T ITT ' mailers	Mathematics D	epartment Math-204
King Saud University:	Wathematics D	Second Midterm Exam.
First Semester	1445 H	Time: 90 mins.
Maximum Marks $= 25$		Time: oo maaa

Question 1: Use LU-factorization method with Doolittle's method ($l_{ii} = 1$) to find the solution of the consistent system for $\alpha \neq 3$. [7 Marks]

Question 2: Consider the following linear system of equations

If $\mathbf{x} = [1, 1, 1]^T$ be the exact solution of the system, then using Jacobi iterative method and $\mathbf{x}^{(0)} = [0.5, 0.5, 0.5]^T$, compute the absolute error $\|\mathbf{x} - \mathbf{x}^{(2)}\|$. How many iterations needed to get an accuracy within 10^{-4} using Jacobi iterative method.

Question 3: Consider a linear system $A\mathbf{x} = \mathbf{b}$, where

 $A = \left(egin{array}{cccc} 2 & 1 & 2 \ 1 & 4 & 0 \ 1 & 2 & 1 \end{array}
ight) \quad ext{and} \quad \mathbf{b} = \left(egin{array}{cccc} 1 \ 1 \ 2 \ \end{array}
ight).$

If **b** is changed to $\mathbf{b}^* = [1, 1, 1.99]^T$, then use the residual vector **r** to find the relative error in the solution to the linear system $A\mathbf{x} = \mathbf{b}$.

Question 4:Use the following table to find the best approximation of f(0.6) by using quadraticLagrange interpolating polynomial for equally spaced data points[6 Marks]

The above table is for $f(x) = x^2 \ln x$. Determine the number of points when the error for quadratic Lagrange interpolation for equally spaced data points is to be bounded by 10^{-6} .

6 Marks

6 Marks

King Saud University:Mathematics DepartmentMath-254First Semester1445 HSecond Midterm Exam. SolutionMaximum Marks = 25Time: 90 mins.

Question 1: Use LU-factorization method with Doolittle's method $(l_{ii} = 1)$ to find the solution of the consistent system for $\alpha \neq 3$. [7 Marks]

Solution. Using Simple Gauss-elimination method, we can easily find factorization of A as

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 3 & \alpha & 5 \\ 0 & 7 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & \frac{7}{(\alpha - 3)} & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & (\alpha - 3) & 5 \\ 0 & 0 & \frac{(3\alpha - 44)}{(\alpha - 3)} \end{pmatrix} = LU.$$

Since by one of the property of the determinant

$$\det(A) = \det(LU) = \det(L) \det(U).$$

So when using LU decomposition by Doolittle's method, then

$$\det(A) = \det(U) = \prod_{i=1}^{n} u_{ii} = (u_{11}u_{22}\cdots u_{nn}),$$

where det(L) = 1 because L is lower-triangular matrix and all its diagonal elements are unity. Thus the determinant of the given matrix A is

$$|A| = |U| = (\alpha - 3)\frac{(3\alpha - 44)}{(\alpha - 3)} = (3\alpha - 44), \quad \alpha \neq 3.$$

Many Solutions:

For many solutions A must be singular, that is, |A| = 0,

$$|A| = 3\alpha - 44 = 0$$
, gives $\alpha = 44/3$.

For this value of α we have the many solutions. By solving the lower-triangular system of the form $L\mathbf{y} = [1, 8, 3]^T$ of the form

$$L\mathbf{y} = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & \frac{3}{5} & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 8 \\ 3 \end{pmatrix} = \mathbf{b},$$

we obtained the solution $\mathbf{y} = [1, 5, 0]^T$. Now solving the upper-triangular system $U\mathbf{x} = \mathbf{y}$ of the form

$$U\mathbf{x} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & \frac{35}{3} & 5 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ 0 \end{pmatrix} = \mathbf{y}.$$

If we choose $x_3 = t \in R$, $t \neq 0$, then, $x_2 = 3(1-t)/7$ and $x_1 = (4+3t)/7$, then the many solutions of the given system is $\mathbf{x}^* = [(4+3t)/7, 3(1-t)/7, t]^T$.

