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A B S T R A C T   

The optical properties of inorganic cesium lead bromide perovskite quantum dots (CsPbBr3-PQDs) make them 
particularly suitable for use as semiconductors. However, surface defects limit the performance of PQDs-based 
materials and devices. Consequently, this study investigated a surface passivation approach using a special 
polymer coating under standard conditions. In encapsulation materials, one of the most critical requirements is 
that the polymer should possess transparency; optical applications require material transparency to avoid 
affecting optical properties. Additionally, for optical compatibility, a polymer’s refractive indices must be 
significantly different from those of emission materials, and the polymer should be amorphous. Therefore, this 
study investigated the basic optical properties and parameters of a polymethyl methacrylate polymer-passivated 
CsPbBr3-PQDs surface and compared them with a bare CsPbBr3-PQDs surface. Optical properties such as 
absorbance, transmittance, and reflectance are associated with important optical constants, including bandgap, 
absorption coefficient, extinction coefficient, refractive index, and dielectric constant. With the surface passiv-
ation approach, the surface-modification-dependent optical properties of CsPbBr3-PQDs can suppress surface 
states and improve the surface quality of PQDs-based materials and devices without optical contribution or 
structural changes. Surface passivation results in enhanced emission, which is key to improving the performance 
of PQDs-based optoelectronic devices.   

1. Introduction 

Organic-inorganic (hybrid) and inorganic lead halide perovskite 
structures with monovalent A cations and X anions (or single and mixed 
versions) have prominent APbX3 (e.g., A = Cs, MA, and FA; X = Cl, Br, 
and I). Perovskite and perovskite quantum dots (PQDs) have significant 
potential for use in optoelectronic applications, including solar cells, 
photodetectors, and light-emitting devices. Perovskite materials are 
suitable for such applications on account of their advantageous opto-
electronic properties of composition tunability, light absorption and 
emission over the entire visible spectrum, ultrahigh photoluminescence 
(PL), quantum yield (QY), narrow emission linewidth, short exciton 
radiative lifetime, and long carrier diffusion length [1–6]. 

Inorganic cations (e.g., cesium lead bromide [CsPbX3]) exhibit 
relatively improved stabilities compared with those of their organic- 

inorganic hybrid equivalents (e.g., MAPbX3 and FAPbX3). However, 
the low formation energy of crystal lattices and the high delocalization 
activity of surface ions makes CsPbX3 very susceptible in practical 
operation to polar solvents and sensitive to moisture and air, anion- 
exchange reactions, and thermal heating [7–10]. Such inherent insta-
bility significantly impedes the further development and future appli-
cation of CsPbX3-PQDs in optoelectronics fields. Therefore, it is essential 
to identify an effective method of improving stability. Several protective 
strategies have been proposed to enhance the stability of PQDs, 
including surface passivation. Exposure to external erosive species forms 
a protective perovskite layer that reinforces the PQDs’ stability and 
other expected properties [8,11–19]. 

Poor photoelectric efficiency in optical devices results from the 
presence of surface states typically caused by the recoil of surface bonds 
and surface contamination; consequently, the passivation of surface 
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states has become an important research focus for practical applications 
due to the significant effects on the stability and other physical prop-
erties of nanoscale materials [20,21]. These superficial features are 
critical to achieving enhanced performance in optical applications, and 
surface modifications will result in improved optical responses. Many 
investigations into surface passivation for traditional semiconductors 
have been conducted and published [20–26]. For more contemporary 
materials, such as 2D materials and perovskites, it has been demon-
strated that optimizing surface passivation improves these materials and 
the performance of associated devices. Additionally, various polymers 
have been introduced into perovskite precursor solutions to control the 
morphology of perovskite films [27–31]. When used as cooperative 
additives, some polymers can establish hydrogen bonds with perovskite 
precursors and promote film growth by acting as 3D templates to 
enhance the morphology of perovskite films [31]. Surface passivation 
can involve encapsulation by organic polymer matrices (e.g., poly-
methyl methacrylate [PMMA] [32,33], polyvinylidene fluoride, 
ethylene vinyl acetate, or anthracene [34–36]). Furthermore, the sur-
face passivation process can involve encapsulation by some mesoporous 
inorganic dielectric materials by stuffing PQDs into mesoporous parti-
cles via a facile mixing method (e.g., SiO2 [11,13,16,17,36–39], TiO2 
[19,40,41], or glass sheets [42]). Appropriate processing conditions are 
essential for ensuring preforms with high optical and mechanical qual-
ities as well as for guaranteeing the compatibility of the polymer films 
with the perovskite films and solvents with which they will be mixed. 
Additionally, encapsulation materials should be transparent to ensure 
optical properties are preserved. This requirement makes polymers with 
crystalline and semi-crystalline structures less desirable. Moreover, 
refractive indices in a polymer must differ considerably from the 
perovskite layer to enable a sizable bandwidth for the periodic reflector 
[43,44]. 

