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The present work aims to document the distribution of toxic elements (TEs) and assess the human health risk 
posed by the TEs in the marine sediment of the Arabian Gulf, Saudi Arabia. The descending order of TE averages 
(μg/g) was as follows: Ni > Cr > V > Zn > Pb > Cu > As > Co. Based on the enrichment factor values, only minor 
enrichment for Pb, As, Cr, and Ni was noted. The hazard index (HI) values for the non-carcinogenic risk of the 
TEs were less than 1.0, and the lifetime cancer risk values for carcinogenic Pb, Cr, and As ranged between 2.96 ×
10− 8 and 5.44 × 10− 5, indicating no significant health hazards for the inhabitants of the study area.   

Toxic elements (TEs) enter marine environments through anthro-
pogenic and geogenic sources. The principal anthropogenic sources for 
TEs include mining and smelting operations; industries (textile, phar-
maceuticals, petrochemicals, ceramics, oil mills, sugar industries, and 
fertilizer factories); domestic effluents; sewage sludge; coal burning in 
power plants; nuclear power stations; and agricultural applications of 
chemicals containing metals and metal-containing compounds (Goyer, 
1993; Rehman et al., 2008; Häder et al., 2021). Natural sources of TEs 
include metal-bearing igneous, sedimentary and metamorphic rocks and 
soil formation (Al-Kahtany et al., 2015; Alharbi and El-Sorogy, 2019). 
Sediment or dust ingestion, skin contact, and inhalation are the three 
pathways by which the TEs enter the human body (Naveedullah et al., 
2014). Excessive TE consumption in humans can result in neurological; 
cardiovascular; and chronic kidney illness; tumors and cancer (Song and 
Li, 2014; Pan et al., 2018a; Alfaifi et al., 2021). Children are more 
vulnerable to TEs due to additional exposure pathways such as nursing, 
placental exposure, early-life hand-to-mouth activities, adolescent risk- 
taking, larger comparative uptakes, and lower toxin elimination rates 
(Dissanayake and Chandrajith, 2009; Ma et al., 2016; Rahman et al., 
2021). 

The accumulation of TEs in human bodies may cause harmful com-
plications. For example, Pb accumulation results in lead poisoning, 
giving rise to chronic health problems such as blood disorders, brain and 
nerve disorders, cardiovascular problems, mineralizing of bones and 
teeth, structural damage and changes in the excretory function of kid-
neys, digestive problems, and hypertension (Yuan et al., 2014; Abadin 
et al., 2007). Population exposure to high levels of As causes a myriad of 

serious health problems such as lung diseases, cardiovascular diseases, 
oxidative stresses, diabetes, various types of cancers, a decrease in white 
and red blood cells production, gastrointestinal irritation, hyperkera-
tosis and pigmentation (Järup, 2003; Huy et al., 2014). Moreover, Cd- 
toxicity causes several severe ailments including damage to the lungs 
and respiratory irritation, stomach irritation, kidney damage, soft or 
brittle bones, defects in the endocrine system and cancer (Nishijo et al., 
2017; Mao et al., 2019). 

As the Arabian Gulf is a shallow basin, pollution from human ac-
tivities such as industrial and sewage effluents may significantly alter 
and damage the marine ecosystem and environment of the Arabian Gulf 
(Al-Kahtany et al., 2023; Alharbi et al., 2022; Al-Hashim et al., 2022; Al- 
Kahtany and El-Sorogy, 2022, 2023). Al-Khafji and Al-Jubail cities are 
located in the northeast of Saudi Arabia, along the Arabian Gulf. El- 
Sorogy and Youssef (2015) studied the accumulation of TEs in several 
mollusk shells in the Al-Jubail coastal area and concluded that petro-
chemical industries, antifouling chemicals, oil leakage, desalination 
plants, and sewage effluents were the primary anthropogenic sources of 
TEs in mollusk shells. Alharbi et al. (2017) documented anthropogenic 
contributions for TEs in sediments of the Al-Khafji coastal area, and 
attributed their higher levels to desalination plants, landfilling, indus-
trial sewage, and oil pollutants. 

