King Saud University
College of Engineering
IE — 462: “Industrial Information Systems”

Fall — 2024 (15t Sem. 1446H)

Chapter 2

Information System Development

Prepared by: Ahmed M. El-Sherbeeny, PhD

Lesson Overview

« System Development Life Cycle (SDLC)

 Programming Languages

L Wi

System Development Life Cycle
(SDLC)

\Og

System Development Life Cycle (SDLC)

« System Development Life Cycle (SDLC):
o fraditional methodology/process followed in an organization

o used to plan, analyze, design, implement and maintain
information systems

o System analyst is responsible for analyzing and designing an
information system

® [E462 o4

SDLC- Cont.

Phases in SDLC:

Planning

o Planning

o Analysis /
o Design

o Implementation Maintenance

o Maintfenance \

® [E462

Implementation | g |

®5

SDLC- Cont.

* Planning — an organization’s total information
system objectives or purposes are identified,
analyzed, prioritized, and arranged

« Analysis — system requirements are studied and
structured (this’'s called system analysis)
Includes feasibility analysis:

o technical feasibility

o economic feasibility

o legal feasibility

® [E462

®4

SDLC- Cont.

Design — a descriptfion of the recommended
solution is converted into logical and then physical
system specifications

o Logical design: all functional featfures of the system chosen
for development in analysis are described independently
of any computer platform

o Physical design: fransforming the logical specifications of
the system into technology-specific details

® [E462 o/

SDLC- Cont.

« Design — cont.
o See below: difference between physical and logical design

e, 628kateboard ramp blueprint (logical design) A skateboard ramp (physical desigrg)

SDLC- Cont.

* Implementation — information system is:
o coded (i.e. programmed)

o tested (includes unit test, system test, user-acceptance test)

o Installed (training users, providing documentation, and
conversion from previous system to new system)

* Maintenance - information system is systematically
repaired and improved

o structured support process: reported bugs ¢
are fixed, requests for new features are
evaluated and implemented

Rl

\Mo‘ﬂ)'\ n

o system updates/backups are performed on a regular basis

® [E462 9

Types of SDLCs

« SDLC can be performed in several different ways:
o Traditional Waterfall SDLC

o Iterative SDLC
o Rapid Application Development (RAD)
o Agile Methodologies

o Lean Methodology

® [E462 ®10

SDLC Types: 1. Traditional Waterfall SDLC

 One phase begins when another completes, with
little backtracking and looping

® |E462 ’ : o1

Problems with Waterfall Approach

« Quite rigid: system requirements can't change after
being determined

« No software is available until after the programming
phase

« Limited user cooperation (only in requirements
phase)

* Projects can sometimes take months/years to
complete

® [E462 ®12

SDLC Types: 2. Iterative SDLC

 Development phases are repeated as required

until an acceptable system is found

Design

« User participates e

« Spiral (evolutionary)
development SDLC e e
iINn which we constantly
cycle through phases
at different levels of details

Planning

® [E462

~—~_ Implementation

e e
____‘-.-- \

\\

13

3. Rapid Application Development (RAD)

« Systems-development methodology that focuses on
quickly:
o building working model of software

o geftting feedback from users
o using that feedback to update the working model
o making several iterations of development

o developing/implementing a final version

» This greatly decreases design / implementation time
= shortened development (compressed process)

« Uses extensive user cooperation, prototyping,
. Integrated CASE tools, and code generators il

Rapid Application Development (RAD) - cont

Requirements
Planning

‘ UserDesign Construction

® [E462 ®15

Rapid Application Development (RAD) - cont

* Requirements planning:
o overall requirements for system are defined

o team is identified, and

o feasibility is determined (similar fo analysis/design phases in
Waterfall Approach)

« User design:

o prototyping the system with the user using CASE tools in
creating interfaces/reports

o e.g. JAD (joint application design) session: all stakeholders have
a structured discussion about design of the system

® [E462 016

Rapid Application Development (RAD) - cont

« Consiruction:
o coding the system using CASE tools

o It is an inferactive, iterative process

o and changes can be made as developers are working on the
program

« Cutover:
o delivery of developed system (i.e. implementation)

