King Saud University
College of Engineering
IE — 462: “Industrial Information Systems”

Spring — 2025 (24 Sem. 1446H)

Chapter 2

Information System Development

Prepared by: Ahmed M. El-Sherbeeny, PhD

Lesson Overview

« System Development Life Cycle (SDLC)

 Programming Languages

o2

System Development Life Cycle
(SDLC)

System Development Life Cycle (SDLC)

« System Development Life Cycle (SDLC):
o fraditional methodology/process followed in an organization

o used to plan, analyze, design, implement and maintain
information systems

o System analyst is responsible for analyzing and designing an
information system

® |E462 4

« Phases in SDLC:

@)

@)

©)

@)

@)

® |[E462

Planning
Analysis

Design
Implementation

Maintfenance

SDLC- Cont.

/ Planning

Maintenance \

J

implementation

AN

Analysis

5

SDLC- Cont.

* Planning — an organization’s total information
system objectives or purposes are identified,
analyzed, prioritized, and arranged

* Analysis — system requirements are studied and
stfructured (this’s called system analysis)
Includes feasibility analysis:

o technical feasibility

o economic feasibility

o legal feasibility

® |[E462

06

SDLC- Cont.

Design — a description of the recommended
solution is converted into logical and then physical
system specifications

o Logical design: all functional features of the system chosen
for development in analysis are described independently

of any computer platform

o Physical design: fransforming the logical specifications of
the system into technology-specific details

® |[E462 e/

SDLC- Cont.

« Design — cont.
o See below: difference between physical and logical design

1/4 PIPE
DWG. NO REV. DATE
1. QUANTITY REQUIRED: 2 —— SHEET 3 | sz 4
DRAWN BY BUBBIN - S S3-ar SCALE owe
CAD FALE: P 00 NOT SCALE DRAWING]

o 62Skateboard ramp blueprint (logical design) A skateboard ramp (physical desigrg)

SDLC- Cont.

* Implementation — information system is:
o coded (i.e. programmed)

o tested (includes unit test, system test, user-acceptance test)

o Installed (training users, providing documentation, and
conversion from previous system to new system)

* Maintenance - information system is systematically
repaired and improved

o structured support process. reported bugs |
are fixed, requests for new features are
evaluated and implemented

\‘)\9\0‘4\4

Mo Th) v a

o system updates/backups are performed on a regular basis

® |[E462 o9

Types of SDLCs

« SDLC can be performed in several different ways:
o Traditional Waterfall SDLC

o Iterative SDLC
o Rapid Application Development (RAD)
o Agile Methodologies

o Lean Methodology

® |[E462 e10

SDLC Types: 1. Traditional Waterfall SDLC

 One phase begins when another completes, with
little backiracking and looping

Planning '_\

® |E462 ’ o]

Problems with Waterfall Approach

« Quite rigid: system requirements can't change after
being determined

« No software is available until after the programming
phase

* Limited user cooperation (only in requirements
phase)

* Projects can sometimes take months/years 1o
complete

® |[E462 ®]12

SDLC Types: 2. Iterative SDLC

« Development phases are repeated as required

until an acceptable system is found
« User parficipates

« Spiral (evolutionary) [
development SDLC el O N
in which we constantly |
cycle through phases
at different levels of detaqils

Planning

® |[E462

[—_ Implementation

013

3. Rapid Application Development (RAD)

« Systems-development methodology that focuses on
quickly:
o building working model of software

o getting feedback from users
o using that feedback to update the working model
o making several iterations of development

o developing/implementing a final version

« This greafly decreases design / implementation fime
= shortened development (compressed process)

« Uses extensive user cooperation, prototyping,
. Integrated CASE tools, and code generators o4

Rapid Application Development (RAD) - cont

Requirements
Planning

‘ UserDesign Construction

® |E462 ®15

Rapid Application Development (RAD) - cont

* Requirements planning:
o overall requirements for system are defined

o tfeam is identified, and

o feasibility is determined (similar to analysis/design phases in
Waterfall Approach)

« User design:

o prototyping the system with the user using CASE tools in
creating interfaces/reports

o e.g. JAD (joint application design) session: all stakeholders have
a structured discussion about design of the system

® |[E462 e

Rapid Application Development (RAD) - cont

« Consiruction:
o coding the system using CASE tools

o it is an interactive, iterative process

o and changes can be made as developers are working on the
program

« Cutover:
o delivery of developed system (i.e. implementation)

® |[E462 el7

SDLC Types: 4. Agile Methodologies

Group of methodologies that utilize incremental
changes with a focus on quality, details (started: 2001)

Each increment is released in a specified time (called a
“time box"”) = regular release schedule with very
specific objectives

Share some RAD principles:
o iterative development

o user interaction

o ability to change

Goal: provide flexibility of iterative approach, while
ensuring a quality product

