King Saud University: First Semester Maximum Marks $=25$

Mathematics Department
Second Midterm Exam. Time: 90 mins.

Question 1: Use LU-factorization method with Doolittle's method $\left(l_{i i}=1\right)$ to find the solution of the consistent system for $\alpha \neq 3$.
[7 Marks]

$$
\begin{array}{r}
x_{1}+x_{2}=1 \\
3 x_{1}+\alpha x_{2}+5 x_{3}=8 \\
7 x_{2}+3 x_{3}=3
\end{array}
$$

Question 2: Consider the following linear system of equations
[6 Marks]

$$
\begin{aligned}
2 x_{1}+x_{2} & =3 \\
x_{1}+8 x_{2}+x_{3} & =10 \\
x_{2}+2 x_{3} & =3
\end{aligned}
$$

If $\mathbf{x}=[1,1,1]^{T}$ be the exact solution of the system, then using Jacobi iterative method and $\mathrm{x}^{(0)}=[0.5,0.5,0.5]^{T}$, compute the absolute error $\left\|\mathrm{x}-\mathrm{x}^{(2)}\right\|$. How many iterations needed to get an accuracy within 10^{-4} using Jacobi iterative method.

Question 3: Consider a linear system $A \mathrm{x}=\mathrm{b}$, where

$$
A=\left(\begin{array}{lll}
2 & 1 & 2 \\
1 & 4 & 0 \\
1 & 2 & 1
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)
$$

If \mathbf{b} is changed to $\mathbf{b}^{*}=[1,1,1.99]^{T}$, then use the residual vector \mathbf{r} to find the relative error in the solution to the linear system $A \mathbf{x}=\mathbf{b}$.

Question 4: Use the following table to find the best approximation of $f(0.6)$ by using quadratic Lagrange interpolating polynomial for equally spaced data points
[6 Marks]

x	0.15	0.2	0.3	0.5	0.55	0.8	1
$f(x)$	-0.0427	-0.0644	-0.1084	-0.1733	-0.1808	-0.1428	0

The above table is for $f(x)=x^{2} \ln x$. Determine the number of points when the error for quadratic Lagrange interpolation for equally spaced data points is to be bounded by 10^{-6}.
King Saud University: First Semester
Maximum Marks $=\mathbf{2 5}$
Mathematics Department
Math-254
1445 H
Second Midterm Exam. Solution
Time: 90 mins.

Question 1: Use LU-factorization method with Doolittle's method $\left(l_{i i}=1\right)$ to find the solution of the consistent system for $\alpha \neq 3$.

$$
\begin{aligned}
x_{1}+x_{2} & =1 \\
3 x_{1}+\alpha x_{2}+5 x_{3} & =8 \\
7 x_{2}+3 x_{3} & =3
\end{aligned}
$$

Solution. Using Simple Gauss-elimination method, we can easily find factorization of A as

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
3 & \alpha & 5 \\
0 & 7 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & \frac{7}{(\alpha-3)} & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 1 & 0 \\
0 & (\alpha-3) & 5 \\
0 & 0 & \frac{(3 \alpha-44)}{(\alpha-3)}
\end{array}\right)=L U
$$

Since by one of the property of the determinant

$$
\operatorname{det}(A)=\operatorname{det}(L U)=\operatorname{det}(L) \operatorname{det}(U)
$$

So when using LU decomposition by Doolittle's method, then

$$
\operatorname{det}(A)=\operatorname{det}(U)=\prod_{i=1}^{n} u_{i i}=\left(u_{11} u_{22} \cdots u_{n n}\right)
$$

where $\operatorname{det}(L)=1$ because L is lower-triangular matrix and all its diagonal elements are unity. Thus the determinant of the given matrix A is

$$
|A|=|U|=(\alpha-3) \frac{(3 \alpha-44)}{(\alpha-3)}=(3 \alpha-44), \quad \alpha \neq 3
$$

Many Solutions:

For many solutions A must be singular, that is, $|A|=0$,

$$
|A|=3 \alpha-44=0, \quad \text { gives } \quad \alpha=44 / 3
$$

For this value of α we have the many solutions. By solving the lower-triangular system of the form $L \mathbf{y}=[1,8,3]^{T}$ of the form

$$
L \mathbf{y}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & \frac{3}{5} & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
1 \\
8 \\
3
\end{array}\right)=\mathbf{b}
$$

we obtained the solution $\mathbf{y}=[1,5,0]^{T}$. Now solving the upper-triangular system $U \mathbf{x}=\mathbf{y}$ of the form

$$
U \mathbf{x}=\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & \frac{35}{3} & 5 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
1 \\
5 \\
0
\end{array}\right)=\mathbf{y}
$$

If we choose $x_{3}=t \in R, t \neq 0$, then, $x_{2}=3(1-t) / 7$ and $x_{1}=(4+3 t) / 7$, then the many solutions of the given system is $\mathbf{x}^{*}=[(4+3 t) / 7,3(1-t) / 7, t]^{T}$.

