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Note. The inequality:  ln , [1, )x x x  
 
may be of help to you during the solution. 

Question1(5). Find the following limit or prove that it does not exist 
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Question2(5). Use appropriate method to find the sup and inf of the set:  
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Question3 (5). Determine whether the following series are convergent or divergent: 

                                      (a)   1

1

1
2 sinn n n

n

n
n






                  (b)     






1

2

1

2

n

nx dxe  

Question4 (5). (a) Calculate the following limit or show that it does not exist: 
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                         (b) Let ( ) ( 1)( 2)( 3)f x x x x x    . Prove that all solutions of the equation 

                           ( ) 0f x   are real. 

Question5 (5). Decide whether the following function is uniformly continuous: 
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Question7 (5). Study the U-convergence of the function sequence  ( )
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following intervals:      (a)   [0, )                (b)  [1, )  . 

Question8 (5). (a) Find the sum of the power series 
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convergence.   (b) Find the sum of the number series  
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Solutions 
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Solution. (a) First solution. Consider the series  
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It follows by squeezing rule that 
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(b) First solution.       
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Another solution.      

2

3

4 4
1

( 1)

1 1 52
lim ( ) lim 1 1

4 4

n

n n
k

n n

k

n n n 


  
  

       
 
 
 

  

                                

Question2(5). Use appropriate method to find the sup and inf of the set:  
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It means that the sequences na  is decreasing . That is 
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Question3 (5). Determine whether the following series are convergent or divergent: 
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Hence the series (a) diverges by nth term test. 
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Question4 (5). (a) Calculate the following limit or show that it does not exist: 
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                         (b) Let ( ) ( 1)( 2)( 3)f x x x x x    . Prove that all solutions of the equation 

                             ( ) 0f x   are real. 
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by squeezing  rule. 

       (b) The function ( )f x , as a polynomial, is continuous and differentiable over any interval. 

Further, ( 3) ( 2) ( 1) (0) 0f f f f         . Using Rolle's theorem we get the following: 
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Obviously, ( )f x  is a third-degree polynomial and cannot have more than three roots. So all 

solutions of the equation ( ) 0f x   are real. 

 



Question5 (5). Decide whether the following function is uniformly continuous: 

tan 3
( ) (0,1)

cos3

x
f x on

x x


 

Solution. Define the function 

tan 3
, (0,1]

( ) cos3

3 , 0

x
x

g x x x

x




 
 

 

Because 
0

lim ( ) 3
x

g x


 , the function ( )g x is continuous on the interval [0,1] . 

Furthermore ( ) ( )g x f x  on the interval (0,1) . 

Using Continuous Extension Theorem we conclude that the function 
tan 3

( )
cos3

x
f x

x x
  is 

uniformly continuous on the interval (0,1) . 

 

Question6 (5). Determine whether the integral 
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Solution. First we note that sin 0; ln 1x x x x x x       . So we can write  
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diverges by direct comparison test. 
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It follows from M-test that the convergence of ( )nf x is uniformly on the interval[1, ) . 
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