® E442 18

SDLC Types: 5. Lean Methodology

 Lean Methodology:
o New concept

o Focus is on taking initial idea and developing minimum viable
product (MVP)

o MVP: working software application with just enough
functionality to demonstrate
the idea behind the project

o MVP is given to potential users
for review; feam then determines

whether fo continue in same
direction or rethink idea
behind project = new MVP

o Iterative process: until
final product is completed
® |[E462 19

Note: Quality Triangle

Time

Simple concept: for any product/service
being developed, you can only address
2 of the following:
o Time

o Cost

o Quality

Quality Cost

e.g. you cannot complete a low-cost, high-quality
project in a small amount of fime

Also, if you can spend a lof of money = project can
be completed quickly with high-quality results

If completion dafe is not a priority, then it can be
completed at a lower cost with higher-quality results

o e 20
[E462

Programming Languages

Programming Languages

« One way to characterize programming languages
Is by their “generation’™:
o First-generation languages

o Second-generation languages
o Third-generation languages

o Fourth-generation languages

® |[E462 2?2

Programming Languages (cont.)

« First-generation languages
o Called machine code: specific to the type of hardware to

be programmed

o Each type of computer hardware has a

different low-level programming language

o Uses actual ones and zeroes (bits)

in the program, using binary code

o Example here: adds ‘1234’ and '4321°

® |[E462

using machine language

10111001
11010010
00000100
10001001
00001110
000000
00000000
00000000
10111001
11100001
00010000
10001001
00001110
00000010

00000000
10100001
000000
([o]5]5[2]5]%]%
10001011
00011110
00011110
00000010
0000000
00000011
11000011
10100011
00000100
00000000

e 23

Programming Languages (cont.)

« Second-generation languages
Called Assembly language (also low-level language)

O

@)

® |[E462

Gives English-like phrases to machine-code instructions,

making it easier to program

Run through an assembler, which converts it into machine

code MOV
See here program that adds MOV
‘1234’ and ‘4321’ MOV
using assembly language MOV
MOV
ADD
MOV

CX,1234
DS:[0],CX
CX,4321
AX,DS:[0]
BX,DS:[2]
AX, BX
DS:[4],AX

e 24

Programming Languages (cont.)

« Third-generation languages

O

@)

@)

® |[E462

Not specific to type of hardware on which they run

Much more like spoken languages

Most third-generation languages must be compiled, o
process that converts them into machine code

Well-known third-generation languages: A=1234
BASIC, C, Pascal, and Java
B=4321
Here is a program (in BASIC) that adds _
1234’ and ‘4321 C=A+B
END

@25

Programming Languages (cont.)

« Fourth-generation languages

o Class of programming tools that enable fast application
development using intuitive interfaces and environments

o Have very specific purpose, such as database m’rerac’non

et — Eroglr BRI WETC DEIE MM

L8
Or re p O r-l- er -I-I n g 1 - Emgdover Lt - Fagheyer ntaiy 3 - Owears A Comawns 4 Assasl Seevmay 5 Rves fied § - Mac. Puprents - Retary Trawns
I Ackie ety ackve Ord Cloned Orey & 80 Lotk hr &
ACSes EFEiuI e ARE Nawe .t 5

o Can be used by those E.‘.A.i_ﬂ'".'.' Sk e m e m o R e s

LSt FOETT Gkl Sary Mmar — Aes 8000

with very little fraining in T
programming; allow for = | e
quick development B —
of applications e -
and/or functionality —— =

s | e

o Examples: | i m..f‘:;:— .
Clipper, FOCUS, — -
FoxPro, SQL, and SPSS ——

ey
9o prgw 4 b
A0C W rocly |
San

® |[E462

026

Programming Languages (cont.)

« Higher vs. Lower Level Languages

o Lower-level languages (e.g. assembly language): much
more efficient and execute much more quickly; you have
finer control over the hardware as well

o Sometimes, combination of higher- and lower-level
languages are mixed = "best of both worlds™: overall
stfructure and interface using a higher-level language, but
use lower-level languages for parts of program that are
used many times or require more precision

® |[E462

Low-level languages

Machine-dependent

High-level languages

Machine-independent

Machine Third-generation Fourth-generation
Language languages (C, Basic, languages (SQL,
C++, Java) ABAP,
A " ColdFusion)
ssembly 077

Language

https://bus206.pressbooks.com/wp-content/uploads/sites/10536/2013/04/Programming-Languages-Spectrum.png

Programming Languages (cont.)