Due to mechanical and chemical properties required in encapsula-
tion materials, PMMA polymers have been widely used as a material of 
choice in plastic optical fiber fabrication [43,45], microfluidics tech-
nology [46], and optoelectronic applications [47]. Incorporating noble 
metal nanoparticles into PMMA controls its optical properties [48], 
while the metallization of PMMA is used for electrophoresis [47,49] and 
dielectrophoresis on microfabricated devices [50,51]. 

Therefore, this study investigates a selection of PMMA to meet all the 
requirements mentioned above in terms of its optical properties. It uses 
PMMA as a light-emitting encapsulation material for PQDs on account of 
its lower crystallinity than homopolymers; consequently, it also has 
better solubility. Then, the study conducts an in-depth experimental 
investigation and analysis of the structural and optical effects in 
CsPbBr3-PQDs for possible surface passivation by PMMA polymers and 
compares their optical properties and responses to those of a bare 
CsPbBr3-PQDs surface. A systematic investigation of the optical ab-
sorption, transmittance, reflectance, and emission spectra follows along 
with a calculation of the constant optical parameters to examine the role 
of surface passivation. 

2. Materials and Methods 

2.1. Materials 

PMMA was purchased from Sigma-Aldrich (Saint Louis, MO, USA) 
and was used as received without further purification. Powdered 
CsPbBr3-PQDs was purchased from Quantum Solutions Company 
(Thuwal, Saudi Arabia) and was prepared by a modified hot injection 
process. A toluene solution with a purity of 99.8% (Fluka,Buchs, 
Switzerland) was used to dissolve all the materials. 

2.2. Synthesis of CsPbBr3-PQDs thin films 

First, the glass substrate was cleaned sequentially in ultrasonic baths 
with water containing detergent, deionized water, and ethanol, for a 

period of 15 min in each. Then, 25 mg/mL of the CsPbBr3-PQDs powder 
was dissolved in a non-polar solvent of toluene and left overnight to 
enable suitable dispersion and complete dissolution. Then, toluene so-
lutions containing PMMA (50 mg/ml) were prepared as stock solutions 
by was stirred at 80 ◦C until the powder was completely dissolved. and it 
was left at room temperature for cooling to complete the PMMA solu-
tion. In this preparation, the thin films were prepared using combined 
spin coating and drop-casting procedures. A quantity of 50 µL of 
CsPbBr3-PQDs was dropped onto the clean glass substrate; this was 
placed in the spin-coating machine (4,000 rpm for 30 s) to prepare ho-
mogenous thin films. Then, the films were vacuum dried for 1 h without 
annealing. Next, 50 µL of PMMA was drop-casted onto the CsPbBr3- 
PQDs films, to complete the glass/CsPbBr3-PQDs/PMMA film 
preparation. 

2.3. Film characteristics 

All measurements were recorded at room temperature in the ambient 
environment. The structural properties of the developed films were 
characterized using a transmission electron microscope (TEM) (JEM- 
1011, JEOL, Tokyo, Japan) at an acceleration voltage of 200 kV. For the 
TEM characterization, the CsPbBr3 QDs powders were prepared by 
dilution of 10 μL from QDs solution with 2 mL of hexane followed by 
placing several drops of a dilute QDs solution onto a carbon-coated 
copper grid. The crystal phases of the CsPbBr3-PQDs films were char-
acterized by X-ray diffraction (XRD). XRD was performed on an X-ray 
diffraction system (Miniflex 600, Rigaku, Japan) with copper Kα radia-
tion (λ = 1.5418 Å); the scanning angle (2θ) varied between 10◦–80◦ at a 
scanning rate (step size) of 0.02◦ at 3◦/min− 1. For optical character-
ization, the CsPbBr3-PQDs was dispersed onto a microscopic glass sub-
strate following the preparation of the solution from perovskite powder. 
The absorption spectra of the samples were recorded by an ultraviolet- 
visible (UV–vis) spectrophotometer (V-670, JASCO, Japan). The PL 
spectra of the perovskite films were obtained using a fluorescence 
spectrophotometer (FP-8200, JASCO, Japan) in the wavelength range of 
350~800 nm. The spectral dependencies of the transmittance and 
reflectance of the film were obtained using a UV-vis near-infrared 
spectrophotometer (Cary 5000, Varian, Australia). 

