookmarks Code Window Settings Help

stopAll (2 Stop , | [J) New [B] save [} saveas [L, Commit.. | Quick

nativeappconfia.cpp €3
QListWidgetItem* item = new QListWidgetItem{icon, targetDependencv-btextfJ, dependencies);
item->setDatal Qt::UserRole, targetDependency->itemPath());
targetDependency->setText(QlatinlString(""));
addDependency->setEnabled(false)
dependencies-»selectionModel()->clearSelection();
Lth >satSe\e(tedttrue 3

endencies n|

woid NativeAppConfigPage::selectItemDialog()
v
- if(targetDependency->selectTtenDialog(}) {
addDep(];
}

void NativepppConfigPage::removeDepl()
v{

QList<QlistWidgetTtem#> list = dependencies-»selectedItems();
if(1list.isEmpty())
{

v
Q_ASSERT(Lis == 1
int row = dependencies->row(.atfe));
delete dependencies->takeItem{ row };
dependencies-»selectionModel()->select(dependencies-»model()->index{ row - 1, 0, QModelIndex()), QItemSelectionModel::ClearAr
}
}

void NativeAppConfigPage::saveToConfiguration(KConfigGroup cfg, KDevelop::TProject* project) const
v {

Q_UNUSED(project };
cfg.writeEntry(ExecutePlugi
cfg.writeEntry(ExecutePlugi
cfg.writeEntry(ExecutePlugi
cfg.writeEntry{ ExecutePlugi
cfg.writeEntry(ExecutePlugin:
cfg.writeEntry(ExecutePlugi
cfg.writeEntry(
cfg.writeEntryl
cfg.writeEntryl(£xecutePLqu
Qvariar t]

for(int

isExecutableEntry, executableRadio- >13Che(kedf] 1
executableEntry, executablePath->url(
projectTargetEntry, projectTarget- ‘—\'(urrentltemPathll ¥i
argumentsEntry, arguments->text{) J;

workingDirEntry, workingDirectory-=url());
environmentGroupEntry, environment- >curren‘tProf11etl 1
useTerminalEntry, runInTerminal->isChecked(
terminalEntry, terminal->currentText(} };
sdependencyhctionEntry, dependencyAction- >1temDataE dependencyhction->currentIndex()).toStringl));

< dependencies->count(); i++)
deps << dependencies->item(i)->datal(Qt::UserRole);

¥
cfg.writeEntry{ ExecutePlugin::dependencyEntry, KDevelop::qvariantToStringl QVariant(deps)));

String MativeAppConfigPage::title() const

~a

return il8n("Configure Native Application"};

°d .

(D) showImports Scope: Current Document Bl |
Problem Source File Line Colur
[i TODO: Make sure to auto-add the executable target to the dependencies when its used. To-do nativeappconfig.cpp 68 3

[{ TODO: we probably want to flexibilize, but at least we won't be accepting wrong values anymore To-do nativeappconfig.cpp 415 5

®33

Programming Languages (cont.)

 Programming Tools (cont.)
Computer-aided software-engineering (CASE) Tools:

o Allows a designer to develop software with little or no
programming

o Writes the code for the designer

o Goalis to generate quality code based on input created
by the designer

® |[E462 ® 34

Programming Languages (cont.)

CASE Tools

® |[E462

Documentation Tools
Analysis Tools
Design Tools

Configuration Management Tools
Change Control Tools
Programming Tools
Prototyping Tools
Web Development Tools

Quality Assurance Tools
Maintenance Tools

www.educba.com
035

Programming Languages (cont.)

 Programming Tools (cont.)
Computer-aided software-engineering (CASE) example:

A F Raticnal Rose RaalTime - externalCUsingolabassndThreac, rimdl - | Class Draqrann s Loghos! e ..'.

=

E=] Rl Bl

Wakt Brcdkse BEE]D Bept ot Tods

S5 i LS e T e

LS ETal |

=]

— =] =]

Nl fraalaec(lramr (B0 S amsEcs| B Do ok

B gal rodel
-8 Usa Case Viaw
- 2° Extarnal Pad Ulsage
= 2E Man
- % Copeula
== B EmernalThraad
- a Logical Wiewn
HEC ATC asses
-3 Stenderdlibrenes
E-42" Have il all warks
= IR
B AThead
E-% Top
-8 Camponer Wiew
EHEPg AT O omponants
(=&l Main
{E] Stenderdlibrmnes
-0 TheZCapsuleE=s
-3 Deplovment viaw
i~ Py klmin
El [P windaws
-l ThaCl=psulaExalnstnce

RS U S

® |[E462

T s I e . S

hple of using © Extemnl par ta
bl o cogoule vsing o celback

femampleruns onwind2 only (because i
wwnlZ cels o ceale & himad)

iram Stand=rdLibreries

ffrom SiendardLbranies

ffrom Smndard_ibranias

crCapsule»r
This capsule siats th Top
e este=rnal fhiread, and
B e ocaunt =0
¢ =demal: CHoOd=Emisl
! “tecludas
The extarnal prolocol praades = . \.;:\l
mechaniEm signal sn evantio s i
cap=ule] AThread
-------------- LTI Thiz claea uilit: cams
Nig & new BrgaiR TS e rice el : XetitheErdemal For : R0 -FosaFAT coda. k
wharmial : 'Eachinijuli R non aa Codle, Ko
pravicias en AR hel s nonRoze : e | - | usEs the exemal &F1 L
|n|:|l.!|:|=-= "‘h:I'E'ﬂJ'E'I:I capsds
i IS & o L1
- e *tseiEaemeiFo]
oo et
ftProtoca e Y e F. !
CExdeminl e - H "-_l d
iom PTEC=ecas) induties inciidas e
o mweent [oid) S ' Y
etdio E=5le]] windows

® 36

Programming Languages (cont.)

 Programming Tools (cont.)
Computer-aided software-engineering (CASE) Tools (cont.):
o Diagramming tools enable graphical representation

0 e.g. Unifled Modeling Language (UML): general-purpose,
developmental, modeling language used to visualize the
design of a system

o Computer displays and report generators help prototype
how systems “look and feel”

o Code generators enable automatic generation of
programs and database code directly from design
documents, diagrams, forms, and reports

® |[E462 ©® 37

Sources

 Modern Systems Analysis and Design. Joseph S.
Valacich and Joey F. George. Pearson. Eighth Ed.
2017. Chapter 1: The Systems Development
Environment.

e Information Systems for Business and Beyond. David
T. Bourgeois. The Saylor Academy. 2014. Chapter
10: Information Systems Development.

® |[E462 ® 38