Unique Solution:

For unique solution A must be nonsingular, that is, $|A| \neq 0$,

$$|A| = 3\alpha - 44 \neq 0$$
, so $\alpha \in \mathbf{R}$, but $\alpha \neq 44/3$.

By solving the lower-triangular system of the form $L\mathbf{y} = [1, 8, 3]^T$ of the form

$$L\mathbf{y} = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & \frac{7}{(\alpha - 3)} & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 8 \\ 3 \end{pmatrix} = \mathbf{b},$$

we obtained the solution $\mathbf{y} = [1, 5, \frac{(3\alpha - 44)}{(\alpha - 3)}]^T$. Now solving the upper-triangular system $U\mathbf{x} = \mathbf{y}$ of the form

$$U\mathbf{x} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & (\alpha - 3) & 5 \\ 0 & 0 & \frac{(3\alpha - 44)}{(\alpha - 3)} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ \frac{(3\alpha - 44)}{(\alpha - 3)} \end{pmatrix} = \mathbf{y},$$

and using backward substitution, gives

$$x_1 = 1$$
, $x_2 = 0$, and $x_3 = 1$,

the unique solution of the system.

Question 2: Consider the following linear system of equations

[6 Marks]

If $\mathbf{x} = [1, 1, 1]^T$ be the exact solution of the system, then using Jacobi iterative method and $\mathbf{x}^{(0)} = [0.5, 0.5, 0.5]^T$, compute the absolute error $\|\mathbf{x} - \mathbf{x}^{(2)}\|$. How many iterations needed to get an accuracy within 10^{-4} using Jacobi iterative method.

Solution. As we have,

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 8 & 1 \\ 0 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 2 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 2 \end{pmatrix} = L + U + D.$$

Since the Jacobi iteration matrix is defined as

$$T_J = -D^{-1}(L+U),$$

and by using the given information, we have

$$T_J = \left(\begin{array}{rrrr} 0 & -1/2 & 0\\ -1/8 & 0 & -1/8\\ 0 & -1/2 & 0 \end{array}\right).$$

Then the l_{∞} norm of the matrix T_J is

$$||T_J||_{\infty} = \max\left\{|-\frac{1}{2}|, |-\frac{1}{4}|, |\frac{1}{2}\right\} = \frac{1}{2} < 1.$$

Thus the Jacobi method will converge for the given linear system.

(b) The Jacobi method for the given system is

$$\begin{aligned} x_1^{(k+1)} &= \frac{1}{2} \begin{bmatrix} 3 & - & x_2^{(k)} \end{bmatrix} \\ x_2^{(k+1)} &= \frac{1}{8} \begin{bmatrix} 10 & - & x_1^{(k)} & - & x_3^{(k)} \end{bmatrix} \\ x_3^{(k+1)} &= \frac{1}{2} \begin{bmatrix} 3 & - & x_2^{(k)} \end{bmatrix} \end{aligned}$$

Starting with initial approximation $x_1^{(0)} = 0.5, x_2^{(0)} = 0.5, x_3^{(0)} = 0.5$, and for k = 0, 1, we obtain the first and the second approximations as

$$\mathbf{x}^{(1)} = [1.25, 1.125, 1.25]^T$$
 and $\mathbf{x}^{(2)} = [0.9375, 0.9375, 0.9375]^T$.

Thus

$$\|\mathbf{x} - \mathbf{x}^{(2)}\| = \|[0.0625, 0.0625, 0.0625]^T\| = 0.0625,$$

is the absolute error. To find the number of iterations, we use the error bound formula as

$$\|\mathbf{x} - \mathbf{x}^{(k)}\| \le \frac{\|T_J\|^k}{1 - \|T_J\|} \|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\| \le 10^{-4}.$$

It gives

$$\frac{(1/2)^k}{1/2}(0.75) \le 10^{-4}, \quad \text{or} \quad (1/2)^k \le \frac{10^{-4}}{1.5}.$$

Taking logarithmic on both sides, we obtain, $k \ge 13.8727$, or k = 14.

Question 3: Consider a linear system $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 4 & 0 \\ 1 & 2 & 1 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}.$$

If **b** is changed to $\mathbf{b}^* = [1, 1, 1.99]^T$, then use the residual vector **r** to find the relative change in the solution to the linear system $A\mathbf{x} = \mathbf{b}$.