3. Results 

3.1. Structural characteristics 

Figure 1 shows the TEM image and XRD patterns of the prepared 
samples. The smaller CsPbBr3-PQDs (with a crystallite size of ~6 nm) 
are presented in Figure 1 (a). The effects of the polymeric surface 
passivated on the crystal structure of perovskite films are investigated by 
XRD patterns; therefore, the XRD patterns of the modified CsPbBr3-PQDs 
surface and the bare CsPbBr3-PQDs surface films are presented and 
compared in Figure 1 (b). The XRD patterns demonstrate similar features 
with peaks at 2θ = 15.33◦, 21.70◦, 30.87◦, 34.45◦, 37.90◦, and 43.93◦

corresponding, respectively, to diffractions from the (100), (110), (200), 
(210), (211), and (220) planes. The cubic phase at room temperature 
(RT) can be attributed to the high reaction temperature, and the XRD 
patterns are consistent with the results of previous work[52]. The 
appearance of both the (200) plane and the secondary diffraction peak 
of the (100) plane suggest a crystalline high-purity cubic phase without 
any defects, which is consistent with the findings of other reports [17, 
52–54]. The XRD patterns show similar features for both samples, and 
the XRD patterns of the sample with the PMMA-passivated 
CsPbBr3-PQDs surface do not demonstrate any peaks associated with 
the PMMA polymer. Furthermore, no peak shifts in the XRD patterns are 
observed, which is attributed to the polymers not being highly absorbent 
to X-rays, as evidenced in the previous report [1,55]. This indicates that 
the polymer modifications have no effect on the crystalline structure of 
the CsPbBr3-PQDs films [30]. Consequently, due to encapsulation, the 
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polymers with crystalline and semi-crystalline structures are less desir-
able. It can be seen that the PMMA-polymer-passivated CsPbBr3-PQDs 
surface film shows comparative XRD intensity, and no other phases 
appear. However, there is no modification by the 
PMMA-polymer-passivated CsPbBr3-PQDs surface film in the QDs’ 
shape or size (Table 1). From the XRD spectrum, the diameter of the 
crystallite size (D), the dislocation density (δ), and the micro-strain (ε) in 
the film can be estimated using the following formulas4: 

D =
K

βcosθ
, δ =

1
D2 and ε = βcosθ

/

4  

Where k is the shape factor which has a typical value about 0.9, λ is the 
wavelength of the incident X-ray source, β is the full width at half 
maximum (FWHM) in radians, and θ is the Bragg’s angle. The disloca-
tion density (δ) and the number of crystallites per unit area (N) have 
been estimated using the following relationship [43–46]. It is observed 
that the CsPbBr3-PQDs film has grain size of 6.2 nm, which is consistent 
with the measurements obtained from TEM analyses (Figure 1 [a]). 
Table 1 summarizes the structural parameters for both samples. 

3.2. Optical properties 

Optical properties help to categorize the nature of the material using 
electron movement between different energy levels. Essential optical 
parameters can be established from measurements of optical reflectivity, 
transmission, and refraction. Furthermore, the absorption spectrum 
provides a method to determine the details of a material’s existing band 
states, while the efficiency of electron–hole recombination and infor-
mation on charge-carrier trapping can be generated from the PL spec-
trum. Here, to explore the role of surface-passivated PMMA polymers, 
the optical properties and the parameters of the studied PMMA-polymer- 
modified CsPbBr3-PQDs surface and the bare CsPbBr3-PQDs surface 

samples as thin films in the visible regions are presented and compared 
in detail. The optical parameters for both samples are summarized in 
Table 2 and demonstrate good correspondence of the CsPbBr3-PQDs 
polymer in terms of optical properties. 

