Note. The inequality: $\ln x<x, x \in[1, \infty)$ may be of help to you during the solution.
Question1(5). Find the following limit or prove that it does not exist
(a) $\lim _{n \rightarrow \infty} \frac{2^{n} n!}{(2 n+1)!}$
(b) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{1}{n}+\frac{k^{3}}{n^{4}}\right)$

Question2(5). Use appropriate method to find the sup and inf of the set:

$$
E=\left\{\frac{(-1)^{n} 2^{n} n!}{(2 n+1)!} ; n \in \mathbb{N}\right\}
$$

Question3 (5). Determine whether the following series are convergent or divergent:
(a) $\sum_{n=1}^{\infty} \sqrt[n]{2^{n} n^{n+1}} \sin \frac{1}{n}$
(b) $\sum_{n=1}^{\infty} \int_{1}^{2} e^{-n x^{2}} d x$

Question4 (5). (a) Calculate the following limit or show that it does not exist:

$$
\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x^{2}}
$$

(b) Let $f(x)=x(x+1)(x+2)(x+3)$. Prove that all solutions of the equation $f^{\prime}(x)=0$ are real.

Question5 (5). Decide whether the following function is uniformly continuous:

$$
f(x)=\frac{\tan 3 x}{x \cos 3 x} \text { on }(0,1)
$$

Question6 (5). Determine whether the integral $\int_{3}^{\infty} \frac{1}{3+\sin x+\ln x} d x$ converges or not.
Question7 (5). Study the U-convergence of the function sequence $f_{n}(x)=\frac{n x}{1+n x}$ on the following intervals: (a) $[0, \infty)$ (b) $[1, \infty)$.

Question8 (5). (a) Find the sum of the power series $\sum_{n=0}^{\infty}(n+1) x^{n}$ over the interval of convergence. (b) Find the sum of the number series $\sum_{n=1}^{\infty} \frac{n}{3^{n}}$.

Solutions

Question1(5). Find the following limit or prove that it does not exist
(a) $\lim _{n \rightarrow \infty} \frac{2^{n} n!}{(2 n+1)!}$
(b) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{1}{n}+\frac{k^{3}}{n^{4}}\right)$

Solution. (a) First solution. Consider the series $\sum_{n=1}^{\infty} \frac{2^{n} n!}{(2 n+1)!}\left(^{*}\right)$. This is a positive term series.
Let's find $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{2^{n+1}(n+1)!}{(2 n+3)!} \frac{(2 n+1)!}{2^{n} n!}=\lim _{n \rightarrow \infty} \frac{2(n+1)}{(2 n+3)(2 n+2)}=\lim _{n \rightarrow \infty} \frac{1}{(2 n+3)}=\frac{1}{2}<1$.
By Ratio test The series $\left(^{*}\right)$ converges, therefore $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{2^{n} n!}{(2 n+1)!}=0$.
Another solution. $\quad 0 \leq \frac{2^{n} n!}{(2 n+1)!}=\frac{2^{n} n!}{(n!)(n+1)(n+2)(n+3) \cdots(n+n)(2 n+1)}=$

$$
=\frac{1}{(n+1)} \frac{2}{(n+2)} \frac{2}{(n+3)} \cdots \frac{2}{(n+n)} \frac{2}{(2 n+1)}<\frac{1}{(n+1)} \underset{\text { asn } n \rightarrow \infty}{\rightarrow} 0
$$

It follows by squeezing rule that $\lim _{n \rightarrow \infty} \frac{2^{n} n!}{(2 n+1)!}=0$.
Third solution. Since $\frac{a_{n+1}}{a_{n}}=\frac{2^{n+1}(n+1)!}{(2 n+3)!} \frac{(2 n+1)!}{2^{n} n!}=\frac{2(n+1)}{(2 n+3)(2 n+2)}=\frac{1}{(2 n+3)}<1$, the sequence $a_{n}=\frac{2^{n} n!}{(2 n+1)!}$ is decreasing. In addition, the sequence a_{n} is bounded below (by 0). Hence a_{n} is convergent. Let $\lim _{n \rightarrow \infty} a_{n}=l$. By properties $\lim _{n \rightarrow \infty} a_{n+1}=l$.

