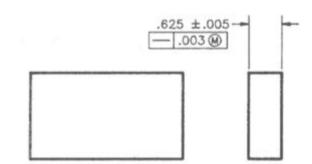


IE-352

Section 1, CRN: 5022/5030/5041 Section 2, CRN: 32997/32999/32998

Second Semester 1433-34 H (Spring-2013) – 4(4,1,1) MANUFACTURING PROCESSES – 2

Wednesday, Mar 13, 2013 (01/05/1434H)


Exercise: Geometric Tolerance (Straightness of a Center Plane)

Name:	Student Number:	Section:
	4	8:00 / 10:00

Straightness of a Center Plane

Examine the dimensioned plane shown on the right (units in *mm*). Calculate the geometric tolerance for cross sections in the plane having the following sizes:

- a) 0.632
- b) 0.628
- c) 0.621
- d) 0.619

Given:

- a) $BS = 0.625 \, mm$
 - o *Size Tol.* = ± 0.005

$$\circ \Rightarrow MMC = BS + 0.005 = 0.625 + 0.005 = 0.630$$

$$\circ \Rightarrow LMC = BS - 0.005 = 0.625 - 0.005 = 0.620$$

- $\circ \Rightarrow 0.620 \le size \le 0.630$
- b) Feature control frame:
 - Straightness geometric tolerance (plane)
 - o GT = 0.003 @ MMC (i.e. allowable GT at MMC is 0.003 mm)

○ ⇒ Virtual Condition:
$$V_c = MMC + 0.003 = 0.630 + 0.003 = 0.633$$

$$\circ \Rightarrow @ LMC: GT_{LMC} = V_c - LMC = 0.633 - 0.620 = 0.013$$

$$\circ \Rightarrow 0.003 \ (@MMC) \leq GT \leq 0.013 \ (@LMC)$$

o This is the allowable GT range (or GT zone) for this feature

Required:

a)
$$GT_{0.632} = ?$$

b)
$$GT_{0.628} = ?$$

c)
$$GT_{0.621} = ?$$

d)
$$GT_{0.619} = ?$$

Solution:

a)
$$size = 0.632$$

o Check if within size limits: $0.632 > 0.630 \Rightarrow$ part is rejected (note, remachining may be possible here)

b)
$$size = 0.628$$

o Check size:
$$0.620 < 0.628 < 0.630 \Rightarrow$$
 part is acceptable

o
$$GT_{0.628} = V_c - size = 0.633 - 0.628 = 0.005$$

o Check if within GT limits:
$$0.003 < 0.005 < 0.013$$
 (\Rightarrow ok)

$$GT_{0.628} = 0.005$$

c)
$$size = 0.621$$

o Check size:
$$0.620 \le 0.621 \le 0.630$$
 (⇒ ok)

o
$$GT_{0.621} = V_c - size = 0.633 - 0.621 = 0.012$$

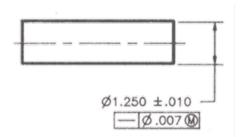
o Check GT:
$$0.003 < 0.012 < 0.013 (\Rightarrow ok)$$

$$GT_{0.628} = 0.012$$

d)
$$size = 0.619$$

Check size: 0.619 < 0.620 ⇒ part is rejected (note, remachining is not possible in this case)

IE-352 Section 1, CRN: 13536 Section 2, CRN: 30521


First Semester 1434-35 H (Fall-2013) – 4(4,1,2) "MANUFACTURING PROCESSES – 2"

Sunday, November 10, 2013 (07/01/1435H)

Quiz 3 ANSWERS

Name:	Student Number:	Section:
AHMED M. EL-SHERBEENY, PHD	4	11:00 / 1:00

Examine the drawing below and answer the following questions. [units: in]

- 1. What type of geometric tolerance is involved here (form, orientation, or location)? [1 Point] ANSWER:
- 2. Describe below each element of the feature control frame. [3 Points]
 - : geometric form **straighness** tolerance
 - allowable geometric tolerance is a 0.007 in cylindrical error

Ø1.267 When At MMC

zone measured around the central axis (or axis error) and is taken at the *MMC* of the shaft

