King Saud University		Department of Mathematics
Final Exam	280-Math	(1441/1442)

Note. The inequality: $\ln x < x$, $x \in [1, \infty)$ may be of help to you during the solution.

Question1(5). Find the following limit or prove that it does not exist

(a)
$$\lim_{n \to \infty} \frac{2^n n!}{(2n+1)!}$$
 (b) $\lim_{n \to \infty} \sum_{k=1}^n \left(\frac{1}{n} + \frac{k^3}{n^4}\right)$

Question2(5). Use appropriate method to find the sup and inf of the set:

$$E = \left\{ \frac{(-1)^n 2^n n!}{(2n+1)!} ; n \in \mathbb{N} \right\}$$

Question3 (5). Determine whether the following series are convergent or divergent:

(a)
$$\sum_{n=1}^{\infty} \sqrt[n]{2^n n^{n+1}} \sin \frac{1}{n}$$
 (b) $\sum_{n=1}^{\infty} \int_{1}^{2} e^{-nx^2} dx$

Question4 (5). (a) Calculate the following limit or show that it does not exist:

$$\lim_{x \to 0} x^2 \sin \frac{1}{x^2}$$

(b) Let f(x) = x(x+1)(x+2)(x+3). Prove that all solutions of the equation

f'(x) = 0 are real.

Question5 (5). Decide whether the following function is uniformly continuous:

$$f(x) = \frac{\tan 3x}{x \cos 3x} \quad on \ (0,1)$$

Question6 (5). Determine whether the integral $\int_{3}^{\infty} \frac{1}{3 + \sin x + \ln x} dx$ converges or not.

Question7 (5). Study the U-convergence of the function sequence $f_n(x) = \frac{nx}{1+nx}$ on the following intervals: (a) $[0,\infty)$ (b) $[1,\infty)$.

Question8 (5). (a) Find the sum of the power series $\sum_{n=0}^{\infty} (n+1)x^n$ over the interval of convergence. (b) Find the sum of the number series $\sum_{n=1}^{\infty} \frac{n}{3^n}$.

Solutions

Question1(5). Find the following limit or prove that it does not exist

(a)
$$\lim_{n \to \infty} \frac{2^n n!}{(2n+1)!}$$
 (b) $\lim_{n \to \infty} \sum_{k=1}^n \left(\frac{1}{n} + \frac{k^3}{n^4}\right)$

Solution. (a) First solution. Consider the series $\sum_{n=1}^{\infty} \frac{2^n n!}{(2n+1)!}$ (*) This is a positive term series.

Let's find
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{2^{n+1}(n+1)!}{(2n+3)!} \frac{(2n+1)!}{2^n n!} = \lim_{n \to \infty} \frac{2(n+1)}{(2n+3)(2n+2)} = \lim_{n \to \infty} \frac{1}{(2n+3)} = \frac{1}{2} < 1$$
.

By Ratio test The series (*) converges, therefore $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2^n n!}{(2n+1)!} = 0$.

Another solution.
$$0 \le \frac{2^n n!}{(2n+1)!} = \frac{2^n n!}{(n!)(n+1)(n+2)(n+3)\cdots(n+n)(2n+1)} =$$

$$=\frac{1}{(n+1)}\frac{2}{(n+2)}\frac{2}{(n+3)}\cdots\frac{2}{(n+n)}\frac{2}{(2n+1)}<\frac{1}{(n+1)}\xrightarrow[asn\to\infty]{}0$$

It follows by squeezing rule that $\lim_{n \to \infty} \frac{2^n n!}{(2n+1)!} = 0$.

Third solution. Since $\frac{a_{n+1}}{a_n} = \frac{2^{n+1}(n+1)!}{(2n+3)!} \frac{(2n+1)!}{2^n n!} = \frac{2(n+1)}{(2n+3)(2n+2)} = \frac{1}{(2n+3)} < 1$, the sequence

 $a_n = \frac{2^n n!}{(2n+1)!}$ is decreasing. In addition, the sequence a_n is bounded below (by 0). Hence a_n is convergent. Let $\lim_{n \to \infty} a_n = l$. By properties $\lim_{n \to \infty} a_{n+1} = l$.

Since
$$a_{n+1} = \frac{1}{(2n+3)} a_n$$
, then $\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{1}{(2n+3)} a_n = \lim_{n \to \infty} \frac{1}{(2n+3)} \lim_{n \to \infty} a_n \implies l = 0l = 0$

(**b**) First solution. $\lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{n} + \frac{k^3}{n^4} \right) = 1 + \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left(\frac{k}{n} \right)^3 = 1 + \int_0^1 x^3 dx = \frac{5}{4}$

or
$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{n} + \frac{k^3}{n^4} \right) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left(1 + \left(\frac{k}{n} \right)^3 \right) = \int_0^1 (1+x^3) \, dx = \frac{5}{4}$$

Another solution.
$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{n} + \frac{k^3}{n^4} \right) = \lim_{n \to \infty} \left(1 + \frac{\left(\frac{n(n+1)}{2} \right)^2}{n^4} \right) = 1 + \frac{1}{4} = \frac{5}{4}$$