The PL and absorption spectra of the PMMA-modified CsPbBr3-PQDs 
surface and the bare CsPbBr3-PQDs surface films are presented in 
Figure 2 and Figure 3 (a). In Figure 2, the modified CsPbBr3-PQDs sur-
face and the bare CsPbBr3-PQDs surface exhibit sharp PL peaks at 515 
and 516 nm with narrow FWHMs of 17.5 and 18.4 nm, respectively. The 
PMMA-polymer-passivated CsPbBr3-PQDs surface films demonstrate 
significantly increased PLQYs compared with the bare CsPbBr3-PQDs 
surface, which is attributed to the surface passivation effect of the 
PMMA coating. This increase indicates a reduction in the amount of non- 
radiative recombination sites on the surface due to the effective 
passivation of surface trap states; subsequently, this leads to a reduction 
in deep traps from the density of state measurement. It is confirmed that 
the PMMA-polymer-passivated CsPbBr3-PQDs surface film shows 
changes in both absorption and PL intensity, with reduced absorption 
intensity and a significant increase in PL intensity. From this study’s 
developed perovskite thin films, it can be assumed that the passivation 
of surface defects is beneficial to the achievement of amplified sponta-
neous emission (ASE). The absorption edge and PL peak positions before 
and after surface passivation confirm a blue shift with the passivated 
surface, a reduced Stokes shift, and increased PLQY. 

It can be seen in Figure 3 (a) that both samples have optical ab-
sorption onset that is broad, highly absorbent, and sharp. Furthermore, a 
decreasing trend with increasing wavelength is evident. Maximum ab-
sorption peaks are evident at 350 nm with shoulders at around 508 and 

Figure 1. (a) TEM images of the CsPbBr3-PQDs sample. The scale bars in the TEM image correspond to 20 nm. (b) XRD patterns of the PMMA-modified CsPbBr3- 
PQDs surface and the bare CsPbBr3-PQDs surface thin films. 

Table 1 
Structural properties of the PMMA-modified CsPbBr3-PQDs surface and the 
unmodified CsPbBr3-PQDs surface thin films at the (110) plane.  

CsPbBr3-PQDs Full width half 
maximum (FWHM) 
(deg.) 

D 
(nm) 

lattice 
strain ε×
10–3 

Dislocation 
density δ× 10− 2 

(nm)–2 

Modified 
surface 

1.570 5.15 6.72 3.77 

Unmodified 
surface 

1.427 5.67 6.11 3.11  

Table 2 
Optical constants of the PMMA-modified CsPbBr3-PQDs surface and the bare 
CsPbBr3-PQDs surface thin films, respectively, at λ = 410 nm (3.02 eV).  

Optical parameter modified surface unmodified surface 

λABS(nm) 502 500 
α(cm− 1) 0.66 × 105 1.91 × 105 

δp(nm) 151.52 52.36 
Eg(eV) 2.39 2.40 
Bs(cm− 2eV) 0.62 × 1011 1.37 × 1012 

K 0.22 0.63 
n 1.60 1.51 
εr 2.51 1.91 
εi 0.69 1.88 
σ(fs)− 1 0.25 0.69 
PL Peak 515 516  
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510 nm for modified and unmodified CsPbBr3-PQDs surface films, 
respectively. The film on the PMMA-passivated polymer surface tends to 
possess low absorption, although the passivated surface seems to have a 
higher coverage; when comparing PMMA to air in the case of the non- 
passivated surface, this is attributed to the difference in coverage 
transparency and the reflectivity of the PMMA polymer. The absorption 
enhancements at the band edge are caused by resonant exciton creation, 
which provides a plausible explanation for an initially steep rise of the 
absorption coefficient [56]. The slight blue shift in the absorption onset 
is attributed to an interaction between the conduction bands with im-
purity states of higher energy, while the PL shift is attributed to the 
quantum confinement effect. 

In thin-film research, the absorption coefficient (α), extinction 

coefficient (k), refractive index (n), dielectric constant (ε), and optical 
conductivity (σopt) are key parameters. The term n + ik is known as the 
complex refractive index (N). The dielectric constant is determined after 
establishing both the refractive index and the absorption coefficient, and 
all the above parameters are determined using spectral data. While α 
indicates how much light is absorbed by a material of a given thickness 
(d), k indicates the absorption loss when the electromagnetic wave 
propagates through the material [57]. The transmittance (T) and 
reflectance (R) spectra of PMMA modified and unmodified 
CsPbBr3-PQDs surface films deposited onto a transparent glass substrate 
(in the case of air/film/substrate/air configuration at normal incidence) 
from thin layers of perovskite must first be obtained to calculate the 
absorption coefficient (α). 

Figure 2. PL spectra of the PMMA-modified-CsPbBr3-PQDs surface and the bare CsPbBr3-PQDs surface thin films.  