Many studies dealing with TE evaluation utilizing various pollution 
indices have been conducted on the coastal sediment along the east and 
west coastlines of the Arabian Gulf over the last three decades (e.g. 
geoaccumulation index, enrichment factor, contamination factor, 
pollution load index, degree of contamination, and modified degree of 
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contamination). Most of these studies have not taken the human health 
assessment into consideration. Therefore, the objectives of the present 
work are to; (i) document the distribution of V, As, Co, Ni, Zn, Cr, Pb, 
and Cu in the marine sediment in the coastal area between Al-Khafji and 
Al-Jubail cities along the Arabian Gulf; (ii) assess the degree of enrich-
ment and ecological risk caused by these TEs; and (iii) determine the 
cumulative carcinogenic and non-carcinogenic risks of TEs using the 
chronic daily intake (CDI), hazard index (HI), and total lifetime cancer 
risk (LCR) via ingestion and dermal pathways in both adults and 
children. 

The study area is located between Al-Jubail and Al-Khafji along the 
Arabian Gulf coast, Saudi Arabia, between N27◦ 00′ 84″ – N28◦ 18′ 26″ 
and E49◦ 40′ 00″ – E48◦ 31′ 37″ (Fig. 1). The coastline in the study area is 
sandy and has rocky shores with biogenic concentrations of barnacles, 
worm tubes and gastropods. The rocks of the rocky shores and their 

inhabited mollusks have been bio-eroded by endolithic bivalves, poly-
chaete annelids, clionid sponges, durophagous drillers, vermetid gas-
tropods, and acorn barnacles. The same rocky shore dwellers can be 
identified from many coastal areas along the Red Sea and the Arabian 
Gulf coasts (El-Sorogy, 2015; El-Sorogy et al., 2018, El-Sorogy et al., 
2020a, El-Sorogy et al., 2021; Demircan et al., 2021). Generally, the 
biogenic quotient along the coastline drifts from offshore during storms 
and tides, while the terrestrial part comes from the hinterland Quater-
nary sediments (Alzahrani et al., 2023). In the current study, surface 
sediment samples were collected in January 2022 from the coastal zone 
of thirty-two sites (Fig. 1). The sediments were stored in plastic bags and 
placed in an ice box before they were transported to the laboratory 
where they were dried and sieved. 

The sediments were analysed for the presence of Ni, Cu, Cr, As, Zn, V, 
Co, and Pb, using Inductively Coupled Plasma - Atomic Emission 

Fig. 1. Location map of the study area along the Arabian Gulf and the sampling sites.  

Table 1 
The average values of TEs (dw, μg/g) in the study area and the comparison with those reported in the earth's crust and international backgrounds.  

Location As V Cr Zn Cu Pb Ni Co References 

Arabian Gulf, Saudi Arabia 2.38 7.35  8.68  6.18  2.44  2.57  11.76 1.25 Present study 
Ras Abu Ali Island, Saudi Arabia 2.47 6.67  7.86  6.89  4.14  3.50  13.00 1.43 Al-Kahtany and El-Sorogy (2023) 
Aqeer coastline, Arabian Gulf 15 NA  3.67  7.62  11.27  3.88  0.57 NA Al-Hashim et al. (2021) 
Red Sea-Gulf of Aqaba, Saudi Arabia 133 NA  39  24  30  6.60  14 4.5 El-Sorogy et al. (2020a) 
Jazan area, Red Sea, Saudi Arabia NA NA  32.9  28.5  31.6  2.3  20 4.13 Kahal et al. (2020) 
Al-Khobar, Arabian Gulf, Saudi Arabia 1.61 268  51.0  52.7  183  5.4  75 4.75 Alharbi and El-Sorogy (2017) 
Mediterranean Sea, Egypt 298 375  0.18  183  24.57  385  481 69.8 El-Sorogy et al. (2016) 
Background shale 13 130  90  95  45  20  68 19 Turekian and Wedepohl (1961) 
Background Earth's crust 1.7 97  83  67  47  16  58 18 Yaroshevsky (2006) 

NA: not available. 
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Fig. 2. Mean concentration (based on dry weight, dw) of toxic elements in the sediment samples from the study area.  