Unique Solution:

For unique solution A must be nonsingular, that is, $|A| \neq 0$,

$$
|A|=3 \alpha-44 \neq 0, \quad \text { so } \quad \alpha \in \mathbf{R}, \quad \text { but } \quad \alpha \neq 44 / 3 .
$$

By solving the lower-triangular system of the form $L \mathbf{y}=[1,8,3]^{T}$ of the form

$$
L \mathbf{y}=\left(\begin{array}{llll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & \frac{7}{(\alpha-3)} & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
8 \\
3
\end{array}\right)=\mathbf{b}
$$

we obtained the solution $\mathbf{y}=\left[1,5, \frac{(3 \alpha-44)}{(\alpha-3)}\right]^{T}$. Now solving the upper-triangular system $U \mathbf{x}=\mathbf{y}$ of the form

$$
U \mathbf{x}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & (\alpha-3) & 5 \\
0 & 0 & \frac{(3 \alpha-44)}{(\alpha-3)}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
5 \\
\frac{(3 \alpha-44)}{(\alpha-3)}
\end{array}\right)=\mathbf{y},
$$

and using backward substitution, gives

$$
x_{1}=1, \quad x_{2}=0, \quad \text { and } \quad x_{3}=1,
$$

the unique solution of the system.

Question 2: Consider the following linear system of equations

$$
\begin{aligned}
2 x_{1}+x_{2} & =3 \\
x_{1}+8 x_{2}+x_{3} & =10 \\
x_{2}+2 x_{3} & =3
\end{aligned}
$$

If $\mathbf{x}=[1,1,1]^{T}$ be the exact solution of the system, then using Jacobi iterative method and $\mathbf{x}^{(0)}=[0.5,0.5,0.5]^{T}$, compute the absolute error $\left\|\mathbf{x}-\mathbf{x}^{(2)}\right\|$. How many iterations needed to get an accuracy within 10^{-4} using Jacobi iterative method.

Solution. As we have,

$$
A=\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 8 & 1 \\
0 & 1 & 2
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)+\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 2
\end{array}\right)=L+U+D
$$

Since the Jacobi iteration matrix is defined as

$$
T_{J}=-D^{-1}(L+U),
$$

and by using the given information, we have

$$
T_{J}=\left(\begin{array}{rrr}
0 & -1 / 2 & 0 \\
-1 / 8 & 0 & -1 / 8 \\
0 & -1 / 2 & 0
\end{array}\right) .
$$

Then the l_{∞} norm of the matrix T_{J} is

$$
\left\|T_{J}\right\|_{\infty}=\max \left\{\left|-\frac{1}{2}\right|,\left|-\frac{1}{4}\right|, \left\lvert\, \frac{1}{2}\right.\right\}=\frac{1}{2}<1 .
$$

Thus the Jacobi method will converge for the given linear system.
(b) The Jacobi method for the given system is

$$
\begin{aligned}
x_{1}^{(k+1)} & =\frac{1}{2}\left[3-x_{2}^{(k)}\right] \\
x_{2}^{(k+1)} & =\frac{1}{8}\left[10-x_{1}^{(k)}-x_{3}^{(k)}\right] \\
x_{3}^{(k+1)} & =\frac{1}{2}\left[3-x_{2}^{(k)}\right]
\end{aligned}
$$

Starting with initial approximation $x_{1}^{(0)}=0.5, x_{2}^{(0)}=0.5, x_{3}^{(0)}=0.5$, and for $k=0,1$, we obtain the first and the second approximations as

$$
\mathbf{x}^{(1)}=[1.25,1.125,1.25]^{T} \quad \text { and } \quad \mathbf{x}^{(2)}=[0.9375,0.9375,0.9375]^{T}
$$

Thus

$$
\left\|\mathbf{x}-\mathbf{x}^{(2)}\right\|=\left\|[0.0625,0.0625,0.0625]^{T}\right\|=0.0625
$$

is the absolute error. To find the number of iterations, we use the error bound formula as

$$
\left\|\mathbf{x}-\mathbf{x}^{(k)}\right\| \leq \frac{\left\|T_{J}\right\|^{k}}{1-\left\|T_{J}\right\|}\left\|\mathbf{x}^{(1)}-\mathbf{x}^{(0)}\right\| \leq 10^{-4}
$$

It gives

$$
\frac{(1 / 2)^{k}}{1 / 2}(0.75) \leq 10^{-4}, \quad \text { or } \quad(1 / 2)^{k} \leq \frac{10^{-4}}{1.5}
$$

Taking logarithmic on both sides, we obtain, $k \geq 13.8727, \quad$ or $\quad k=14$.

Question 3: Consider a linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{ccc}
2 & 1 & 2 \\
1 & 4 & 0 \\
1 & 2 & 1
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{c}
1 \\
1 \\
2
\end{array}\right)
$$

If \mathbf{b} is changed to $\mathbf{b}^{*}=[1,1,1.99]^{T}$, then use the residual vector \mathbf{r} to find the relative change in the solution to the linear system $A \mathbf{x}=\mathbf{b}$.