3. What is the basic size? [1 Point]

4. What is the MMC and LMC? [1 Point]

ANSWER: 1.250 in

MMC: 1.260 in

LMC: 1.240 in

MMC = BS + 0.010 = 1.260; LMC = BS - 0.010 = 1.240

5. What is the size of the *virtual hole*? [2 Points]

ANSWER:

1.267 in

virtual hole:
$$V_c = \phi_{shaft@MMC} + GT_{MMC} = 1.260 + 0.007 = 1.267$$
 in

6. What is the geometric tolerance for cross sections in the shaft having the following sizes? [2 Points]

a. 1.256

ANSWER:

0.011 in

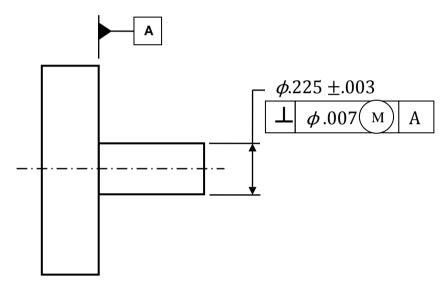
b. 1.238

ANSWER

part rejected

- a) size = 1.256
 - Check size: $1.240 < 1.256 < 1.260 \ (\Rightarrow ok)$
 - $GT_{1.256} = V_c size = 1.267 1.256 = 0.011$
- b) size = 1.238
 - Check size: 1.238 < 1.240 (LMC) (\Rightarrow part is rejected)

IE-352 Section 1, CRN: 32997 Section 2, CRN: 5022


Second Semester 1431-32 H (Spring-2011) – 4(4,1,1) MANUFACTURING PROCESSES - 2

Sunday, Apr 17, 2011 (13/5/1432H)

Quiz 3 ANSWERS

Name:	Student Number:	
	42	

Examine the shaft system below (dimensions in mm) and answer the following questions.

1. Describe below each element of the feature control frame.

[3 Points]

The shaft must lie perpendicular within a tolerance zone of 0.007 mm diameter (ϕ) at the maximum material condition (MMC), with respect to datum axis A.

2. What type of geometric tolerance is involved here (form, orientation, or

location)? [1 Point]

ANSWER:

orientation

3. What is the basic size? [2 Points]

ANSWER:

0.225 mm

4. What is the feature size at MMC? [2 Points]

ANSWER:

0.228 mm

At MMC: $\phi = 0.225 + 0.003 = 0.228 \text{ mm}$

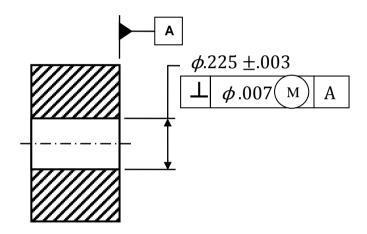
5. What is the feature size at V_c ? [2 Points]

ANSWER:

0.235 mm

$$V_c = \phi_{MMC} + Geom. Tol = 0.228 + 0.007 = 0.235 \text{ mm}$$

IE-352 Section 1, CRN: 32997 Section 2, CRN: 5022 ester 1431-32 H (Spring-2011)


Second Semester 1431-32 H (Spring-2011) – 4(4,1,1) MANUFACTURING PROCESSES - 2

Sunday, Apr 17, 2011 (13/5/1432H)

Quiz 3 ANSWERS

Name:	Student Number:	
	42	

Examine the hole system below (dimensions in mm) and answer the following questions.

1. Describe below each element of the *feature control frame*.

[3 Points]

The hole must lie perpendicular within a tolerance zone of 0.007 mm diameter (ϕ) at the maximum material condition (MMC), with respect to datum axis A.