Fig. 3. Q-mode HCA (A) of the sediment samples and R-mode HCA (B) of the TEs in the study area.  
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Spectroscopy (ICP – AES) in ALS Geochemistry Laboratory, Jeddah 
branch, Saudi Arabia. A part of the prepared sample (0.50 g) was 
digested with aqua regia (a mixture of one mole of nitric acid and three 
moles of hydrochloric acid) for 45 min in a graphite heating block. After 
the mixture had cooled, the resulting solution was diluted to 12.5 mL 
with deionized water, mixed and analysed. The analytical results were 
corrected for inter–element spectral interferences. Validation of the 
ICP–AES technique was performed regarding linearity, limit of detection 
(LOD), and limit of quantification (LOQ) (Papadoyannis and Samani-
dou, 2004; Christodoulou and Samanidou, 2007). The calibration pro-
cedure was performed by the preparation of a stock standard solution of 
all investigated elements with concentrations of 1000 mg/kg. The sin-
gle–element solutions of each of the investigated elements with con-
centrations of 1, 5, and 10 mg/kg, respectively, were prepared from 
stock solutions by dilution with tridistilled water. The ALS Geochemistry 
Laboratory has established a sound quality control/quality assurance 
experience and protocol over many similar studies throughout the years 
(Alzahrani et al., 2023). The coordinates of the samples and the con-
centrations of the TEs (μg/g, dry weight) are presented in Supplemen-
tary Table 1. Hierarchical clustering analysis (HCA) and Pearson's 

correlation coefficients were used as multivariate statistical tools to 
identify the possible sources of the TEs. 

The enrichment factor (EF) and potential ecological risk (RI) values 
were used to evaluate sediment contamination with particular TEs and 
determined whether the TE content in sediment was affected by human 
activities or natural factors (Kowalska et al., 2018; Huang et al., 2022). 
Supplementary Table 2 shows the classification of these indices. The EF 
was calculated to assess the proportion of the metals in excess with 
respect to the lithological background, according to the following 
formula: 

EF = (M/X)sample ÷ (M/X)background  

where M is the analysed metal and X is the level of a normalizer element. 
Fe was chosen as the normalizing element due to its high content and 
relatively stable chemical properties and not easily affected by the 
external environment (Bryanin and Sorokina, 2019). 

RI was used to assess the degree of the ecological risk caused by TEs 
in coastal sediments (Hakanson, 1980). It was calculated using the 
following equation: 

Eri = Tri ×Cfi  

RI =
∑

(Tr×CF)

where Eri is the potential ecological risk factor of an individual element, 
Tr is the toxicity response coefficient of an individual metal (Zn = Co =
1, Cr = 2, Cu = Pb = 5, Ni = 6, As = 10) (Hakanson, 1980); and CF is the 
contamination factor (Supplementary Table 2). The health risks via 
ingestion and dermal contact pathways in both adults and children were 
calculated according to the Environmental Protection Agency of the 
United States (US EPA). The chronic daily intake (CDI) for the two 
pathways (mg/kg/ day) was estimated according to the following 
equations (Luo et al., 2012; Mondal et al., 2021; Škrbić et al., 2022): 

Table 2 
Minimum, maximum and average values of EF and Eri.   

EF Eri 

Min. Max. Avg. Min. Max. Aver. 

Pb  0.31  4.43  1.64  0.38  1.25  0.64 
As  0.51  4.64  1.87  1.15  3.08  1.83 
Zn  0.18  2.79  0.78  0.02  0.15  0.07 
Ni  0.16  7.54  2.12  0.18  2.82  1.03 
Cu  0.19  2.62  0.70  0.11  0.56  0.27 
Co  0.14  3.11  0.83  0.01  0.09  0.03 
Cr  0.29  4.59  1.27  0.07  0.44  0.19 
V  0.12  2.50  0.72  0.03  0.26  0.11  

Fig. 4. The calculated RI values for the sediment samples in the study area.  

Table 3 
Pearson's correlation coefficients of the investigated TEs.   

As Co Cr Cu Ni Pb V Zn 

As 1        
Co 0.470** 1       
Cr 0.495** 0.908** 1      
Cu 0.520** 0.801** 0.879** 1     
Ni 0.556** 0.819** 0.817** 0.731** 1    
Pb 0.363* 0.548** 0.550** 0.551** 0.571** 1   
V 0.612** 0.888** 0.972** 0.883** 0.870** 0.585** 1  
Zn 0.580** 0.753** 0.790** 0.897** 0.757** 0.680** 0.832** 1  

** Correlation is significant at the 0.01 level (2-tailed). 
* Correlation is significant at the 0.05 level (2-tailed). 
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CDIingest. = (Csediment× IngR×EF×ED/BW×AT)×CF   

CDIdermal =(Csediment×SA×AFsediment×ABS×EF×ED/BW×AT)×CF 

The exposure factors used in the estimation of the CDI are presented 
in Table 1. Cr, Pb and As were selected to estimate the carcinogenic 
health risks (IARC, 2012), whilst; V, As, Co, Ni, Zn, Cr, Pb, and Cu were 
also estimated for their non-carcinogenic risk. The hazard index (HI) 
was estimated by summing up all the hazard quotients (HQs), presenting 
the total risk of being non-carcinogenic for a single element as follows 
(Chonokhuu et al., 2019): 

