King Saud University
College of Engineering
IE — 462: “Industrial Information Systems”

Spring — 2019 (24 Sem. 1439-40H)

Chapter 2

Information System Development — pl

Prepared by: Ahmed M. El-Sherbeeny, PhD

Lesson Overview

« System Development Life Cycle (SDLC)

 Programming Languages

o2

System Development Life Cycle
(SDLC)

System Development Life Cycle (SDLC)

e System Development Life Cycle (SDLC):
o traditional methodology/process followed in an organization

0 used to plan, analyze, design, implement and maintain
Information systems

o0 System analyst is responsible for analyzing and designing an
information system

® |E462 o4

e Phases in SDLC:

0]

0]

0]

0]

)

® |[E462

Planning
Analysis

Design
Implementation

Maintenance

SDLC- Cont.

‘ Analysis

/

Planning
Maintenance
|mP|E'm"=" ntation -—!

Design

®5

SDLC- Cont.

« Planning — an organization’s total information
system objectives or purposes are identified,
analyzed, prioritized, and arranged

e Analysis - system requirements are studied and
structured (this’s called system analysis)
Includes feasibility analysis:

o technical feasibility

o0 economic feasibility

o legal feasibility

® |E462

®6

SDLC- Cont.

Design — a description of the recommended
solution is converted into logical and then physical
system specifications

o Logical design: all functional features of the system chosen
for development in analysis are described independently
of any computer platform

o0 Physical design: transforming the logical specifications of
the system into technology-specific details

® |E462 o/

SDLC- Cont.

 Design - cont.
0 See below: difference between physical and logical design

REV. DATE

26—92

1. QUANTITY REQUIRED: 2
NOTES: DRAWNBY: | cwmauen | ewo | gopE

|E04628kateboard ramp blueprint (logical design) A skateboard ramp (physical desigrg)

SDLC- Cont.

 Implementation — information system is:
0 coded (i.e. programmed)

o tested (includes unit test, system test, user-acceptance test)

o installed (training users, providing documentation, and
conversion from previous system to new system)

 Maintenance - information system is systematically
repaired and improved

o structured support process: reported bugs are fixed, requests
for new features are evaluated and implemented

o0 system updates/backups are performed on a regular basis

® |E462 ®9

Types of SDLCs

« SDLC can be performed in several different ways:
o Traditional Waterfall SDLC

o Iterative SDLC
o Rapid Application Development (RAD)
o Agile Methodologies

o Lean Methodology

® |E462 e10

SDLC Types: 1. Traditional Waterfall SDLC

« One phase begins when another completes, with
little backtracking and looping

Physical

Design _\
Implementation W

Maintenance ‘

® [E462 ' 011

Problems with Waterfall Approach

e Quite rigid: system requirements can't change after
being determined

 No software is available until after the programming
phase

e Limited user cooperation (only in requirements
phase)

* Projects can sometimes take months/years to
complete

® |E462 e12

SDLC Types: 2. Iterative SDLC

« Development phases are repeated as required
until an acceptable system is found

Deasign T

~—_ Implementation

« User participates

« Spiral (evolutionary)
development SDLC Py |
in which we constantly |
cycle through phases
at different levels of details

Planning —t //

® |E462 ®13

3. Rapid Application Development (RAD)

o Systems-development methodology that focuses on
guickly:
o building working model of software

o getting feedback from users
0 using that feedback to update the working model
0 making several iterations of development

o0 developing/implementing a final version

e This greatly decreases design / implementation time
= shortened development (compressed process)

e Uses extensive user cooperation, prototyping,
. Integrated CASE tools, and code generators ol

Rapid Application Development (RAD) - cont

Requirements
Planning

‘ UserDesign Construction

® |[E462 ®15

Rapid Application Development (RAD) - cont

e Requirements planning:
o overall requirements for system are defined

o team is identified, and

o feasibility is determined (similar to analysis/design phases in
Waterfall Approach)

e User design:

0 prototyping the system with the user using CASE tools in
creating interfaces/reports

o e.g. JAD (joint application development) session: all
stakeholders have a structured discussion about design of the

system

® |E462 016

Rapid Application Development (RAD) - cont

e Construction:
o0 coding the system using CASE tools

O Itis an interactive, iterative process

o and changes can be made as developers are working on the
program

e Cutover:
o delivery of developed system (i.e. implementation)

