King Saud University
 Department of Mathematics

Final Exam 280-Math
Summer Semester (1437/1438)

Question1 (4). Determine the sup, max, inf and min of the set $E=\left\{1+\frac{(-1)^{n}}{n}, n \in N\right\}$.
Question2 (4). Decide whether the following sequences are Cauchy:

$$
a_{n}=\frac{(-1)^{n} n}{2 n+1} \quad ; \quad b_{n}=(-1)^{n}+\frac{1}{n}
$$

Question3 (4). Decide whether the following sequence is convergent or divergent:

$$
x_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}
$$

Question 4 (8). Test the following series:
(A) $\sum_{n=1}^{\infty} \frac{\pi}{n^{2}} \sin \frac{\pi}{n}$
(B) $\sum_{n=1}^{\infty} \frac{n}{\pi} \sin \frac{\pi}{n}$
(C) $\sum_{n=1}^{\infty}\left(\frac{5}{4}+\frac{\sin 1 / n}{n}\right)^{n}$
(D) $\sum_{n=1}^{\infty} \frac{4^{n} n!}{n^{n}}$

Question5 (4). Assuming that the function $f(x)= \begin{cases}\frac{\left(x^{2}-5 x+4\right) \sin (x-4)}{(x-4)^{2}}, & x \neq 4 \\ 2 x+\beta, & x=4\end{cases}$ is continuous at $x=4$, find the value of the number β.

Question6 (6). (a) Show that the equation $\cos x=x$ has a solution in $\left(0, \frac{\pi}{2}\right)$.
(b) Find the extrema of $f(x)=x^{3}-x$ on $[-1,2]$.

Question7 (4). Let $f_{n}:[1,2] \rightarrow R$ such that $f_{n}(x)=\frac{x}{(1+x)^{n}}$.
Show that the series $\sum_{n=1}^{\infty} f_{n}(x)$ is uniformly convergent.
Question8 (6). (a) Discuss the convergence of the following improper integral

$$
\int_{1}^{\infty} \frac{\mathrm{dx}}{\sqrt{1+\mathrm{x}^{3}}}
$$

(b) Find the radius of convergence and the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{n+1}{10^{n}}(x-4)^{n}$.