® [E462 e17

SDLC Types: 4. Agile Methodologies

Group of methodologies that uftilize incremental
changes with a focus on quality, details (started: 2001)

Each increment is released in a specified time (called @
“time box"”) = regular release schedule with very
specific objectives

Share some RAD principles:
o iterative development

o user interaction

o ability to change

Goal: provide flexibility of iterative approach, while
ensuring a quality product

® |E462 ®18

SDLC Types: 5. Lean Methodology

 Lean Methodology:
o New concept

o Focus is on taking initial idea and developing minimum viable
product (MVP)

o MVP: working software application with just enough
functionality to demonstrate
the idea behind the project

o MVP is given to potential users |
for review; feam then determines

whether fo continue in same
direction or rethink idea
behind project = new MVP

o lterative process: until
final product is completed
® |[E462 e19

Note: Quality Triangle

Time

Simple concept: for any product/service
being developed, you can only address
2 of the following:
o Time
o Cost

< QUG“TY Quality Cost

e.g. you cannot complete a low-cost, high-quality
project in a small amount of time

Also, if you can spend a lot of money = project can
be completed quickly with high-quality results

If completion dafe is not a priority, then it can be
completed at a lower cost with higher-quality results

° e 20
[E462

Programming Languages

02]

Programming Languages

« One way to characterize programming languages
Is by their “generation”:
o First-generation languages

o Second-generation languages
o Third-generation languages

o Fourth-generation languages

® [E462 ®22

Programming Languages (cont.)

» First-generation languages
o Called machine code: specific to the type of hardware 1o

be programmed

o Each type of computer hardware has a

different low-level programming language

o Uses actual ones and zeroes (bits)

in the program, using binary code

o Example here: adds ‘1234' and ‘4321’

® [E462

using machine language

10111001
110100160
00000100
10001001
00001110
00000000
00000000
(5lo]oo]e1515]%)
10111001
11100001
00010000
10001001
00001110
0000010

00000000
10100001
00000000
00000000
10001011
00011110
00011110
00000010
5[oo]o]%]%]5]%
00000011
11000011
10100011
00000100
5[oo]ol%]%]5]%

23

Programming Languages (cont.)

« Second-generation languages
Called Assembly language (also low-level language)

O

O

® [E462

Gives English-like phrases to machine-code instructions,

making it easier to program

Run through an assembler, which converts it into machine

code MOV
See here program that adds MOV
‘1234’ and ‘4321’ MOV
using assembly language MOV
MOV
ADD
MOV

CX,1234
DS:[0],CX
CX,4321
AX,DS:[0]
BX,DS:[2]
AX, BX
DS:[4],AX

024

Programming Languages (cont.)

« Third-generation languages

O

O

O

® [E462

Nof specific 1o type of hardware on which they run

Much more like spoken languages

Most third-generation languages must be compiled, a
process that converts them into machine code

Well-known third-generation languages: A=1234
BASIC, C, Pascal, and Java
B=4321
Here is a program (in BASIC) that adds _
1234 and '4321° C=A+B
END

025

Programming Languages (cont.)

« Fourth-generation languages

Class of programming tools that enable fast application
development using intuitive interfaces and environments

O

® [E462

Have very specific purpose, such as database interaction

or report-writing

Can be used by those
with very little training in
programming; allow for
quick development

of applications

and/or functionality

Examples:
Clipper, FOCUS,
FoxPro, SQL, and SPSS

% Employer - Employer 00021-02: WCTC DESEKEL MALL =] -E |
1-Employer List I 2-Employer Details } 3- Ovmers & Comments I 4 .- Annual Summary I 5 Returns Filed I 6 - Misc. Payments } 7 - Return Transactions
Display Status O Active Only O Inactive Only O Closed Only @ All Look for EmpLID | -
O Active Employers who have not filed returns for the previous quarters
Fitter
Empl. ID Name Status Renewal Stal Loc State Hamlet Bus. sic SIC Defail Owner Last Audit _ Auditor A
0000100 [ADDEDBYC] _C | [I [[unk I [I I I
0001000 [USE FO{: 5 Social Security Master - Add SSNO =N EoR (|
00012-00 _[KING'S X _
0001300 ADDED 1 - Master List 2 - Applicant Details ‘ 3 - Benefits and Other SSNO # Info I 4 - History
00014-00 [ADDED! Social Security Number [For Employment (see page 4 for history and to modify)
00016-00 |ADDED
00017-00_|ADDED Legal Name
00018-00 [KING'S First Name | SARAH ‘ Last Name | CONNOR Name at Birth
00019-00 |GUAM 1]
00020-00 _[VAN CAl Address l:l []General Delivery
00021-00 _[SHOPP|