® |[E462 ®17

SDLC Types: 4. Agile Methodologies

Group of methodologies that utilize incremental
changes with a focus on quality, details (started: 2001)

Each increment is released in a specified time (called a
“time box) = regular release schedule with very
specific objectives

Share some RAD principles:
O iterative development

O user interaction

o ability to change

Goal: provide flexibility of iterative approach, while
ensuring a quality product

® 462 ®18

SDLC Types: 5. Lean Methodology

« Lean Methodology:
0 New concept

0 Focus is on taking initial idea and developing minimum viable
product (MVP)

o MVP: working software application with just enough
functionality to demonstrate
the idea behind the project

o MVP is given to potential users e
for review; team then determines

whether to continue in same
direction or rethink idea
behind project = new MVP

O Iterative process: until
final product is completed
® [E462 ®19

Note: Quality Triangle

Time

Simple concept: for any product/service
being developed, you can only address
2 of the following:
o Time

o Cost

o Quality

Quality Cost

e.g. you cannot complete a low-cost, high-quality
project in a small amount of time

Also, if you can spend a lot of money = project can
be completed quickly with high-quality results

If completion date is not a priority, then it can be
completed at a lower cost with higher-quality results

o ®?20
[E462

Programming Languages

Programming Languages

« One way to characterize programming languages
Is by their “generation”:
o First-generation languages

o0 Second-generation languages
o Third-generation languages

o Fourth-generation languages

® |E462 e22

Programming Languages (cont.)

* First-generation languages
o Called machine code: specific to the type of hardware to

be programmed

o Each type of computer hardware has a

different low-level programming language

0 Uses actual ones and zeroes (bits)

In the program, using binary code

o Example here: adds ‘1234’ and ‘4321’

® |E462

using machine language

10111001
110100160
00000100
10001001
00001110
00000000
00000000
00000000
10111001
11100001
00010000
10001001
00001110
00000010

0000000
10100001
0000000
0000000
10001011
00011110
00011110
00000010
0000000
00000011
11000011
10100011
00000100
00000000

23

Programming Languages (cont.)

 Second-generation languages
Called Assembly language (also low-level language)

O

O

® |E462

Gives English-like phrases to machine-code instructions,

making it easier to program

CX,1234
DS:[0],CX
CX,4321
AX,DS:[0]
BX,DS:[2]
AX, BX

Run through an assembler, which converts it into machine
code MOV
See here program that adds MOV
‘1234’ and ‘4321’ MOV
using assembly language
g y languag MOV
MOV
ADD
MOV

DS:[4],AX

®24

Programming Languages (cont.)

 Third-generation languages

O

O

O

® |E462

Not specific to type of hardware on which they run
Much more like spoken languages

Most third-generation languages must be compiled, a
process that converts them into machine code

Well-known third-generation languages: A=1234
BASIC, C, Pascal, and Java

B=4321
Here is a program (in BASIC) that adds C=A+B

‘1234’ and ‘4321’
END

025

Programming Languages (cont.)

 Fourth-generation languages

Class of programming tools that enable fast application
development using intuitive interfaces and environments

O

® |E462

Have very specific purpose, such as database interaction

or report-writing

Can be used by those
with very little training in
programming; allow for
quick development

of applications

and/or functionality

Examples:
Clipper, FOCUS,
FoxPro, SQL, and SPSS

Employer - Employer 00021-02: WCTC DESEKEL MALL

[]

1-Employer List ‘ 2 - Employer Details } 3 - Ovmers & Comments \ 4 - Annual Summary \ 5- Returns Filed \ - Misc. Payments] 7 - Return Transactions

Display Status

O Active Only O Inactive Only O Closed Only @ Al

Look for Empl. ID -

Father's Last

Documented Date of Birth
Date of Birth] Document Type l:l

ocamentbate || 5 bocamentzor ||

‘Current Employer (updated when wages are posted)