HI = ΣHQ = HQing +HQdermal  

HQ = CDI/RfD,

where RfD is the reference dose for each TE (Supplementary Table 3). HI 
values less than one indicate no significant risk of non-carcinogenic ef-
fects, and HI values exceeding one indicate the probability that non- 
carcinogenic risk effects may occur, and this probability increases 
with increasing HI (USEPA, 2001; IRIS, 2020). The lifetime cancer risk 
(LCR) was determined using the following equations: 

Cancer risk (CR) = CDI×CSF  

LCR = ΣCancer Risk = Cancer risking +Cancer riskdermal  

where CSF is the carcinogenic slope factor values (mg/kg.day) for Cr, Pb 
and As (0.5, 0.0085 and 1.5, respectively) IRIS, 2020. LCR values lower 
than 1 × 10− 6 indicate no significant health hazards, between 1 × 10− 6 

and 1 × 10− 4 indicate acceptable carcinogenic risk, and higher than 1 ×
10− 4 means the risk is unacceptable (USEPA, 2002; IARC, 2012). 

The average values of the TEs in the study area and their comparison 
with those reported in the earth's crust and international backgrounds 
are presented in Table 1. The descending order of the TE averages (μg/g) 
was as follows: Ni (11.76) > Cr (8.68) > V (7.35) > Zn (6.18) > Pb 
(2.57) > Cu (2.44) > As (2.38) > Co (1.25). The average values of the 
TEs were less than those reported in Table 1 from the Mediterranean 
Sea, earth crust and shale backgrounds (Yaroshevsky, 2006; Turekian 
and Wedepohl, 1961; El-Sorogy et al., 2016). Also, our average values 
were less than those reported from Al-Khobar, Arabian Gulf, Saudi 
Arabia (Alharbi and El-Sorogy, 2017), except for the average value of As. 
Moreover, our average values for As, Zn, Cu, and Pb were less than those 
from the Aqeer coastline, Arabian Gulf (Al-Hashim et al., 2021), and Red 
Sea-Gulf of Aqaba, Saudi Arabia (El-Sorogy et al., 2020b). Fig. 2 docu-
ments the distribution of the TEs all over the study area. Q-mode HCA 
identified the collected samples into the following three clusters 
(Fig. 3A): “S3, S7, S8, S10, S13-S16, S18, S21-S24, S26-S28, S32”; “S1, 
S2, S4-S6, S9, S11, S12, S19, S25, S29”; and “S17, S20, S30, S31.” 
Samples of the first cluster include the lowest values of all investigated 
TEs. The second cluster accounted for the highest Pb, while the third 
cluster included the highest concentration of all TEs, except Pb. 

Results of the EF indicated no enrichment for Zn, Cu, Co, and V 
(averages 0.78, 0.70, 0.83, and 0.72, respectively). The average values 
of EF for Pb, As, Cr, and Ni were 1.64, 1.87, 1.27, and 2.12, respectively 
(Table 2), implying minor enrichment in these TEs. Some individual 
samples, such as S17 showed moderately severe enrichment for Ni (EF =
7.54) and moderate enrichment for Pb (EF = 4.43). The EF values of the 
sampling points of As (94.10 %), Ni (76.50 %), Pb (76.50 %), Cr (41.20 
%), V (17.60 %), Co (17.60.5 %), and Zn (14.7 %) were greater than one, 
implying that these TEs were more or less interfered by human-caused 
factors (Huang et al., 2023). Particularly, 5.9 % of As and Ni samples 
had relatively severe enrichment, which was primarily localized in the 
middle part of the study area (S17-S20), showing that As and Ni were 
significantly affected by human activities in this area. 