« Compiled vs. Inferpreted

O

@)

® |[E462

Another way to classify programming languages

Compiled language: code is translated into a machine-
readable form called an “executable” that can be run on
the hardware (e.g. C, C++, and COBOL)

Interpreted language: requires a “runtime program’ to be
installed in order to execute; this program then interprets

the program code line by line and runs it; generally easier
to work with but slower (e.g. BASIC, PHP, PERL, and Python)

Web languages (HTML and Javascript) also considered
interpreted because they require a browser in order to run

Note, Java programming language: interesting exception
to this classification (hybrid of the two)

e 28

Programming Languages (cont.)

* Procedural vs. Object-Oriented
o Procedural programming language: designed to allow a

® |[E462

programmer to define a specific starting point for the
program and then execute sequentially (include all early
programming languages)

Object-oriented programming language: uses interactive
and graphical user interfaces (GUI) to allow the user to
define the flow of the program

« programmer defines “objects” that can take certain
actions based on input from the user

Procedural program focuses on sequence of activities to
be performed, while object-oriented program focuses on
the different items being manipulated

e 29

Programming Languages (cont.)

« Procedural vs. Object-Oriented (cont.)
o Example of object-oriented code (human resource system)

o object ("EMPLOYEE") is created in program to retrieve or

® |[E462

set data regarding an employee

Every object has properties: descriptive fields associated
with the object (“Name”, “Employee number”, “Birthdate”
and “Date of hire")

Object also has methods Object: EMPLOYEE
which can ’rc:.ke actions related Name

fo the object: Employee number
“ComputePay()": money owed to person | Birthdate
“ListEmployees()"”: who works under Date of hire

that employee
ComputePay()

ListEmployees()

Programming Languages (cont.)

* Programming Tools

o Traditional Tools: text editor, checking syntax, code
compiler

o Additional tools:
 Integrated Development Environment (IDE)

« Computer-Aided Software-Engineering (CASE) tools

® |[E462 e3]

Programming Languages (cont.)

* Programming Tools (cont.)
Integrated Development Environment (IDE) provides:

O

@)

® |[E462

an editor for writing the program that will color-code or
highlight keywords from the programming language

help system
compiler/interpreter
debugging tool (to resolve problems)

check-in/check-out mechanism (so that more than one
programmer can work on code)

e.g. Microsoft Visual Studio: IDE for Visual C++, Visual BASIC

® 32

Programming Languages (cont.)

* Programming Tools (cont.)
Integrated Development Environment (IDE) example

® [E462

Sesson Project Run Navigaton

® Buwid 3] emecute [T Debug

& Projects (]

2

E malBeqa

E7) » =] hazaar -
2 classhrowser

2'{' > 51 codeutils

g » 5] contextbromser

2 y B ove

5 > B documentsmitchor

D =1 documer

1 Prajects

v 5] execute
) kdevexecute
) CMakoLats txt
b osbig h
£ aecuteplugincpp

y Executepiuginh
iecutepluginh
hdeverecute json
Messagas.sn

2" PSIVEAPPCONMIQCpR

b nativeappronfigh

£ nativeappconfigul

" nativeappjob cpp

\ Nativeappjobih

T POOjRCTTArgetscomb.
b projecttargeqscomb
> [5) executescript
2] externakscript
» (2 tismanager
[tikcemplates

> [Genenipromcimanager
> B git
£ arepiow
> B konsole
=1 operwath

Bulkd Ssquence +

Name Fath

] kdevplatl.. devplatforn

File Edt Toobh View Baokmatks Code Window Settngs Help
1<) stopaAl =istop [New [Bsave [swesm [% Commit.
S nativesppeonfig.cop @
Qlistiidget Itens (bem « oew QListNidyetitent targetDependency - »tuxt{), dependent ies)
»30tDatal Q¢ MerRole, targetDependency ->iteaPatni) };
targetDependency->setTestiQlatinlStringl ™ 1) ;
1;,v\-' ctiont)
]
3 NativeAppCont 1gPage: saetectitorBialogl)
-l
v LfitacgetDependency -rselectitendialogil) |
addbept);
}
)
old NativeAppCant ighage removedepl |
- i
QuisteQiistiidget Items> List » dependenciles->selecteditems()!
(AL NN Iabapty())
- {
I ASSERTY iat I
nt ' denciss->rowm| List.atie))
delete depende jes->takeltenl]
dependenc ies->aelect ionmodel | | ->apinct| dependen: ios-smodel [| -»index]| ™
}
]
3 NativeAppCont 1gPage anfiguration! KCont ighrovp Develont 1 [¥rajecte project
vl
1 anleE Y 2io->t4Checked!))
1 eEntry. Exe 1A R I B
f getEntry . rget-scurrentitensPathi));
' Iabint arguments-»teantl}
t RlogBLrEntry, mor king i))
! neiraneentGroupEntry urrentProfilel))
f wvieTerwtnalEntry, ris sl->3sCheckedt))
t ttekntryt priterminalintry, ters ~scurrentTest!] |
f itebntryl Eancotel ogs sependenc yAct bonfnt sy, depesdenc yAct Lan tepende
far{ tnt < depenmeacies->counti|)] ies)
d |
<% dependenc 1es->itenl I-sdatal Ut Usech
}
fy.mriteEntry(Extcotsflagl ndencyEntry, KDevelopi iguariantToStringl QVar Lant(
]
gatring NativeAppContigPages:titiel) canst
vl
return 11 "Configure Native Apglication®)
o D) Showimports Scope: Curvent Document I o
Problem
(U TOOO: Make wure 1o auto-add the executable targel to the dependences when its ysed
() TO0O: we probably want to flexibdize. but at least we won't be accepting wrong values anymore