Figure 3. (a) Absorption, (b) transmittance, and (c) reflectance spectra of the PMMA-modified CsPbBr3-PQDs surface and the bare CsPbBr3-PQDs surface thin films.  
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Figures 3 (b) and (c) present the optical transmittance (T) and 
reflectance (R) spectra with and without PMMA coating, respectively, in 
the visible range for CsPbBr3-PQDs films with a thickness of 300 nm 
(measured by a surface profilometer). When the wavelength is less than 
517 nm (2.40 eV), high absorption is evident. The transmittance of the 
films is less than 20% and increases almost linearly from 2% for the 
modified CsPbBr3-PQDs surface and the bare CsPbBr3-PQDs surfaces, 
respectively. A sharp edge at ~517 nm is visible, with a slight decrease 
in absorption and a rapid increase in transmittance near to 90% and 
above 60% for the modified CsPbBr3-PQDs surface and the bare 
CsPbBr3-PQDs surfaces, respectively. For the 300 nm thick film at ~650 
nm, the highest transmissions are at 95% and 62% for the modified 
CsPbBr3-PQDs surface and the bare CsPbBr3-PQDs surface, respectively. 
At photon energies below the steep rise in absorption onset at 2.40 eV, 
the transmission and reflectance spectra exhibit clear thin-film inter-
ference (Fabry− Perot effects). This indicates a uniform film thickness 
and an optically flat surface, preventing any substantial light scattering 
[56]. The CsPbBr3-PQDs films reveal transmittance spectra in different 
spectral zones in terms of the change in the absorption coefficient value 
between high, low, and transparent regions (α = 0). Different behavior is 
evident in the absorption and permeability spectra, and the absorption 
and α values start to reduce transmission until reaching the region of 
strong absorption; here, transmission decreases dramatically, almost 
exclusively due to the influence of α. The region of strong absorption is 
characterized by interference-free transmittance and reflectance 
spectra. 

The data in Figure 3 (a) was used to calculate the absorption coef-
ficient shown in Figure 4, the refractive index, and the extinction coef-
ficient for a film thickness of d = 300 nm, as shown in Figures 5 (a) and 
(b). The value for α can be calculated from independently measured T 

and R data using the approximated relation [58] of α = 1
d ln

(
1 − R

T

)

, 

where d is the film thickness for the air/film/substrate/air configura-
tion. The relation (1− R)/T completely eliminates residual oscillations 
from the optical interference effect when α is calculated [58]. Figure 4 
(a) demonstrates the dependence of the absorption coefficient α(λ) with 
photon energy (hv) for both films calculated from T and R data. At λ =
350 nm, the absorption coefficients are 0.45 × 105 cm–1 and 1.95 × 105 

cm–1 for the modified CsPbBr3-PQDs surface and the bare CsPbBr3-PQDs 
surface, respectively, which corresponds with respective penetration 
depth values of 222 and 51 nm. This is less evident in the visible light 

wavelength range α(λ) of the modified CsPbBr3-PQDs surface than for 
the bare CsPbBr3-PQDs surface. Based on these results and on account of 
high absorption coefficient values and shorter corresponding penetra-
tion depths, thin layers of both PQDs films can be used in optoelectronic 
devices to enhance charge collection at the electrodes. These absorption 
coefficient results provide the potential to exploit the full features of the 
energy of the photons that is greater than the bandgap of the PQDs film, 
which is essential for determining the light-harvesting capacities of the 
materials [59–63]. 

The first possible benefits come from calculating the absorption co-
efficient to establish the nature of optical transitions. Information con-
cerning bandgap can be obtained by studying the fundamental 
absorption edge, and the optical absorption edge can be analyzed using 
the Tauc relationship [2,64–67], as follows: 

(αhν)n
= Bs

(
hν − Eg

)
, (1)  

where A is a constant, Eg is the bandgap, and the values for n are 2 and 1/ 
2 for direct and indirect transitions, respectively. 