S5 Certification
Employer | -

Print $5 Card

) Active Employers who have not filed returns for the previous quarters
Filter
EmplLID~ Name status Renewal StalLoc state Hamiet Bus. sic SICDetall Owner LastAudit Auditor
00001-00[ADDEDBYC[C | [[[unk [[[[
00010-00 |USEFO ocial Security Master -- Add SSNO
00012-00_|KINGS
3001200 |ADDED 1-Master List 2- Applicant Details 1 3-Benefits and Other SSNO # Info |
00014-00 |ADDED Social Security Number [~ For Employment {see page 4 for history and to modify)
00015-00_|ADDED
00017-00_|ADDED Legal Name
00018-00__|KING'S Firsthame [sARAH | Lasthame [connor Name at Birth
0001900 |GUAM M
00020-00__|VAN CAl Address I:| [General Delivery
00021-00 | SHOPPI £ mail Address
0002101 |WESTP T
HED Phone Ery l:l E:T:edigar:zmm
00021-03 |WCTCT]
00021-04 |wCTCE Current Location BELAU [PALAU] State. |:|
0002105 |WeTC O Date of Birth = [Age: 71 Occupation
00021-06__|BF DEP)
0002107 |WCTCH ciizensnip [PALAU | Place of Birth |:| sex
00021-08__|WCTCH
0002109 |WCTC Marital Status Employer at Application
0002110 |WCTCH o
0002111 |WCTCH)
0002112 |WCTC A NORMEESthee l:' Wother's Maiden Name l:l
<

First Hext Save Cancel print.

®26

Programming Languages (cont.)

 Higher vs. Lower Level Languages

o Lower-level languages (e.g. assembly language): much
more efficient and execute much more quickly; you have
finer control over the hardware as well

0 Sometimes, combination of higher- and lower-level
languages are mixed = “best of both worlds”: overall
structure and interface using a higher-level language, but
use lower-level languages for parts of program that are
used many times or require more precision

Low-level languages

Machine-dependent

High-level languages

Machine-independent

<

Machine

Third-generation Fourth-generation
Language languages (C, Basic, languages (SQL,
C++, Java) ABAP,
" b ColdFusion)
ssembly ©27

® IE462 Language

https://bus206.pressbooks.com/wp-content/uploads/sites/10536/2013/04/Programming-Languages-Spectrum.png

Programming Languages (cont.)

« Compiled vs. Interpreted

O

O

® |E462

Another way to classify programming languages

Compiled language: code is translated into a machine-
readable form called an “executable” that can be run on
the hardware (e.g. C, C++, and COBOL)

Interpreted language: requires a “runtime program” to be
Installed in order to execute; this program then interprets
the program code line by line and runs it; generally easier
to work with but slower (e.g. BASIC, PHP, PERL, and Python)

Web languages (HTML and Javascript) also considered
iInterpreted because they require a browser in order to run

Note, Java programming language: interesting exception
to this classification (hybrid of the two)

28

Programming Languages (cont.)

 Procedural vs. Object-Oriented
o0 Procedural programming language: designed to allow a

® |E462

programmer to define a specific starting point for the
program and then execute sequentially (include all early
programming languages)

Object-oriented programming language: uses interactive
and graphical user interfaces (GUI) to allow the user to
define the flow of the program

o programmer defines “objects” that can take certain
actions based on input from the user

Procedural program focuses on sequence of activities to
be performed, while object-oriented program focuses on
the different items being manipulated

29

Programming Languages (cont.)

 Procedural vs. Object-Oriented (cont.)
o Example of object-oriented code (human resource system)

o object (“EMPLOYEE”) is created in program to retrieve or
set data regarding an employee

0 Every object has properties: descriptive fields associated
with the object (“Name”, “Employee number”, “Birthdate”
and “Date of hire”)

o Object also has methods Object: EMPLOYEE
which can take actions related N
. _ ame
to the object: Employee number
“ComputePay()”: money owed to person | Birthdate
“ListEmployees()”: who works under Date of hire

that employee
ComputePay()

ListEmployees()

® |E462

Programming Languages (cont.)

 Programming Tools

o Traditional Tools: text editor, checking syntax, code
compiler

o Additional tools:
* Integrated Development Environment (IDE)

« Computer-Aided Software-Engineering (CASE) tools

® |E462 e31

Programming Languages (cont.)

 Programming Tools (cont.)
Integrated Development Environment (IDE) provides:

O

® |E462

an editor for writing the program that will color-code or
highlight keywords from the programming language

help system
compiler/interpreter
debugging tool (to resolve problems)

check-in/check-out mechanism (so that more than one
programmer can work on code)

Microsoft Visual Studio: IDE for Visual C++, Visual BASIC

32

Programming Languages (cont.)