00021-04 |WCTCH
00021-05 |WCTCQ
| |00021-06 BF DEP4
00021-07 |WCTCH
00021-08 |WCTCH|
00021-09 |WCTC
00021-10 |WCTC-
00021-11 (WCTC A
00021-12 |WCTCA
<

E-mail Address

Zip Code | g Phone

BELAU [PALAU]

Curent ocation ste [

Date of Birth | 0: 5 | 9 |Age: 71

Occupation

Citizenship [PALAU |

Warital Status Employer at Application

Parents

Documented Date of Birth
Date of Birth /051945 | T Document Type |:|
Document Date |:|) Document # or ID |:|

Current Employer (updated when wages are posted)

Father's Last Name

S Certification
Employer

Print 88 Card

(see page 4 for history
and to modify)

Country |:|

sex

First Hext Save Cancel Prnt...

026

Programming Languages (cont.)

« Higher vs. Lower Level Languages

o Lower-level languages (e.g. assembly language): much
more efficient and execute much more quickly; you have
finer control over the hardware as well

o Sometimes, combination of higher- and lower-level
languages are mixed = "best of both worlds”: overall
structure and interface using a higher-level language, but
use lower-level languages for parts of program that are
used many times or require more precision

Low-level languages

Machine-dependent

High-level languages

Machine-independent

< D
Machine Third-generation Fourth-generation
Language languages (C, Basic, languages (SQL,
C++, Java) ABAP,
ColdFusion)
® [E462 Assembly 027

Language

https://bus206.pressbooks.com/wp-content/uploads/sites/10536/2013/04/Programming-Languages-Spectrum.png

Programming Languages (cont.)

« Compiled vs. Interpreted

O

O

® [E462

Another way to classify programming languages

Compiled language: code is translated into a machine-
readable form called an “executable” that can be run on
the hardware (e.g. C, C++, and COBOL)

Interpreted language: requires a “runtime program” to be
installed in order to execute; this program then interprets

the program code line by line and runs it; generally easier
to work with but slower (e.g. BASIC, PHP, PERL, and Python)

Web languages (HTML and Javascript) also considered
interpreted because they require a browser in order to run

Note, Java programming language: interesting exception
to this classification (hybrid of the two)

e 28

Programming Languages (cont.)

* Procedural vs. Object-Oriented
o Procedural programming language: designed to allow a

® [E462

programmer to define a specific starting point for the
program and then execute sequentially (include all early
programming languages)

Object-oriented programming language: uses interactive
and graphical user interfaces (GUI) to allow the user to
define the flow of the program

« programmer defines “objects” that can take certain
actions based on input from the user

Procedural program focuses on sequence of activities to
be performed, while object-oriented program focuses on
the different items being manipulated

29

Programming Languages (cont.)

« Procedural vs. Object-Oriented (cont.)

O

Example of object-oriented code (human resource system)

o object ("EMPLOYEE") is created in program to retrieve or

® [E462

set data regarding an employee

Every object has properties: descriptive fields associated
with the object (“Name”, “Employee number”, “Birthdate”
and “Date of hire”)

Object also has methods Object: EMPLOYEE
which can Tc:.ke actions related Name

fo the object: Employee number
“ComputePay()": money owed to person | Birthdate
“ListEmployees()": who works under Date of hire

that employee
ComputePay()

ListEmployees()

Programming Languages (cont.)

* Programming Tools

o Traditional Tools: text editor, checking syntax, code
compiler

o Additional tools:
 Integrated Development Environment (IDE)

« Computer-Aided Software-Engineering (CASE) tools

® [E462 03]

Programming Languages (cont.)