Since $a_{n+1}=\frac{1}{(2 n+3)} a_{n}$, then $\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} \frac{1}{(2 n+3)} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{(2 n+3)} \lim _{n \rightarrow \infty} a_{n} \Rightarrow l=0 l=0$
(b) First solution. $\quad \lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{1}{n}+\frac{k^{3}}{n^{4}}\right)=1+\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(\frac{k}{n}\right)^{3}=1+\int_{0}^{1} x^{3} d x=\frac{5}{4}$

$$
\text { or } \lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{1}{n}+\frac{k^{3}}{n^{4}}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(1+\left(\frac{k}{n}\right)^{3}\right)=\int_{0}^{1}\left(1+x^{3}\right) d x=\frac{5}{4}
$$

Another solution. $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{1}{n}+\frac{k^{3}}{n^{4}}\right)=\lim _{n \rightarrow \infty}\left(1+\frac{\left(\frac{n(n+1)}{2}\right)^{2}}{n^{4}}\right)=1+\frac{1}{4}=\frac{5}{4}$

Question2(5). Use appropriate method to find the sup and inf of the set:

$$
E=\left\{\frac{(-1)^{n} 2^{n} n!}{(2 n+1)!} ; n \in \mathbb{N}\right\}
$$

Solution. If $x_{n}=\frac{(-1)^{n} 2^{n} n!}{(2 n+1)!}=(-1)^{n} a_{n}$, then

$$
\frac{a_{n+1}}{a_{n}}=\frac{2^{n+1}(n+1)!}{(2 n+3)!} \frac{(2 n+1)!}{2^{n} n!}=\frac{2(n+1)}{(2 n+3)(2 n+2)}=\frac{1}{2 n+3}<1
$$

It means that the sequences a_{n} is decreasing. That is

$$
\begin{equation*}
a_{1} \geq a_{2} \geq a_{3} \geq a_{4} \geq \cdots \geq a_{n} \geq \cdots>0 \tag{*}
\end{equation*}
$$

From (*) we conclude that

$$
a_{2} \geq a_{4} \geq a_{6} \cdots>0>\cdots \geq-a_{5} \geq-a_{3} \geq-a_{1}
$$

Hence $\quad x_{2}=a_{2}=\sup E$ and $x_{1}=-a_{1}=\inf E$

$$
\text { Thus } \sup E=x_{2}=\frac{1}{15} \text { and } \inf E=x_{1}=-\frac{1}{3}
$$

Question3 (5). Determine whether the following series are convergent or divergent:
(a) $\sum_{n=1}^{\infty} \sqrt[n]{2^{n} n^{n+1}} \sin \frac{1}{n}$
(b) $\sum_{n=1}^{\infty} \int_{1}^{2} e^{-n x^{2}} d x$

Solution. (a) $\lim _{n \rightarrow \infty} \sqrt[n]{2^{n} n^{n+1}} \sin \frac{1}{n}=\lim _{n \rightarrow \infty} 2 n \sqrt[n]{n} \sin \frac{1}{n}=\lim _{n \rightarrow \infty} 2 \sqrt[n]{n} \frac{\sin \frac{1}{n}}{\frac{1}{n}}=2(1)(1)=2$
Hence the series (a) diverges by nth term test.

Another solution. It is clear that $0 \leq a_{n}=\sqrt[n]{2^{n} n^{n+1}} \sin \frac{1}{n} \quad \forall n \in \mathbb{N}$ and $0 \leq b_{n}=\sin \frac{1}{n} \quad \forall n \in \mathbb{N}$.