 Programming Tools (cont.)
Integrated Development Environment (IDE) example

® |[E462

Session Project Run Navigation

{3 Build [¥] Execute [Debug

20 Classes

& Documents

[Projects

Projects o

BHE e & 6

» [bazaar ~
> [© classbrowser
> [© codeutils
> [contextbrowser
> [evs
» [F documentswitcher
> [F documentview
~ [execute

[kdevexecute

[CMakeLists.txt

h debugh
c’ executeplugin.cpp
executeplugin.h
iexecuteplugin.h
_ kdevexecute json
Messages.sh
nativeappconfig.cpp
nativeappconfig.h
nativeappconfig.ui
nativeappjob.cpp
nativeappjob.h

C' projecttargetscomb...
b projecttargetscomb...

> [0 executescript
» [externalscript
> [E filemanager
» [E filetemplates
» [F] genericprojectmanager
¥
¥
¥
>

oo 0y

O R0

= git

[grepview

[konsole

[openwith v

Build Sequence +

Name Path

[kdevplatf... kdevplatform

N

File Edit Tools View Bookmarks Code Window Settings Help

=1 Stop All —) Stop - [J New save [F SaveAs - [T, Commit... <
nativeappconfig.cpp €3
QlistWidgetItem* item = new QListWidgetItem({icon, targetDependency->text(}, dependencies);
item-»setDatal Qt::UserRole, targetDependency->itemPath() };
targetDependency->setText(QlatiniString(""));
addDependency->setEnabled(false);
dependencies-»>selectionModel()- >(learSele(t10nf]
item- >setSe1:ctedttruel,
dependencies->selectionModel()->select(dependencies->model()->index(dependencies->model()->rowCount() 0, QModelIndex())
}
void NativeAppConfigPage::selectItemDialog()
v
- if{targetDependency->selectTtenDialog()) {
addDep();
}
void NativeAppConfigPage::removeDep()
v{
Qlist<QlistWidgetTtem*> list = dependencies-»selectedTtems();
if(1list.isEmpty())
b4 {
Q_ASSERT{ Llist.count() == 1 };
int row = dependencies->row(1 at(e));
delete dependencies->takeItem(I
dependencies-»selectionModel()->select(dependencies->model()->index{ row - 1, 0, QModelIndex()), QItemSelectionModel::Clearfr
1
}

Eoid NativeAppConfigPage: :saveToConfiguration(KConfigGroup cfg, KDevelop::IProject* project) const
v
Q_UNUSED(project);
cfg.writeEntry(ExecutePlugin::isExecutableEntry, executableRadio- >1sChe:kedfl 1
cfg.writeEntry(ExecutePlugin::executableEntry, executablePath->url()
cfg.writeEntry(ExecutePlugin::projectTargetEntry, projectTarget- >(urrentItemPathU I
cfg.writeEntry(ExecutePlugin::argumentsEntry, arguments->text() };
cfg.writeEntry(ExecutePlugin::workingDirEntry, workingDirectory-=url());
cfg.writeEntry(ExecutePlugin::environmentGroupEntry, environment->currentProfile());
cfg.writeEntry(ExecutePlugin::useTerminalEntry, runInTerminal->isChecked());
cfg.writeEntry(ExecutePlugin::terminalEntry, terminal->currentText()

cfg. |rrite£ntrvt ExecutePlugin: :dependencyfhctionEntry, dc—pc—ndencw\ctionf;itemData(dependencyhction-=currentIndex()).toString());

Qvariantlist deps;
for{ int i = 0; i < dependencies->count(); i++)
deps << dependencies->item(}->datal Qt::UserRole };
}
cfg.writeEntry(ExecutePlugin::dependencyEntry, KDevelop::quariantToString(QVariant(deps)));
1

QString NativeAppConfigPage::title() const
vi{
return i18n("Configure Native Application");

o () showImports Scope: Current Document Gl 3|
<&
Problem Source File
[l TODO: Make sure to auto-add the executable target to the dependencies when its used. To-do

[{ TODO: we probably want to flexibilize, but at least we won't be accepting wrong values anymore To-do

Line Colur

nativeappconfig.cpp 68 3
nativeappconfig.cpp 415 5

®33

Programming Languages (cont.)