Question2(5). Use appropriate method to find the sup and inf of the set:

$$E = \left\{ \frac{(-1)^n 2^n n!}{(2n+1)!} ; n \in \mathbb{N} \right\}$$

Solution. If $x_n = \frac{(-1)^n 2^n n!}{(2n+1)!} = (-1)^n a_n$, then

$$\frac{a_{n+1}}{a_n} = \frac{2^{n+1}(n+1)!}{(2n+3)!} \frac{(2n+1)!}{2^n n!} = \frac{2(n+1)}{(2n+3)(2n+2)} = \frac{1}{2n+3} < 1$$

It means that the sequences a_n is decreasing . That is

$$a_1 \ge a_2 \ge a_3 \ge a_4 \ge \dots \ge a_n \ge \dots > 0 \tag{(*)}$$

From (*) we conclude that

$$a_2 \ge a_4 \ge a_6 \dots > 0 > \dots \ge -a_5 \ge -a_3 \ge -a_1$$

Hence $x_2 = a_2 = \sup E$ and $x_1 = -a_1 = \inf E$

Thus
$$\sup E = x_2 = \frac{1}{15}$$
 and $\inf E = x_1 = -\frac{1}{3}$

Question3 (5). Determine whether the following series are convergent or divergent:

(a)
$$\sum_{n=1}^{\infty} \sqrt[n]{2^n n^{n+1}} \sin \frac{1}{n}$$
 (b) $\sum_{n=1}^{\infty} \int_{1}^{2} e^{-nx^2} dx$
Solution. (a) $\lim_{n \to \infty} \sqrt[n]{2^n n^{n+1}} \sin \frac{1}{n} = \lim_{n \to \infty} 2n \sqrt[n]{n} \sin \frac{1}{n} = \lim_{n \to \infty} 2\sqrt[n]{n} \frac{\sin \frac{1}{n}}{\frac{1}{n}} = 2(1)(1) = 2$

Hence the series (a) diverges by nth term test.

Another solution. It is clear that $0 \le a_n = \sqrt[n]{2^n n^{n+1}} \sin \frac{1}{n}$ $\forall n \in \mathbb{N}$ and $0 \le b_n = \sin \frac{1}{n}$ $\forall n \in \mathbb{N}$.

Since $1 < 2n \sqrt[n]{n} = \sqrt[n]{2^n n^{n+1}} \quad \forall n \in \mathbb{N}$, we have $b_n \le a_n \quad \forall n \in \mathbb{N}$. The series $\sum_{n=1}^{\infty} b_n$ diverges by LCT with $\sum_{n=1}^{\infty} \frac{1}{n}$, hence the series $\sum_{n=1}^{\infty} a_n$ diverges by CT.

(b) Denote by $a_n = \int_{1}^{2} e^{-nx^2}$. On the interval [1,2] we have $e^{-nx^2} = \frac{1}{e^{nx^2}} \le \frac{1}{e^n}$

Therefore
$$a_n = \int_{1}^{2} e^{-nx^2} dx \le \int_{1}^{2} \frac{1}{e^n} dx = \frac{1}{e^n}$$

Because the series $\sum_{n=1}^{\infty} \frac{1}{e^n}$ converges (geometric with $|r| = \frac{1}{e^n} < 1$), the given series converges by CT.

Question4 (5). (a) Calculate the following limit or show that it does not exist:

$$\lim_{x \to 0} x^2 \sin \frac{1}{x^2}$$

(b) Let f(x) = x(x+1)(x+2)(x+3). Prove that all solutions of the equation f'(x) = 0 are real.

Solution. (a) Since $\left|x^2 \sin \frac{1}{x^2}\right| \le x^2 \quad \forall x \ne 0 \text{ and } \lim_{x \to 0} x^2 = 0$, we conclude that $\lim_{x \to 0} x^2 \sin \frac{1}{x^2} = 0$ by squeezing rule.

(b) The function f(x), as a polynomial, is continuous and differentiable over any interval.

Further, f(-3) = f(-2) = f(-1) = f(0) = 0. Using Rolle's theorem we get the following:

$$\exists c_1, c_2, c_3 \in \mathbb{R}$$
, $c_1 \in (-3, -2)$, $c_2 \in (-2, -1)$, $c_3 \in (-1, 0)$ st $f'(c_1) = f'(c_2) = f'(c_3) = 0$

Obviously, f'(x) is a third-degree polynomial and cannot have more than three roots. So all solutions of the equation f'(x) = 0 are real.

Question5 (5). Decide whether the following function is uniformly continuous:

$$f(x) = \frac{\tan 3x}{x \cos 3x} \quad on \ (0,1)$$

Solution. Define the function $g(x) = \begin{cases} \frac{\tan 3x}{x \cos 3x} &, x \in (0,1] \\ 3 &, x = 0 \end{cases}$

Because $\lim_{x\to 0} g(x) = 3$, the function g(x) is continuous on the interval [0,1].

Furthermore $g(x) \equiv f(x)$ on the interval (0,1).