RI values ranged from 2.24 to 7.63, with an average of 4.16, which 
indicated a no-to-low risk for the investigated TEs in the studied coastal 
sediments (Supplementary Table 1). Fig. 4 indicates that the higher 
values of RI were recorded in S17, S20, S30, and S31 (samples of the 
third cluster, which accounted most of the highest TEs concentrations in 
the study area). Pearson's correlation coefficients (Table 3) indicated 
significant positive correlations among many elemental pairs, such as 
the correlation between each Zn, Co, and Ni, and the remaining TEs, 
implying similar behavior and source for these TEs (Kahal et al., 2020). 
R-mode HCA clustered the investigated TEs into two (Fig. 3B): Zn, Cr, 
Pb, V, As, Co, and Cu in one cluster; and Ni in the other. The TEs of the 
first cluster showed average EF values less than 2, indicating natural 
sources for these TEs (Škrbić et al., 2017, 2018b; Kahal et al., 2018). The 
average value of the EF for Ni was slightly greater than 2, implying some 
anthropogenic contributions (Škrbić et al., 2017, ̌Skrbić and Marinković, 
2019; Alshehri et al., 2021). 

Table 4 presents the results of the CDI, HQ, and HI values for non- 
carcinogenic risk of TEs from ingestion and dermal contact pathways 
in adults and children. The CDI values of the non-carcinogenic risk for 
adults and children were greater through the ingestion pathway than 
through the dermal pathway. The maximum CDI values (mg/kg. day) 
through the ingestion and dermal pathways for adults were 1.567 ×
10− 5 and 8.199 × 10− 8, respectively, and the same for children were 
1.462 × 10− 4 and 3.826 × 10− 7, respectively. However, the CDI values 
from the ingestion pathways in children for all TEs were approximately 
nine times than that in adults. 

The HI values varied from 2.773 × 10− 5 (Zn) to 1.082 × 10− 2 (As) for 

Table 4 
The CDI (mg/kg/day), HQ and HI for non-carcinogenic risk in adults and 
children.  

HEs Adults 

CDI Ing. CDI Dermal HQ Ing. HQ Demal HI 

As 3.232 ×
10− 6 

1.290 ×
10− 8 

1.077 ×
10− 2 

4.299 ×
10− 5 

1.082 ×
10− 2 

Cr 1.164 ×
10− 5 

4.646 ×
10− 8 

3.881 ×
10− 3 

1.549 ×
10− 5 

3.897 ×
10− 3 

Pb 3.467 ×
10− 6 

1.384 ×
10− 8 

9.907 ×
10− 4 

3.953 ×
10− 6 

9.947 ×
10− 4 

V 9.889 ×
10− 6 

3.946 ×
10− 8 

1.099 ×
10− 3 

4.384 ×
10− 6 

1.103 ×
10− 3 

Cu 3.296 ×
10− 6 

1.315 ×
10− 8 

8.885 ×
10− 5 

3.545 ×
10− 7 

8.920 ×
10− 5 

Ni 1.567 ×
10− 5 

8.199 ×
10− 8 

7.556 ×
10− 4 

4.099 ×
10− 6 

7.597 ×
10− 4 

Zn 8.305 ×
10− 6 

1.640 ×
10− 8 

2.768 ×
10− 5 

5.466 ×
10− 8 

2.773 ×
10− 5 

Co 1.627 ×
10− 6 

2.733 ×
10− 9 

8.134 ×
10− 5 

1.366 ×
10− 7 

8.147 ×
10− 5   

HEs Children 

CDI Ing. CDI Dermal HQ Ing. HQ Demal Hi 

As 3.016 ×
10− 5 

6.018 ×
10− 8 

1.006 ×
10− 1 

2.006 ×
10− 4 

1.008 ×
10− 1 

Cr 1.087 ×
10− 4 

2.168 ×
10− 7 

3.623 ×
10− 2 

7.227 ×
10− 5 

3.630 ×
10− 2 

Pb 3.236 ×
10− 5 

6.456 ×
10− 8 

9.247 ×
10− 3 

1.845 ×
10− 5 

9.265 ×
10− 3 

V 9.229 ×
10− 5 

1.841 ×
10− 7 

1.025 ×
10− 2 

2.046 ×
10− 5 

1.028 ×
10− 2 

Cu 3.076 ×
10− 5 

6.138 ×
10− 8 

8.292 ×
10− 4 

6.875 ×
10− 7 

8.299 ×
10− 4 

Ni 1.462 ×
10− 4 

3.826 ×
10− 7 

7.312 ×
10− 3 

1.913 ×
10− 5 

7.331 ×
10− 3 

Zn 7.751 ×
10− 5 

7.652 ×
10− 8 

2.584 ×
10− 4 

2.551 ×
10− 7 

2.586 ×
10− 4 

Co 1.518 ×
10− 5 

1.275 ×
10− 8 

7.591 ×
10− 4 

6.377 ×
10− 7 

7.598 ×
10− 4  
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adults and from 2.586 × 10− 4 (Zn) to 1.008 × 10− 1 (As) for children 
(Fig. 5). The cumulative HI value for the TEs was 9 to 9.5 times higher in 
children than that in adults regarding the non-carcinogenic risk. Higher 
HI values in children may be attributed to children's higher sensitivity to 
exposure and absorption of TEs during their play activities in coastal 
sediments (Bello et al., 2019). For both adults and children, the HI 
values exhibited the following descending order: As > Cr > V > Pb > Ni 
> Cu > Co > Zn. 