Solution. Since the matrix A and its inverse is

$$A = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 4 & 0 \\ 1 & 2 & 1 \end{pmatrix}, \quad A^{-1} = \begin{pmatrix} 4/3 & 1 & -8/3 \\ -1/3 & 0 & 2/3 \\ -2/3 & -1 & 7/3 \end{pmatrix}.$$

Then

$$||A||_{\infty} = 5, ||A^{-1}||_{\infty} = 5, \qquad K(A) = ||A||_{\infty} ||A^{-1}||_{\infty} = (5)(5) = 25.$$

Since

$$\mathbf{r} = \mathbf{b} - A\mathbf{x}^* = \mathbf{b} - \mathbf{b}^* = [0, 0, 0.01]^T$$

[6 Marks]

and the l_{∞} -norm of residual vector, $\|\mathbf{r}\|_{\infty} = 0.01$. From the equation relative error, we get

$$\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \le \frac{25(0.01)}{2} = 0.1250,$$

the possible relative error in the solution to the given linear system.

Question 4: Use the following table to find the best approximation of f(0.6) by using quadratic Lagrange interpolating polynomial for equally spaced data points [6 Marks]

The above table is for $f(x) = x^2 \ln x$. Determine the number of points when the error for quadratic Lagrange interpolation for equally spaced data points is to be bounded by 10^{-6} .

Solution. Since given x = 0.6, therefore, the best points for the equally spaced data points Lagrange quadratic polynomial are, $x_0 = 0.3, x_1 = 0.55$ and $x_2 = 0.8$ with h = 0.25. Consider the quadratic Lagrange interpolating polynomial as

$$f(x) = p_2(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2),$$
(1)

$$f(0.6) \approx p_2(0.6) = L_0(0.6)(-0.1084) + L_1(0.6)(-0.1808) + L_2(0.6)(-0.1428).$$
(2)

The Lagrange coefficients can be calculate as follows:

$$L_0(0.6) = \frac{(0.6 - 0.55)(0.6 - 0.8)}{(0.3 - 0.55)(0.3 - 0.8)} = -2/25 = -0.08,$$

$$L_1(0.6) = \frac{(0.6 - 0.3)(0.6 - 0.8)}{(0.55 - 0.3)(0.55 - 0.8)} = 24/25 = 0.96,$$

$$L_2(0.6) = \frac{(0.6 - 0.3)(0.6 - 0.55)}{(0.8 - 0.3)(0.8 - 0.55)} = 3/25 = 0.12.$$

Putting these values of the Lagrange coefficients in (2), we have

$$f(0.4) \approx p_2(0.4) = (-2/25)(-0.1084) + (24/25)(-0.1808) + (3/25)(-0.1428) = -0.1820,$$

which is the required approximation of the given exact solution $0.36 \ln 0.6 \approx -0.1839$.

To compute number of points we have to use error bound for the quadratic Lagrange interpolation for equally spaced data points as

$$|f(x) - p_2(x)| \le \frac{Mh^3}{9\sqrt{3}} \le 10^{-6}.$$

As $h = \frac{b-a}{n} = \frac{0.8 - 0.3}{n} = \frac{0.5}{n}$, so

$$\frac{M(0.5)^3}{(9\sqrt{3})n^3} \le 10^{-6}.$$

Since

$$M = \max_{0.3 \le x \le 0.8} |f^{(3)}(x)|,$$

and the first three derivatives are

$$f'(x) = 2x \ln x + x, \qquad f''(x) = 2 \ln x + 3, \qquad f^{(3)}(x) = \frac{2}{x},$$

 \mathbf{SO}

$$M = \max_{0.3 \le x \le 0.8} \left| \frac{2}{x} \right| = 20/3 = 6.6667.$$

Hence

$$n^3 \ge \frac{(6.6667)(0.5)^3(10^6)}{9\sqrt{3}},$$

or

$$n \ge \left(\frac{(6.6667)(0.5)^3(10^6)}{9\sqrt{3}}\right)^{1/3},$$

which gives

$$n \ge 37.6709$$
, gives $n = 38$,

and so the number of points is, n + 1 = 38 + 1 = 39.