From a Tauc analysis, the optical absorbance data for the sample in 
question that spans a range of energies from below the band-gap tran-
sition to above it can be acquired. Plotting the (αhν)n versus (hν) is a 
matter of determining n = 2 or n = 1/2 to compare which provides the 
better fit and thus identifies the correct transition type. From the dia-
grams of (αhν)1/2 vs. (hν) (Figure 5) and (αhν)2 vs. (hν) (Figure 6) for the 
modified CsPbBr3-PQDs surface and the bare CsPbBr3-PQD surface thin 
films shown in Figure 4, the plot is observed to be linear over a wide 
range of photon energies and the curve intercepts the X-axis for n=2 and 
the opposite can found for n=1/2 (no intercept with the X-axis at α=0), 
which indicates a direct type of transition. This linear region has been 
used to extrapolate to the X-axis intercept to find the bandgap value. At 
even higher energies, the absorption processes saturate and the curve 
again deviates from linear. The energy band gaps can be determined 
from the intercepts of these plots (straight lines) at zero absorption on 
the energy axis, which reflect the energy band gaps at these points. By 
comparing the modified CsPbBr3-PQDs surface and the bare CsPbBr3- 
PQDs surface thin films, respectively, the optical band gap Eg is found at 
the beginning of the interband absorption and can be defined as the edge 
centered at 2.39 and 2.40 eV. The optical band gap of the PMMA- 
polymer-passivated CsPbBr3-PQDs surface thin films is 2.39 eV, which 
is consistent with the bare CsPbBr3-PQDs surface thin films. For a direct 

Figure 4. Absorption coefficients curve of the PMMA-modified CsPbBr3-PQDs surface and the bare CsPbBr3-PQDs surface thin films.  

S.M.H. Qaid et al.                                                                                                                                                                                                                              



Surfaces and Interfaces 23 (2021) 100948

6

semiconductor and from the Figure 6, the band edge sharpness values 
(Bs) can also be found through derivation from the slope of the plot of 
(αhν)2 vs. (hν) in the absorption of the band-to-band range [66]. The Bs 
values are 0.62 × 1011 cm–2 eV for the modified CsPbBr3-PQDs surface 
thin films and 1.37 × 1012 cm–2 eV for the bare CsPbBr3-PQDs surface 
thin films. In the visible light wavelength range, the Bs of the modified 
CsPbBr3-PQDs surface is clearly smaller than that of the bare 
CsPbBr3-PQDs surface, although both have direct band gaps. From the 
values of the optical band gap Eg and the sharpness of the band edge Bs, a 
small difference is observed in the optical band gap, while the band edge 
sharpens when surface passivation by the PMMA polymer decreases by 
around one order when compared with the non-passivated surface. 

The complex refractive index (N) (in which N = n + ik) for the film 
with a thickness (d), where the real part of the refractive index is n and 

the imaginary part is k, can be determined using the measured data for 
both T and R in Figure 3 (a) and the absorption coefficient α(λ) presented 
in Figure 4. It can be expressed in terms of (α) using Eq. (2) 

k =
αλ
4π (2)  

to examine the extinction coefficient k(λ) result in terms of (R) using Eq. 
(3) 
(

n=
(
1 +

̅̅̅
R

√ )

(
1 −

̅̅̅
R

√ )

)

(3)  

for the refractive index of the layer where light is perpendicular to the 
planar film [66–68]. The spectral dependencies of the extinction 

Figure 5. Plots of (αhν)1/2 vs. E for indirect transitions for the PMMA-modified CsPbBr3-PQDs surface and the bare CsPbBr3-PQDs surface thin films.  

Figure 6. Plots of (αhν)2 vs. E for direct transitions for (a) the PMMA-modified CsPbBr3-PQDs surface and (b)the bare CsPbBr3-PQDs surface thin films.  
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coefficient k(λ), the refractive index n(λ), and the thin films of the 
modified CsPbBr3-PQD surface and the bare CsPbBr3-PQDs surface are 
presented in Figures 7(a) and (b), respectively. 