* Programming Tools (cont.)
Integrated Development Environment (IDE) provides:

O

O

® [E462

an editor for writing the program that will color-code or
highlight keywords from the programming language

help system
compiler/interpreter
debugging tool (to resolve problems)

check-in/check-out mechanism (so that more than one
programmer can work on code)

e.g. Microsoft Visual Studio: IDE for Visual C++, Visual BASIC

32

Programming Languages (cont.)

« Programming Tools (cont.)
Integrated Development Environment (IDE) example

® [E462

Session Project Run Navigation

(&) Build [¥] Execute [} Debug

Projects L <]

20 Classes

& Documents

[Projects

i 2 YR O B G A o

> [E bazaar
> [classbrowser
> [codeutils
> [contextbrowser
>[Eevs
> [documentswitcher
> [F documentview
v [execute

[kdevexecute

[2 CMakeLists.txt

h debugh

c’ executeplugin.cpp
executeplugin.h
iexecuteplugin.h
_ kdevexecute json
Messages.sh
nativeappconfig.cpp
nativeappconfig.h
nativeappconfig.ui
nativeappjob.cpp
nativeappjob.h

C' projecttargetscomb...
h projecttargetscomb...

> [E executescript
> [E externalscript
> [filemanager
» [filetemplates
» [E genericprojectmanager
>
>
>
>

oo

w

Bz =l r P

[git

[grepview
[konsole
[openwith

Build Sequence aF

Mame Path
[kdevplatf... kdevplatform

appeconfig

File Edit Tools View Bookmarks Code Window Settings

Stop All [L, Commit.. | QuickC

) stop ., | [New Save [Cp SaveAs

nativeappconfig.cpp €3

QlistWidgetItem* item = new QListWidgetItem{icon, targetDepeﬂdencv >text(), dependencies];
item-»setDatal Qt: U;c\ﬂnlc, targetDependency->itemPath()
targetDependency->setText(QlatiniString(""));
addl:lc-pc—ndc—ncv—)setinabled(falze)
dependencies-»selectionModel()->clearSelection();
item- >setSe1e(tedttruel,

dependencies->selectionMode =select(dependencies-»model()->index(dependencies->model()

owCount () 1, @, QModelIndex())

"
void NativeAppConfigPage::selectItemDialog()

v
v if{targetDependency->selectTtenDialog()) {
addDep(];

}
voild NativemppConfigPage::removeDep()
v {

QList<QlistWidgetTtem#> list = dependencies-»selectedItems();
if(1list.isEmpty())
{

Q_ASSERT{ Llist.count() == 1 };
int row = dependencies->row(
delete dependencies->takeItem(

.at(e));

dependencies-»selectionMadel()->select(dependencies-»model()-»index(row - 1, 0, QModelTndex()), QTtemSelectionMadel::ClearAr
}
vaid NativeAppConfigPage::saveToConfiguration(KCanfigGroup cfg, KDevelop::TProject* project) const
v {

Q_UNUSED(project);

cfg.writeEntry(ExecutePlugin::isExecutableEntry, executableRadio- >isChe(kedf] I

cm writeEntry(ExecutePlugin::executableEntry, executablePath->urli
cfo.writeEntry(ExecutePlugin::projectTargetEntry, projectTarget- b(urrentItemPatnt] IH
cfg.writeEntryl ExecutePlugin::argumentsEntry, arguments->text());

cfg.writeEntry(ExecutePlugin
cfg.writeEntry(ExecutePlugin
cfg.writeEntry(ExecutePlugin
cfg.writeEntry(ExecutePlugin
cfg m].teEntrvt ExecutePlugin:

workingDirEntry, workingDirectary-=urli) J;

environmentGroupEntry, environment->currentProfile());

useTerminalEntry, runInTerminal->isChecked());

terminalEntry, terminal->currentText(} };

sdependencyhctionEntry, dependencyAction- >1temDataE dependencyhction->currentIndex()).toStringl));

ps;
i < dependencies->count(); i++)

deps << dependencies->item(}-=datal Qt::UserRole);

}
cfg.writeEntry(ExecutePlugin::dependencyEntry, KDevelop::gvariantToStringl QVariant(

[N

}

%String NativeAppConfigPage::title() const
v

) return i18n("Configure Mative Application");
L] () showImports Scope: Current Document Bl |

&

Problem Source File Line Colur
[{ TODO: Make sure to auto-add the executable target to the dependencies when its used. To-do nativeappconfig.cpp 68 3

[{ TODO: we probably want to flexibilize, but at least we won't be accepting wrong values anymore To-do nativeappconfig.cpp 415 5

33

Programming Languages (cont.)