Using Continuous Extension Theorem we conclude that the function $f(x) = \frac{\tan 3x}{x \cos 3x}$ is uniformly continuous on the interval (0,1).

Question6 (5). Determine whether the integral $\int_{3}^{\infty} \frac{1}{3 + \sin x + \ln x} dx$ converges or not.

Solution. First we note that $\sin x \le x \quad \forall x \ge 0$; $\ln x < x \quad \forall x \ge 1$. So we can write $2 \le 3 + \sin x \le 3 + x \quad \forall x \ge 0$; $\ln x < x \quad \forall x \ge 1$

Therefore $\frac{1}{3 + \sin x + \ln x} > \frac{1}{3 + x + x} = \frac{1}{3 + 2x} \ge \frac{1}{x + 2x} = \frac{1}{3x} \quad \forall x \ge 3.$

The integral $\int_{3}^{\infty} \frac{1}{x} dx$ diverges as it is p - integral of type1 with p = 1. Hence the given integral diverges by direct comparison test.

Question7 (5). Study the U-convergence of the function sequence $f_n(x) = \frac{nx}{1+nx}$ on the following intervals: (a) $[0,\infty)$ (b) $[1,\infty)$.

Solution. (a) The pointwise limit of the sequence is $f(x) = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{if } x > 0 \end{cases}$.

Each function $f_n(x)$ is continuous on $[0,\infty)$ and the limit function f(x) is discontinuous at x = 0 which implies that the convergence is not uniform on the interval $[0,\infty)$.

(b) Here the pointwise limit of the sequence is f(x) = 1.

In addition to that we have $|f_n(x) - f(x)| = \left|\frac{nx}{1+nx} - 1\right| = \frac{1}{1+nx} < \frac{1}{nx} \le \frac{1}{n} \quad \forall x \ge 1$, with $\lim_{n \to \infty} \frac{1}{n} = 0$. It follows from M-test that the convergence of $f_n(x)$ is uniformly on the interval $[1, \infty)$.

Question8 (5). (a) Find the sum of the power series $\sum_{n=0}^{\infty} (n+1)x^n$ over the interval of convergence. (b) Find the sum of the number series $\sum_{n=1}^{\infty} \frac{n}{3^n}$.

Solution. (a) Recall
$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$
, $x \in (-1,1)$.

Differentiating term by term we get $\sum_{n=1}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2}, x \in (-1,1) \quad (*)$

But the last sum is just that $\sum_{n=1}^{\infty} nx^{n-1} = \sum_{n=0}^{\infty} (n+1)x^n$, therefore $\sum_{n=0}^{\infty} (n+1)x^n = \frac{1}{(1-x)^2}$.

(b) The equality (*) is true for any $x \in (-1,1)$. In a particular it is true for the number $x = \frac{1}{3} \in (-1,1)$. Substituting $\frac{1}{3}$ instead of x, we get $\sum_{n=1}^{\infty} \frac{n}{3^{n-1}} = \frac{1}{(1-\frac{1}{3})^2} = \frac{9}{4} \implies \sum_{n=1}^{\infty} \frac{n}{3^n} = \frac{3}{4}$.

King Saud University		Department of Mathematics
Final Exam	280-Math	(1441/1442)

Note. The inequality: $\ln x < x$, $x \in [1, \infty)$ may be of help to you during the solution.

Question1(5). Find the following limit or prove that it does not exist

(a)
$$\lim_{n \to \infty} \frac{2^n n!}{(2n+1)!}$$
 (b) $\lim_{n \to \infty} \sum_{k=1}^n (\frac{1}{n} + \frac{k^3}{n^4})$

Question2(5). Use appropriate method to find the sup and inf of the set:

$$E = \left\{ \frac{(-1)^n 2^n n!}{(2n+1)!} ; n \in \mathbb{N} \right\}$$

Question3 (5). Determine whether the following series are convergent or divergent:

(a)
$$\sum_{n=1}^{\infty} \sqrt[n]{2^n n^{n+1}} \sin \frac{1}{n}$$
 (b) $\sum_{n=1}^{\infty} \int_{1}^{2} e^{-nx^2} dx$

Question4 (5). (a) Calculate the following limit or show that it does not exist:

$$\lim_{x \to 0} x^2 \sin \frac{1}{x^2}$$

(b) Let f(x) = x(x+1)(x+2)(x+3). Prove that all solutions of the equation

$$f'(x) = 0$$
 are real.

Question5 (5). Decide whether the following function is uniformly continuous:

$$f(x) = \frac{\tan 3x}{x \cos 3x} \quad on \ (0,1)$$

Question6 (5). Determine whether the integral $\int_{3}^{\infty} \frac{1}{3 + \sin x + \ln x} dx$ converges or not.

Question7 (5). Study the U-convergence of the function sequence $f_n(x) = \frac{nx}{1+nx}$ on the following intervals: (a) $[0,\infty)$ (b) $[1,\infty)$.

Question8 (5). (a) Find the sum of the power series $\sum_{n=0}^{\infty} (n+1)x^n$ over the interval of convergence. (b) Find the sum of the number series $\sum_{n=1}^{\infty} \frac{n}{3^n}$.