and the l_{∞} -norm of residual vector, $\|\mathbf{r}\|_{\infty} = 0.01$. From the equation relative error, we get

$$\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \le \frac{25(0.01)}{2} = 0.1250,$$

the possible relative error in the solution to the given linear system.

Question 4: Use the following table to find the best approximation of f(0.6) by using quadratic Lagrange interpolating polynomial for equally spaced data points [6 Marks]

The above table is for $f(x) = x^2 \ln x$. Determine the number of points when the error for quadratic Lagrange interpolation for equally spaced data points is to be bounded by 10^{-6} .

Solution. Since given x = 0.6, therefore, the best points for the equally spaced data points Lagrange quadratic polynomial are, $x_0 = 0.3, x_1 = 0.55$ and $x_2 = 0.8$ with h = 0.25. Consider the quadratic Lagrange interpolating polynomial as

$$f(x) = p_2(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2),$$
(1)

$$f(0.6) \approx p_2(0.6) = L_0(0.6)(-0.1084) + L_1(0.6)(-0.1808) + L_2(0.6)(-0.1428).$$
 (2)

The Lagrange coefficients can be calculate as follows:

$$L_0(0.6) = \frac{(0.6 - 0.55)(0.6 - 0.8)}{(0.3 - 0.55)(0.3 - 0.8)} = -2/25 = -0.08,$$

$$L_1(0.6) = \frac{(0.6 - 0.3)(0.6 - 0.8)}{(0.55 - 0.3)(0.55 - 0.8)} = 24/25 = 0.96,$$

$$L_2(0.6) = \frac{(0.6 - 0.3)(0.6 - 0.55)}{(0.8 - 0.3)(0.8 - 0.55)} = 3/25 = 0.12.$$

Putting these values of the Lagrange coefficients in (2), we have

$$f(0.4) \approx p_2(0.4) = (-2/25)(-0.1084) + (24/25)(-0.1808) + (3/25)(-0.1428) = -0.1820,$$

which is the required approximation of the given exact solution $0.36 \ln 0.6 \approx -0.1839$.

To compute number of points we have to use error bound for the quadratic Lagrange interpolation for equally spaced data points as

$$|f(x) - p_2(x)| \le \frac{Mh^3}{9\sqrt{3}} \le 10^{-6}.$$

As
$$h = \frac{b-a}{n} = \frac{0.8-0.3}{n} = \frac{0.5}{n}$$
, so

$$\frac{M(0.5)^3}{(9\sqrt{3})n^3} \le 10^{-6}.$$

Since

$$M = \max_{0.3 \le x \le 0.8} |f^{(3)}(x)|,$$

and the first three derivatives are

$$f'(x) = 2x \ln x + x,$$
 $f''(x) = 2 \ln x + 3,$ $f^{(3)}(x) = \frac{2}{x},$

SO

$$M = \max_{0.3 \le x \le 0.8} \left| \frac{2}{x} \right| = 20/3 = 6.6667.$$

Hence

$$n^3 \ge \frac{(6.6667)(0.5)^3(10^6)}{9\sqrt{3}},$$

or

$$n \ge \left(\frac{(6.6667)(0.5)^3(10^6)}{9\sqrt{3}}\right)^{1/3},$$

which gives

$$n \ge 37.6709$$
, gives $n = 38$,

and so the number of points is, n + 1 = 38 + 1 = 39.