* Programming Tools (cont.)
Computer-aided software-engineering (CASE) Tools:

o Allows a designer to develop software with little or no
programming

o Writes the code for the designer

o Goalis to generate quality code based on input created
by the designer

® [E462 34

Programming Languages (cont.)

Top 13 Types of CASE Tools

Analysis Tools
Design Tools
Configuration Management Tools

Change Control Tools

CASE Tools

Programming Tools
Prototyping Tools

Web Development Tools

Quality Assurance Tools
Maintenance Tools

® [E462

® 35

Programming Languages (cont.)

« Programming Tools (cont.)
Computer-aided software-engineering (CASE) example:

€' Rational Rose Reallime -

bl B2 EGt Uiy Browese

emalCusingGlobasy

BLdl Repatt Goery

TORS AKEINS

ndThread.rimdl - [€1ass Braqram: Logical Viewr S Man |
W Heks

B

_ =) x|

NS s aeadlea|l2a3amyBOEIEs 2o BEe |l gmom| 2w

@Mad:l
-89 Usa Cose Viaw

BF-2° Estarnal PortUsege
i=-%% Main
- % Copsule
2 EmernelThread
- @ Lagical Vievs
B0 RTO s es
23 Stendardlibrenes
EF- 2" Haw tall warks
- R Hain
1 = AThiead
B-% Top
- @8 Componen View
BEE] RTCComponents
=&l Main
=¥ StendordLibrones
ol TheCCapsulstxs
- E3 Deployment Viaw
i~ B Main
(=] C_"'-‘uﬂndcm
-~ #ll ThaCCapeuleExsinstance

L 1

® [E462

Iy
cl

S

ol e e 2)

This capsule sisrdc th
= ext=rnal firead, and
then receives the
everes from it

)

«<Capsule>>
Top

Soount im=0

The exarnal protocol prowdas =
mechanism signal an cvantio s
cap=ule

Nis S new tergaiRTS serice thel
pravicias en AP hets nonBose

hple of using C Exdtemplpartto
bl a copaule using o colback

foxample rurs onwin32 only (becawze t
wniZ cals o creale s thaad)

W# / exdemsl: CHdemsl

AThread

""""""""""""" cafiay Thec T =
temel g Dexemaiion: BIPox> TonAoseRT modact]
£ PR = 3
l siaizectcchar=0 L - - —- | uses the extemol AF1 L
Yecrsans(copsus
- PBRunp
% saiExtemeFot]
oo s
<<Pmotocal>> AT K : ~
CExdemal e - ; %
({from RTCCl=scas) induties incliges mc?u.t!as
»s event [Woid) v b:_" ’i} ‘.&

(rom Stand=rdLibraries

stlio s1dib

ffrom StendardLbrones

ffrom Stendard_ibranas

windows

® 36

Programming Languages (cont.)

* Programming Tools (cont.)
Computer-aided software-engineering (CASE) Tools (cont.):
o Diagramming tools enable graphical representation

o e.g. Unifled Modeling Language (UML): general-purpose,
developmental, modeling language used to visualize the
design of a system

o Computer displays and report generators help prototype
how systems “look and feel”

o Code generators enable automatic generation of
programs and database code directly from design
documents, diagrams, forms, and reports

® [E462 e3/

Sources

 Modern Systems Analysis and Design. Joseph S.
Valacich and Joey F. George. Pearson. Eighth Ed.
2017. Chapter 1. The Systems Development
Environment.

* |Information Systems for Business and Beyond. David
T. Bourgeois. The Saylor Academy. 2014. Chapter
10: Information Systems Development.

® [E462 ®38

https://resources.saylor.org/wwwresources/archived/site/textbooks/Information%20Systems%20for%20Business%20and%20Beyond.pdf