 Programming Tools (cont.)
Computer-aided software-engineering (CASE) Tools:

o Allows a designer to develop software with little or no
programming

o Writes the code for the designer

o Goalis to generate quality code based on input created
by the designer

® |E462 ® 34

Programming Languages (cont.)

 Programming Tools (cont.)
Computer-aided software-engineering (CASE) example:

. Raticnal Rose RaalTime - externalCUsingiobasandThreac.rimad| - | Class Ceaqranm: Loghos B ener ..'-

=]

E=] A Eit

et Broavse BRSO REprt GaRpt Tocds

IR W Hels

LS EVal |

S =3

—|=] =]

Nl smedlec|lramr [BOSE S aFEcs | BEe | Dme| ok

B RER rodel
- Usa Caca Wiaw
EF- 27 Fwtarnal Part Usage
= EE Man
-2 Copsule
'-- £ EmarnalThread
. a Logical e
HEC AT asses
-3 StenderdLUibrones
E--2" Hawe il all warks
= % Fe T
B AThiead
B2 Top
~E8 Camponerd Wiews
HEPD AT O omponants
(=&l Main
{0 StenderdUibrones
-0 TheCCoapsuleE=s
“129 Deployment Wiaw
i= ﬂu [ETH
El P wiiindases
- il ThatCmpsulaExainstnce

|
>
|
.
&

® |[E462

@41MW%1EEEE¢DEPH

hple of usieg Extemnl pan ta
bl a cegaule vsing @ cealback

faxamplkerurs onwind2 only (becalse i
wwnlZ cels o ceale s thmad)

Arom Stand=rdLibreriesy | (Tom StendardLbranies]

e =
ceCap=sules»
This capsule siards th To
e exde=rnal firmad, mand F
e ocaunt =0
|# ¢ =demal; CHod=Emisl
“hcludas
The extarnal prolocol proadas = \.;:\l
mechansEm signal an eventio a
S AThread
.............. ST g Thes claea vhlib corts
Mg & nEw BrgaiR TS serdce el : Xt theExtmmalFor: RTFar -FioseRT code. |
whamal i Tk intali i nom g Cocle, Ko
pravicas en AR hel s nonBose H intialio=d: chor =0 |- .| uses the extemel AF
inclydes= o copEids
i S & ot L1
- e *t=aExemaFom]
o T
ddP ool Y e K ! £x
CExdemial o T H "-'I o
. InClucles
Hom RTCClssas) Inl::i}.lﬂE'S Inl:JI.r!:IES "
+o mvent [woid) T e Sy
etdio =iddib windors

ffrom Standard_ibranias

®35

Programming Languages (cont.)

 Programming Tools (cont.)
Computer-aided software-engineering (CASE) Tools (cont.):
o Diagramming tools enable graphical representation

0 e.g. Unifled Modeling Language (UML): general-purpose,
developmental, modeling language used to visualize the
design of a system

o Computer displays and report generators help prototype
how systems “look and feel”

o Code generators enable automatic generation of
programs and database code directly from design
documents, diagrams, forms, and reports

® |[E462 ®36

	King Saud University ��College of Engineering��IE – 462: “Industrial Information Systems”��Spring – 2019 (2nd Sem. 1439-40H)
	Lesson Overview
	Slide Number 3
	System Development Life Cycle (SDLC)
	Slide Number 5
	SDLC- Cont.
	SDLC- Cont.
	SDLC- Cont.
	SDLC- Cont.
	Types of SDLCs
	SDLC Types: 1. Traditional Waterfall SDLC
	Problems with Waterfall Approach
	SDLC Types: 2. Iterative SDLC
	3. Rapid Application Development (RAD)
	Rapid Application Development (RAD) – cont
	Slide Number 16
	Rapid Application Development (RAD) – cont
	SDLC Types: 4. Agile Methodologies
	SDLC Types: 5. Lean Methodology
	Note: Quality Triangle
	Slide Number 21
	Programming Languages
	Programming Languages (cont.)
	Programming Languages (cont.)
	Programming Languages (cont.)
	Programming Languages (cont.)
	Programming Languages (cont.)
	Programming Languages (cont.)
	Programming Languages (cont.)
	Programming Languages (cont.)
	Programming Languages (cont.)
	Programming Languages (cont.)
	Programming Languages (cont.)
	Programming Languages (cont.)
	Programming Languages (cont.)
	Programming Languages (cont.)