ade |

Source

To-do
odo

1. Al

Select LonMadel Lenra

scuttentindex()). toStrinal) };

File Line Col [) 33
nativeappeonfig cpp 64 1
nativeappconfig.cpp 415)

Programming Languages (cont.)

* Programming Tools (cont.)

Computer-aided software-engineering (CASE) Tools:

o Allows a designer to develop software with little or no
programming

o Writes the code for the designer

o Goalis to generate quality code based on input created
by the designer

® |[E462 34

Programming Languages (cont.)

Top 13 Types of CASE Tools

Analysis Tools
Design Tools
Configuration Management Tools

Change Control Tools

Programming Tools

CASE Tools

Prototyping Tools
Web Development Tools

Quality Assurance Tools
Maintenance Tools

® |[E462

Programming Languages (cont.)

* Programming Tools (cont.)
Computer-aided software-engineering (CASE) example:

€ Rational Ross RealTime - emnalCiusingGlobasandihre: tdl - [Class Plaqrams Locics Viewr SN an |

R EGt Mswl Browse PLkl Repcrt Guerd Toms onaddias - Wincows Hel
Dedlsgiirmdva|(2aosAOCEIE s 2miia B lage| 2 |

GB;‘ rMadel

E- 83 Usa Casa Viaw
Eh-2F Estarnal PortUsogs
=21 Main

-- 2 Ceopsule

2 EMemalThead
Logical Viey
CIRT O assms

C3

<Capsule>>
Top

This capsule siars th
= eodmrnal firead, and
then receves e
everds fromit

Soount . im=9

2@

¥ {/ exdemsl: CHdemsl

e)

BT ien e e v

¢ B3 Siendardlibranes
{ B Z" Howiall'works
§ E] f :;"_(;.;qn d The exernsl protocol provdes =
\ =17 Thiga mechansmsignal sn cvantlo = :
i 8% Top espsule : AThraad
82-83 ComponardView QP b <afioet This clese wility cona
5 BZES RTCComponents iz anewtanaRTs serice thel A e f}'ve;E‘:E"eMP‘Dﬂ: BT or+ non-ll:;oseFtT cf’.-d& K¢
1 &l Main proviias en AR hiet s nonficse o : Weintialized: char=0 Lo Viras e exdbmbl AP1E
! =-d] Stendordlibrones indijdes Wtceaans() copsys
¥ - 2] TheClapsulstxe H 3 ff};.lr;D .
2- 53 Deploament View I StseExdemdFon]
- %o Main oo = :
=] P indaws <<Protacal>y A_.-"' 7 : -
- -8 ThaClepeuleExalnstmnrs CExdemal i P ; >
{from RTCClwscas) : ind,uaeg inclifas "":"‘.[155
o event fwoid) \IE_,» 1:_‘-:' 5&; '_-*3
sl sl windowes

drom Stancd=rdlibraries | from StendardLbranes) |(Tom Stendarcl_ibranas]
hple of using © Exteamplporita
bl o.copaule vsing o colback

ooample rurns onwin32 only (becaw=e ¢
wniZ cals o creato s thaad)

® |E462 ® 36

Programming Languages (cont.)

* Programming Tools (cont.)
Computer-aided software-engineering (CASE) Tools (cont.):
o Diagramming tools enable graphical representation

o e.g. Unifled Modeling Language (UML): general-purpose,
developmental, modeling language used to visualize the
design of a system

o Computer displays and report generators help prototype
how systems “look and feel”

o Code generators enable automatic generation of
programs and database code directly from design
documents, diagrams, forms, and reports

® |[E462 ®37/

Sources

 Modern Systems Analysis and Design. Joseph S.
Valacich and Joey F. George. Pearson. Eighth Ed.

2017. Chapter 1: The Systems Development
Environment.

« |Information Systems for Business and Beyond. David
T. Bourgeois. The Saylor Academy. 2014. Chapter
10: Information Systems Development.

® |[E462 38

https://resources.saylor.org/wwwresources/archived/site/textbooks/Information%20Systems%20for%20Business%20and%20Beyond.pdf