The contribution of HQ from ingestion to HI for adults and children 
accounted for 99.60 % and 99.80 % of the total risk, respectively, while 
the contribution of HQ from dermal accounted for the remaining very 
small percent. US EPA considered an overall HI value of 1.0 as an 
acceptable threshold below which no observable clinical effect was re-
ported in experimental animals. HI values for the TEs in the study area 
were less than 1.0, suggesting no significant non-carcinogenic risk to the 
people inhabiting the study area (Tian et al., 2020). However, the HI 
value for As was greater than 0.1 for children, indicating the need to 

protect them from As ingestion. 
The carcinogenic risks for Cr, Pb, and As were estimated in the 

studied samples. The maximum carcinogenic risk values for adults were 
5.822 × 10− 6 and 2.323 × 10− 8, and the same for children were 5.434 ×
10− 5 and 1.084 × 10− 7, through the ingestion and dermal pathways, 
respectively (Table 5, Fig. 5). The carcinogenic risks in children were 
approximately nine times higher for ingestion pathway and five times 
higher for each of dermal and inhalation pathways than those in adults. 
The contribution of CRing, and CRdermal to LCR values in adults and 
children were 99.60 % and 99.80 % and 0.40 % and 0.20 %, respec-
tively. The LCR values of HEs for both adults and children exhibited the 
following descending order: Cr > As > Pb (Fig. 4). In adults, LCR values 
ranged from 2.959 × 10− 8 (Pb) to 5.845 × 10− 6 (Cr); for children, they 
ranged from 2.756 × 10− 7 (Pb) to 5.445 × 10− 5 (Cr). US EPA considered 
an acceptable cancer risk of 1 × 10− 6 to 1 × 10− 4 for regulatory pur-
poses. However, the LCR values were less than the US EPA's acceptable 
values, indicating no significant health hazards from the carcinogenic 
Pb, Cr, and As in the study area (Mondal et al., 2021), despite the risk in 
children being higher than that in adults, which may be due to the 
children's finger sucking behavior (Zhao et al., 2013; Pan et al., 2018b; 
Škrbić et al., 2018a). 

This study highlighted the health risk assessment of Ni, Cu, Cr, As, 
Zn, V, Co, and Pb in the coastal area between Al-Khafji and Al-Jubail, 
Saudi Arabia. The CDI values of the non-carcinogenic for adults and 
children risk took the order of ingestion pathway > dermal pathway. EF 
and RI values indicated no to minor enrichment and low risk of TEs, 
which originated mostly from natural sources with minor anthropogenic 
contributions. Determination of HI for non-carcinogenic risk of TEs and 
the carcinogenic risks for Cr, Pb, and As indicated no significant health 
hazards, and the studied coastline between Al-Jubal and Al-Khafji cities 
is safe for vacationers, tourism, and marine activities. The present study 

Fig. 5. The HI for non-carcinogenic risk and LCR for or Cr, Pb, and As in adults and children.  

Table 5 
Carcinogenic risks for Cr, Pb, and As, and LCR for adults and children via 
ingestion and dermal contact.  

HEs Adults Children 

CR Ing. CR Dermal LCR CR Ing. CR 
Dermal 

LCR 

As 
4.848 
× 10− 6 

1.934×
10− 8 

4.86737 
× 10− 6 

4.525 
× 10− 5 

9.027 ×
10− 8 

4.53386 
× 10− 5 

Cr 
5.822 
× 10− 6 

2.323 ×
10− 8 

5.84515 
× 10− 6 

5.434 
× 10− 5 

1.084 ×
10− 7 

5.44463 
× 10− 5 

Pb 2.947 
× 10− 8 

1.176 ×
10− 10 

2.95911 
× 10− 8 

2.751 
× 10− 7 

5.488 ×
10− 10 

2.75635 
× 10− 7  
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could serve as a baseline for TE risks associated with the study area to 
monitor improvements or further degradation over time. 
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