King Saud University
 Department of Mathematics

Question 1 (4). Using the $(\varepsilon-\delta)$ definition of the limit, show that $\lim _{x \rightarrow 5}\left(\frac{2}{5} x-3\right)=-1$

Question2 (5). Decide whether the function $f(x)=x|x|$ is
(a) continuous at the point $x=0$.
(b) differentiable at the point $x=0$.

Question3 (5). Show that if $f(x):[-1,1] \rightarrow[-1,1]$ is a continuous function, then $\exists c \in[-1,1]$ such that $f(c)=c$.

Question4 (4). (a) is the point $c=\frac{\pi}{2}$ a critical for the function

$$
f(x)=x \cos x+\frac{\pi}{2} x+\left(x-\frac{\pi}{2}\right)^{2} ? \text { and if so, }
$$

(b) Decide whether it is a local maximum or local minimum of $f(x)$.

Question5 (4). Decide whether the function $f(x)=\sqrt{x}+\cos x$ is uniformly continuous on $[a, \infty)$ where $0<a \in \mathfrak{R}$.

Question6 (4). Show that if $f(x)$ is differentiable on D and $f(x)=0$ for all $x \in D$, then

$$
f(x) \equiv \text { constant (on } D)
$$