In Figure 7(a), the k(λ) result exhibits absorption peaks located at 
≈410 and 517 nm and demonstrates a decreasing trend of k(λ) as λ in-
creases above ~410 nm. The second absorption peak at ≈517 nm is 
attributed to the transition from the valence band to the conduction 
band. The k(λ) value increases commensurate with wavelength and 
follows a linear trend until reaching the peak value at 410 nm for both 
samples. Then, in the range of 410–510 nm, k(λ) slowly decreases. For 
the modified CsPbBr3-PQD surface, the k(λ)peaks are close to 0.22 and 
0.21, respectively, at the same wavelength position. For the unmodified 
CsPbBr3-PQDs film, the k(λ) peaks are close to 0.62 and 0.59 at 410 and 
510 nm, respectively. Additionally, a sharp decrease in k(λ) is repre-
sented by the sharp edge at 517 nm. After the band edge, the values of k 
(λ) for both samples are almost constant, and the values of k(λ) before 
the band edge are greater than those in subsequent regions. Figure 7 (b) 
demonstrates the dependence of the refractive indices on wavelength, 
while Figure 7 (a) compares the estimated spectral variation of the 
refractive indices n(λ) in the visible regions for the modified CsPbBr3- 
PQDs surface and the bare CsPbBr3-PQDs surface thin films. The ten-
dencies of the refractive indices for the modified CsPbBr3-PQDs surface 
and the bare CsPbBr3-PQDs surface thin films are identified, respec-
tively, as follows: For the bare CsPbBr3-PQDs thin films, one sharp peak 
with a value of 1.50 is evident at 410 nm, while another slowly changing 
peak near to 1.49 appears at 517 nm. There is also a small peak at 510 
nm. In the region of 350–410 nm, the refractive indices increase from 
1.43 to 1.50 then decrease again to 1.42 at 510 nm. There is a sharp 
increase at the band edge to 1.51, followed by a linear decrease. For the 
modified CsPbBr3-PQDs thin films, the refractive index is almost con-
stant at around 1.6 from 350 to 510 nm. At the band edge, the refractive 
index of the films increases up to almost 1.82 before becoming constant, 
which implies that PMMA is an ideal anti-reflective coating with the 
potential to be used in ASE efficiency and fiber optics applications. It is 
clear that as absorbance below the band edge increases, the real part of 
the complex refractive index (n) exhibits a noticeable decrease with 
increasing wavelength. This can be explained by the reflectance, which 
can modify both the refractive index and the film’s reflectivity. 

Generally, the refractive index of the films is approximately 1.58–1.84 
for the modified CsPbBr3-PQDs surface and 1.44–1.54 for the bare 
CsPbBr3-PQDs surface. 

In summary, the extinction coefficient (k) of the modified CsPbBr3- 
PQDs surface sample is smaller than that of the unmodified CsPbBr3- 
PQDs surface sample, with values of 0.16 and 0.62 at λ = 410 nm, 
respectively. The (k) representation of the absorption coefficient clearly 
reveals two edges with onsets at 410 and 517 nm, reflecting the above- 
mentioned transitions. At λ = 410 nm, the modified CsPbBr3-PQDs 
surface sample has a higher refractive index (n) than the unmodified 
CsPbBr3-PQDs sample at 1.59 and 1.51, respectively. 

The polarizability of any solid material is proportional to its dielec-
tric constant, which is the ratio of the permittivity of a substance to the 
permittivity of free space. The relative permittivity of the incidental 
light onto the optical materials is the key parameter used for deter-
mining the real (εr) and imaginary (εi) dielectrics constants, which 
together make the complex dielectric constant ε: 

ε = εr + iεi, (4) 

Describing the dielectric constant uses the refractive index and 
extinction coefficient (k) optical parameters to define the real and 
imaginary parts of the dielectric constant as functions of n(λ) and k(λ). 
The real and imaginary parts of the dielectric constant are calculated 
using equations εr = n2 − k2andεi = 2nk, as seen in Figures 8 (a) and (b), 
respectively. 

The real and imaginary components of the complex dielectric con-
stants of both films are shown in Figure 8. Like the refractive indices that 
change with wavelength (Fig. 7 [b]), the real components follow the 
same pattern. In the region of 350–510 nm, the real components εr are 
almost constant with values of 1.9 and 2.1 before increasing sharply to 
2.25 and 3.50 at the band edge for the modified and unmodified 
CsPbBr3-PQDs surface thin films, respectively. Then, εr is almost con-
stant for the modified thin films, while the value follows a linear 
decrease for the unmodified CsPbBr3-PQDs surface sample. The com-
ponents follow the same pattern as the extinction coefficient, which 
changes with wavelength (Fig. 7 [a]). The imaginary component εi has 
peaks at 410 and 510 nm. The real part of the dielectric constant is at 
2.60 and 1.58, while at a photon energy of 3.02 eV (410 nm), the 

Figure 7. The calculated (a) extinction coefficients k(λ) and (b) refractive index n(λ) curves of the PMMA-modified CsPbBr3-PQDs surface and the bare CsPbBr3- 
PQDs surface thin films. 
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imaginary part of the dielectric constant is located at 0.75 and 1.75 for 
the modified CsPbBr3-PQDs surface and the bare CsPbBr3-PQDs surface 
thin films, respectively. 