2. What type of geometric tolerance is involved here (form, orientation, or

location)? [1 Point]

ANSWER:

orientation

3. What is the basic size? [2 Points]

ANSWER:

0. 225 mm

4. What is the feature size at MMC? [2 Points]

ANSWER:

0.222 mm

At MMC: $\phi = 0.225 - 0.003 = 0.222$ mm

5. What is the feature size at V_c ? [2 Points]

ANSWER:

0.215 mm

 $V_c = \phi_{MMC} + Geom. Tol = 0.222 - 0.007 = 0.215 \text{ mm}$

008

30°

IE-352 Section 1, CRN: 13536 Section 2, CRN: 30521

First Semester 1432-33 H (Fall-2011) – 4(4,1,1) MANUFACTURING PROCESSES - 2

Sunday, Nov 20, 2011 (24/12/1432H)

.008

[3 Points]

MMC: 0.360 *feature*: 0.355

LMC: 0.340

Quiz 4 ANSWERS

Name:	Student Number:	Section:
	4	8:00 / 10:00

Examine the feature below (dimensions in mm) and answer the following questions.

1. Describe below each element of the feature control frame.

The featured dimension must lie.

- at a 30-degree angle
- with respect to datum axis B,
- and within a tolerance zone of length 0.008 mm between parallel planes (containing all points on the inclined face)
- where the top plane is tangent to high point(s) of the face.
- 2. What type of geometric tolerance is involved here,

(form, orientation, or location)? [1 Point]

ANSWER:

orientation

ANSWER:

3. What is the basic size? [2 Points]

0.350 mm

- 4. Use the diagram above to sketch the two planes that contain the MMC and LMC. (see diagram) [1 Point]
- 5. If the feature size is 0.355 mm, use the diagram above to sketch the two planes that must contain all points on the part. [2 Points] (see diagram)
 - Note, feature size (0.355 mm) lies within the size zone (0.340 0.360 mm)
 - Also note, lowest point on face lies at:

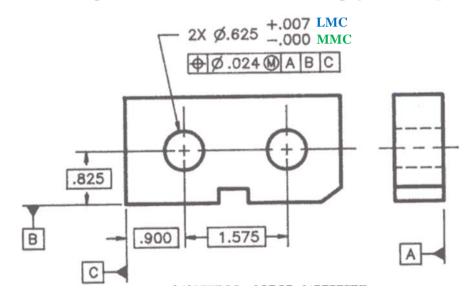
 $0.355 - 0.008 = 0.347 \, mm \, (i.e. within zone, since > LMC)$

6. If the datum (B) is removed from the FCF above, what is the resulting form (flatness) ANSWER: geometric tolerance type? [1 Point]

Page - 2

IE-352

Section 1, CRN: 5022/5030/5041 Section 2, CRN: 32997/32999/32998


Second Semester 1433-34 H (Spring-2013) – 4(4,1,1) MANUFACTURING PROCESSES – 2

Monday, Mar 18, 2013 (06/05/1434H)

Quiz 4 ANSWERS

Name:	Student Number:	Section:
Ahmed M. El-Sherbeeny, PhD	4	8:00 / 10:00

Examine the drawing below and answer the following questions. [units: in]

- 1. What type of geometric tolerance is involved here (form, orientation, or location)? [1 Point] ANSWER:
- 2. Describe below each element of the feature control frame. [3 Points]
 - : geometric location **position** tolerance
 - Ø .024 @: allowable geometric tolerance is a 0.024 in cylindrical error

• ABC: the tolerance is determined with reference to datums A (primary datum), B (secondary datum), and C (tertiary datum)

3. What is the basic size? [1 Point]

ANSWER:

0.625 in

4. Is this a "basic hole" or "basic shaft" system (and why)?

[1 Point]

Basic hole system

From the drawing 0.625 +.007 we can see that the $hole_{MMC} = BS = 0.625$

This must, thus, be a basic hole system

5. What is the size of the virtual shaft? [2 Points]

0.601 in

virtual shaft: $V_c = \phi_{hole@MMC} - GT_{MMC} = 0.625 - 0.024 = 0.601$ in

6. What is the $shaft_{MMC}$ and $shaft_{LMC}$ given that an allowance of 5 thousands is required, and that the shaft has the same tolerance as the hole? [2 Points]

shaft_{MMC}: 0.596 in

 $\phi_{shaft@MMC} = V_c - allowance = 0.601 - 0.005 = 0.596 in$

 $\phi_{shaft@LMC} = \phi_{shaft@MMC} - DT_{shaft} = 0.596 - 0.007 = 0.589 in$