2Semester (1439/1440)

Question $1(5^{\circ})$. let E be a bounded set. Show that: (a) if E has a max, then its unique.

(b) inf *E* is unique.

Question2(6°). (a) Decide whether the set $E_n = \{\sqrt[n]{\alpha^n + (\alpha + \beta)^n}\}, \ \alpha > 0, \beta > 0$ is bounded.

(b) Find
$$\lim_{n \to \infty} x_n$$
 if $x_n = 2^{(-1)^n - n}$

Question3(4°). Determine whether each of the following series is convergent or divergent:

(a)
$$\sum_{n=1}^{\infty} \sin \frac{1}{n}$$
, (b) $\sum_{n=1}^{\infty} n \sin \frac{1}{n^2}$, (c) $\sum_{n=1}^{\infty} \cos \frac{1}{n}$, (d) $\sum_{n=1}^{\infty} \cos \frac{1}{n^2}$

Question 4 (4°). Using the $(\varepsilon - \delta)$ definition of the limit, show that $\lim_{x \to 0} \frac{2x \sin \frac{1}{x}}{1 + \tan^2 x} = 0$

Question 5(5°). Show that the improper integral $\int_{0}^{\pi^{2}/4} \frac{\sin x}{\sqrt{x^{3}}} dx$ is convergent and its value $\leq \pi$.

Question 6 (5°). Find
$$\lim_{n\to\infty} x_n$$
 of the sequence $x_n = \int_{1}^{2} (e^{-nx^2} + x) dx$.

Question 7(5°). Represent the function $\int_{0}^{x} \frac{\sin 3x}{x} dx$ by power series of the form $\sum_{n=0}^{\infty} a_{n}x^{n}$.

Question8(6°).(a) Find the sum of the function series $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+2}}{n+1}$

(b) Find the sum of the number series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n4^n}$$
.

(c) Find the sum of the number series
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$$