King Saud University Department of Mathematics

Question 1 [3+3]

Use induction to prove:
a. If $x>-1$, prove that $(1+x)^{n} \geq 1+n x$, for all $n \in \mathbb{N}$,.
b. Prove that $2^{n-1} \leq n!$, for all $n \in \mathbb{N}$,.

Question 2 [3+3]

Determine sup A and $\operatorname{lnf} A$ where they exist:

1. $A=\left\{n \in \mathbb{N}, \frac{n+(-1)^{n}}{n+1}\right\}$,
2. $A=\{x \in \mathbb{R},|x|+|x-1| \leq 1\}$.

Question $3[1+2+2+2]$

Determine whether the sequence $\left(x_{n}\right)$ is convergent or divergent, and find the limit where it exists:
a. $x_{n}=\frac{\sin (n)}{n}$,
b. $x_{n}=\frac{n+\sin (n)}{3^{n}}$
c. $x_{n}=\frac{2^{n}-3^{n}}{2^{n}+3^{n}}$
d. $x_{n+1}=\frac{4 n^{2}-1}{4 n^{2}} x_{n}, \quad x_{1}=1$

Question $4[2+2+2]$

Test the following series for convergence:
a. $\sum_{n=1}^{\infty} \frac{3^{n}}{n!}$
b. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$
c. $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{(\ln (n))^{n}}$