Since $1<2 n \sqrt[n]{n}=\sqrt[n]{2^{n} n^{n+1}} \forall n \in \mathbb{N}$, we have $b_{n} \leq a_{n} \forall n \in \mathbb{N}$. The series $\sum_{n=1}^{\infty} b_{n}$ diverges by
LCT with $\sum_{n=1}^{\infty} \frac{1}{n}$, hence the series $\sum_{n=1}^{\infty} a_{n}$ diverges by CT .
(b) Denote by $a_{n}=\int_{1}^{2} e^{-n x^{2}}$. On the interval [1,2] we have $e^{-n x^{2}}=\frac{1}{e^{n x^{2}}} \leq \frac{1}{e^{n}}$

Therefore

$$
a_{n}=\int_{1}^{2} e^{-n x^{2}} d x \leq \int_{1}^{2} \frac{1}{e^{n}} d x=\frac{1}{e^{n}}
$$

Because the series $\sum_{n=1}^{\infty} \frac{1}{e^{n}}$ converges (geometric with $|r|=\frac{1}{e^{n}}<1$), the given series converges by CT.

Question4 (5). (a) Calculate the following limit or show that it does not exist:

$$
\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x^{2}}
$$

(b) Let $f(x)=x(x+1)(x+2)(x+3)$. Prove that all solutions of the equation $f^{\prime}(x)=0$ are real.

Solution. (a) Since $\left|x^{2} \sin \frac{1}{x^{2}}\right| \leq x^{2} \forall x \neq 0$ and $\lim _{x \rightarrow 0} x^{2}=0$, we conclude that $\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x^{2}}=0$ by squeezing rule.
(b) The function $f(x)$, as a polynomial, is continuous and differentiable over any interval.

Further, $f(-3)=f(-2)=f(-1)=f(0)=0$. Using Rolle's theorem we get the following:

$$
\exists c_{1}, c_{2}, c_{3} \in \mathbb{R}, c_{1} \in(-3,-2), c_{2} \in(-2,-1), c_{3} \in(-1,0) \text { st } f^{\prime}\left(c_{1}\right)=f^{\prime}\left(c_{2}\right)=f^{\prime}\left(c_{3}\right)=0
$$

Obviously, $f^{\prime}(x)$ is a third-degree polynomial and cannot have more than three roots. So all solutions of the equation $f^{\prime}(x)=0$ are real.

Question5 (5). Decide whether the following function is uniformly continuous:

$$
f(x)=\frac{\tan 3 x}{x \cos 3 x} \text { on }(0,1)
$$

Solution. Define the function $g(x)=\left\{\begin{array}{cl}\frac{\tan 3 x}{x \cos 3 x}, & x \in(0,1] \\ 3, & x=0\end{array}\right.$
Because $\lim _{x \rightarrow 0} g(x)=3$, the function $g(x)$ is continuous on the interval $[0,1]$.

Furthermore $g(x) \equiv f(x)$ on the interval $(0,1)$.
Using Continuous Extension Theorem we conclude that the function $f(x)=\frac{\tan 3 x}{x \cos 3 x}$ is uniformly continuous on the interval $(0,1)$.

Question6 (5). Determine whether the integral $\int_{3}^{\infty} \frac{1}{3+\sin x+\ln x} d x$ converges or not.
Solution. First we note that $\sin x \leq x \quad \forall x \geq 0 ; \ln x<x \forall x \geq 1$. So we can write $2 \leq 3+\sin x \leq 3+x \quad \forall x \geq 0 ; \ln x<x \forall x \geq 1$

Therefore $\frac{1}{3+\sin x+\ln x}>\frac{1}{3+x+x}=\frac{1}{3+2 x} \geq \frac{1}{x+2 x}=\frac{1}{3 x} \quad \forall x \geq 3$.
The integral $\int_{3}^{\infty} \frac{1}{x} d x$ diverges as it is p - integral of typel with $p=1$. Hence the given integral diverges by direct comparison test.

Question7 (5). Study the U-convergence of the function sequence $f_{n}(x)=\frac{n x}{1+n x}$ on the following intervals: (a) $[0, \infty)$ (b) $[1, \infty)$.