It is understood that the amount of energy stored and dissipated in a 
dielectric due to an applied electric field is related to the real and the 
imaginary parts of the dielectric constant, respectively [[68]]. The high 
dielectric constant of active material in light-emitting-based diode de-
vices increases the number of electrons and reduces the number of holes 
that reach the emission zone by enhancing the electrical field, thereby 
facilitating the injection of electrons and supporting optical efficiency 
and brightness in the device. The high dielectric constant also explains 
the low binding energies of the exciton, since the photoinduced charges 
can effectively be screened out by the dipoles of the lattice [68–73]. The 
dielectric constant is related to both the band structure and the optical 

conductivity. The nature of the optical charge generation and transport 
within a device can also be determined using photoconductivity (σph), 
which is another optical parameter that can be obtained from the 
measurement of the absorption coefficient and refractive index via the 
Eq. (5) [2]: 

σph =
nc
4π, (5)  

where c is the velocity of light. 
Additionally, the high optical conductivity value confirms the suit-

ability of the films for use in photovoltaic applications. Figure 9 contains 
the optical conductivity with photon energy results for the modified 
CsPbBr3-PQDs surface and the bare CsPbBr3-PQDs surface thin films. 

The optical conductivity of the PMMA-modified CsPbBr3-PQDs 

Figure 8. (a) Real components and (b) imaginary components of the complex dielectric constant of the PMMA-modified CsPbBr3-PQDs surface and the bare CsPbBr3- 
PQDs surface thin films. 

Figure 9. Optical conductivity of the complex dielectric constant of the PMMA-modified CsPbBr3-PQDs surface and the bare CsPbBr3-PQDs surface thin films.  
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surface sample (0.15 [fs]–1) is lower than that of the bare CsPbBr3-PQDs 
surface sample (0.75 [fs]–1) throughout the visible region. This con-
ductivity can depend on two factors: the charge mobility and/or the 
concentration of the free carriers (carrier densities) by the relationship σ 
= ndeμe, where nd is the number density of the free electrons and μe is the 
electron mobility [74]. This relationship supports the fact that an in-
crease in the mobility and/or concentration of the free carriers implies 
an increase in conductivity. Therefore, it can be concluded that even 
with low carrier densities, high carrier mobilities ensure a significant 
free carrier contribution to optical conductivity. Consequently, it is ex-
pected that charge carrier mobility in the modified CsPbBr3-PQDs sur-
face sample will be smaller, which implies that photocarriers will cross 
fewer grain boundaries, resulting in fewer crystalline defects. 

Finally, the surface passivation approach can suppress surface states 
and improve the surface quality of PQDs-based materials and devices 
without affecting either optical or structural properties. 

5. Conclusions 

In summary, this study performed a comparative investigation of 
CsPbBr3-PQDs both with and without PMMA surface passivation. The 
investigation analyzed the effect of surface passivation on the optical 
parameters and structural properties of CsPbBr3-PQDs and the stability 
of CsPbBr3-PQDs properties. Additionally, the study determined the real 
(n) and imaginary (k) parts of the complex refractive index and dielec-
tric constants of the PQDs thin films. The optical band gap (Eg) was 
established, and the optical absorption spectra reveal the absorption 
mechanism to be a direct transition. The results show that the modified 
films possess lower roughness values and better photoelectric properties 
compared with the reference sample. Furthermore, the surface passiv-
ation of the CsPbBr3-PQDs film by the PMMA polymer was found to have 
a significant impact on the optical properties of CsPbBr3-PQDs materials, 
and only a small change in the optical parameters results from surface 
passivation. The PMMA solution in toluene provided an optically 
transparent layer that was attached to the PQDs layer. The appropriate 
selection of PMMA and processing conditions is crucial to ensuring the 
resultant preforms possess high optical and mechanical qualities and the 
polymer films and perovskite films are compatible. To the best of the 
authors’ knowledge, this is the first publication of an experimental study 
on the effect of PMMA on CsPbBr3-PQDs. In the CsPbBr3-PQDs film, 
surface passivation is found to improve PLQY due to fewer deep-trap 
states of the as-exchanged CsPbBr3-PQDs, while the optical absorption 
is reduced simultaneously. The surface passivation of CsPbBr3-PQDs is 
found to be more stable under ambient conditions that promote desir-
able changes in optical properties; these are beneficial in the production 
of more stable optoelectronic devices. The findings of this study indicate 
that surface passivation is useful for achieving both high performance 
and stability; therefore, optimizing the most effective PMMA thickness is 
essential. 
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