EXERCICE1:

1- Determine the following

$$
\sup \left\{x \in \mathbb{R}, \quad x^{2}+2 x-15<0\right\} \quad \text { and } \quad \inf \left\{x \in \mathbb{R}, \quad x^{2}+2 x-15<0\right\}
$$

2- Let $x_{n}=(-1)^{n}+\frac{2}{n^{2}}$, Find

$$
\limsup _{n \mapsto+\infty} x_{n} \text { and } \quad \liminf _{n \mapsto+\infty} x_{n} .
$$

3- Prove that $\sqrt{3}$ is irrational.

EXERCICE2:

1- Using the definition of convergence to prove that

$$
\lim _{n \mapsto+\infty} \frac{2 n+1}{n+1}=2 \quad \text { and } \quad \lim _{n \mapsto+\infty} e^{n}+1=+\infty
$$

2- Let $a>b>0$, Find the following limits:

$$
\lim _{n \mapsto+\infty} \frac{2 a^{n}-3 b^{n}}{a^{n}+2 b^{n}} \text { and } \lim _{n \mapsto+\infty}\left(\sqrt{2 a^{n}-b^{n}}\right)^{\frac{2}{n}}
$$

EXERCICE3: Let $x_{0}=1$, and for all $n \geq 1, x_{n+1}=2 x_{n}+1-n$.
1 - Find x_{1}, x_{2} and x_{3}.
2- Prove that $n \leq x_{n}$, and deduce the limit of the sequence $\left(x_{n}\right)$.

EXERCICE4:

1- Prove that every convergent sequence is a Cauchy sequence.
2 - We define the sequence $x_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$.
3 - Prove that $x_{2 n}-x_{n} \geq \frac{1}{2}$.
4- The sequence x_{n} is convergent?.