Solution. (a) The pointwise limit of the sequence is $f(x)=\left\{\begin{array}{lll}0 & \text { if } x=0 \\ 1 & \text { if } & x>0\end{array}\right.$.
Each function $f_{n}(x)$ is continuous on $[0, \infty)$ and the limit function $f(x)$ is discontinuous at $x=0$ which implies that the convergence is not uniform on the interval $[0, \infty)$.
(b) Here the pointwise limit of the sequence is $f(x)=1$.

In addition to that we have $\left|f_{n}(x)-f(x)\right|=\left|\frac{n x}{1+n x}-1\right|=\frac{1}{1+n x}<\frac{1}{n x} \leq \frac{1}{n} \quad \forall x \geq 1$, with $\lim _{n \rightarrow \infty} \frac{1}{n}=0$. It follows from M-test that the convergence of $f_{n}(x)$ is uniformly on the interval $[1, \infty)$.

Question8 (5). (a) Find the sum of the power series $\sum_{n=0}^{\infty}(n+1) x^{n}$ over the interval of convergence. (b) Find the sum of the number series $\sum_{n=1}^{\infty} \frac{n}{3^{n}}$.

Solution. (a) Recall $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}, x \in(-1,1)$.
Differentiating term by term we get $\sum_{n=1}^{\infty} n x^{n-1}=\frac{1}{(1-x)^{2}}, x \in(-1,1)$
But the last sum is just that $\sum_{n=1}^{\infty} n x^{n-1}=\sum_{n=0}^{\infty}(n+1) x^{n}$, therefore $\sum_{n=0}^{\infty}(n+1) x^{n}=\frac{1}{(1-x)^{2}}$.
(b) The equality $\left({ }^{*}\right)$ is true for any $x \in(-1,1)$. In a particular it is true for the number $x=\frac{1}{3} \in(-1,1)$. Substituting $\frac{1}{3}$ instead of x, we get $\sum_{n=1}^{\infty} \frac{n}{3^{n-1}}=\frac{1}{\left(1-\frac{1}{3}\right)^{2}}=\frac{9}{4} \Rightarrow \sum_{n=1}^{\infty} \frac{n}{3^{n}}=\frac{3}{4}$.

Note. The inequality: $\ln x<x, x \in[1, \infty)$ may be of help to you during the solution.
Question1(5). Find the following limit or prove that it does not exist
(a) $\lim _{n \rightarrow \infty} \frac{2^{n} n!}{(2 n+1)!}$
(b) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{1}{n}+\frac{k^{3}}{n^{4}}\right)$

Question2(5). Use appropriate method to find the sup and inf of the set:

$$
E=\left\{\frac{(-1)^{n} 2^{n} n!}{(2 n+1)!} ; n \in \mathbb{N}\right\}
$$

Question3 (5). Determine whether the following series are convergent or divergent:
(a) $\sum_{n=1}^{\infty} \sqrt[n]{2^{n} n^{n+1}} \sin \frac{1}{n}$
(b) $\sum_{n=1}^{\infty} \int_{1}^{2} e^{-n x^{2}} d x$

Question4 (5). (a) Calculate the following limit or show that it does not exist:

$$
\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x^{2}}
$$

(b) Let $f(x)=x(x+1)(x+2)(x+3)$. Prove that all solutions of the equation $f^{\prime}(x)=0$ are real.

Question5 (5). Decide whether the following function is uniformly continuous:

$$
f(x)=\frac{\tan 3 x}{x \cos 3 x} \text { on }(0,1)
$$

Question6 (5). Determine whether the integral $\int_{3}^{\infty} \frac{1}{3+\sin x+\ln x} d x$ converges or not.
Question7 (5). Study the U-convergence of the function sequence $f_{n}(x)=\frac{n x}{1+n x}$ on the following intervals: (a) $[0, \infty)$ (b) $[1, \infty)$.

Question8 (5). (a) Find the sum of the power series $\sum_{n=0}^{\infty}(n+1) x^{n}$ over the interval of convergence. (b) Find the sum of the number series $\sum_{n=1}^{\infty} \frac{n}{3^{n}}$.