Solution. Since the matrix A and its inverse is

$$
A=\left(\begin{array}{lll}
2 & 1 & 2 \\
1 & 4 & 0 \\
1 & 2 & 1
\end{array}\right), \quad A^{-1}=\left(\begin{array}{rrr}
4 / 3 & 1 & -8 / 3 \\
-1 / 3 & 0 & 2 / 3 \\
-2 / 3 & -1 & 7 / 3
\end{array}\right)
$$

Then

$$
\|A\|_{\infty}=5,\left\|A^{-1}\right\|_{\infty}=5, \quad K(A)=\|A\|_{\infty}\left\|\mid A^{-1}\right\|_{\infty}=(5)(5)=25
$$

Since

$$
\mathbf{r}=\mathbf{b}-A \mathbf{x}^{*}=\mathbf{b}-\mathbf{b}^{*}=[0,0,0.01]^{T}
$$

and the l_{∞}-norm of residual vector, $\|\mathbf{r}\|_{\infty}=0.01$. From the equation relative error, we get

$$
\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq \frac{25(0.01)}{2}=0.1250
$$

the possible relative error in the solution to the given linear system.

Question 4: Use the following table to find the best approximation of $f(0.6)$ by using quadratic Lagrange interpolating polynomial for equally spaced data points

$$
\begin{array}{c|ccccccc}
x & 0.15 & 0.2 & 0.3 & 0.5 & 0.55 & 0.8 & 1 \\
\hline f(x) & -0.0427 & -0.0644 & -0.1084 & -0.1733 & -0.1808 & -0.1428 & 0
\end{array}
$$

The above table is for $f(x)=x^{2} \ln x$. Determine the number of points when the error for quadratic Lagrange interpolation for equally spaced data points is to be bounded by 10^{-6}.

Solution. Since given $x=0.6$, therefore, the best points for the equally spaced data points Lagrange quadratic polynomial are, $x_{0}=0.3, x_{1}=0.55$ and $x_{2}=0.8$ with $h=0.25$. Consider the quadratic Lagrange interpolating polynomial as

$$
\begin{gather*}
f(x)=p_{2}(x)=L_{0}(x) f\left(x_{0}\right)+L_{1}(x) f\left(x_{1}\right)+L_{2}(x) f\left(x_{2}\right) \tag{1}\\
f(0.6) \approx p_{2}(0.6)=L_{0}(0.6)(-0.1084)+L_{1}(0.6)(-0.1808)+L_{2}(0.6)(-0.1428) \tag{2}
\end{gather*}
$$

The Lagrange coefficients can be calculate as follows:

$$
\begin{aligned}
& L_{0}(0.6)=\frac{(0.6-0.55)(0.6-0.8)}{(0.3-0.55)(0.3-0.8)}=-2 / 25=-0.08 \\
& L_{1}(0.6)=\frac{(0.6-0.3)(0.6-0.8)}{(0.55-0.3)(0.55-0.8)}=24 / 25=0.96 \\
& L_{2}(0.6)=\frac{(0.6-0.3)(0.6-0.55)}{(0.8-0.3)(0.8-0.55)}=3 / 25=0.12
\end{aligned}
$$

Putting these values of the Lagrange coefficients in (2), we have

$$
f(0.4) \approx p_{2}(0.4)=(-2 / 25)(-0.1084)+(24 / 25)(-0.1808)+(3 / 25)(-0.1428)=-0.1820
$$

which is the required approximation of the given exact solution $0.36 \ln 0.6 \approx-0.1839$.

To compute number of points we have to use error bound for the quadratic Lagrange interpolation for equally spaced data points as

$$
\left|f(x)-p_{2}(x)\right| \leq \frac{M h^{3}}{9 \sqrt{3}} \leq 10^{-6}
$$

As $h=\frac{b-a}{n}=\frac{0.8-0.3}{n}=\frac{0.5}{n}$, so

$$
\frac{M(0.5)^{3}}{(9 \sqrt{3}) n^{3}} \leq 10^{-6}
$$

Since

$$
M=\max _{0.3 \leq x \leq 0.8}\left|f^{(3)}(x)\right|,
$$

and the first three derivatives are

$$
f^{\prime}(x)=2 x \ln x+x, \quad f^{\prime \prime}(x)=2 \ln x+3, \quad f^{(3)}(x)=\frac{2}{x}
$$

so

$$
M=\max _{0.3 \leq x \leq 0.8}\left|\frac{2}{x}\right|=20 / 3=6.6667 .
$$

Hence

$$
n^{3} \geq \frac{(6.6667)(0.5)^{3}\left(10^{6}\right)}{9 \sqrt{3}}
$$

or

$$
n \geq\left(\frac{(6.6667)(0.5)^{3}\left(10^{6}\right)}{9 \sqrt{3}}\right)^{1 / 3}
$$

which gives

$$
n \geq 37.6709, \quad \text { gives } \quad n=38
$$

and so the number of points is, $n+1=38+1=39$.

