KING SAUD UNIVERSITY

DEPARTMENT OF MATHEMATICS

MATH-280

TIME: 90 MINNUTES

FIRST MIDTERM EXAM

SECOND SEMESTER: 1436/1437

EXERCISE: 1

1 - Determine the supremum and the infimum (and justify your answer) of the following set : $A = \left\{\frac{m}{2m+3n}, \ m, n \in N\right\}$

2 - Find
$$\sup\{x \in R, x^2 - x - 2 < 0\}$$
.

3 – Prove that
$$\sqrt{3}$$
 is irrational.

4-Find
$$\limsup_{n\to+\infty} \left\{2+\frac{(-1)^n}{3n}\right\}$$
 and $\liminf_{n\to+\infty} \left\{2+\frac{(-1)^n}{3n}\right\}$

EXERCISE: 2

1 - Using the definition find the limit of the sequence $\frac{3^{n}-1}{2^{n}+1}$.

2 – We consider the sequence $x_n = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n}$. Prove that this sequence is increasing, convergent an its limit belongs to $\left[\frac{1}{2}, 1\right]$.

3- Prove that $y_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$ is not a Cauchy sequence.

EXERCISE: 3

1-Find the sum of the series:
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$$
 and $\sum_{n=4}^{+\infty} (2^n + (-3)^{3n})$

. 2 –Test the convergence of the series: $\sum_{n=1}^{+\infty} \frac{n+\sin(n)}{n+\cos(n)}$ and $\sum_{n=1}^{+\infty} \frac{n^p+1}{n^q+1}$