King Saud University: Math. Dept. M-254 Semester II (1st Midterm Makeup Exam) 1439-1440H Max Marks=25 Time Allowed: 90 Mins.

Questions: (5+5+5+5+5)

(1) Which of the following iterations

(i)
$$x_{n+1} = e^{x_n} - x_n - 1$$
, $n \ge 0$ (ii) $x_{n+1} = \ln(2x_n + 1)$, $n \ge 0$

is most suitable to approximate the root of the equation $e^x - 2x = 1$ in the interval [1, 2]? Starting with $x_0 = 1.5$, find the second approximation x_2 of the root. Also, compute the error bound for the approximation.

(2) Successive approximations x_n to the desired root are generated by the scheme

$$x_{n+1} = e^{x_n} - 2, \qquad n \ge 0$$

Find $f(x_n)$ and its derivative $f'(x_n)$ and then use Newton's method to find the first approximation of the root, starting with $x_0 = 10$.

- (3) Derive an iterative scheme to find the cubic root of a number based on Newton's method. Find the first approximation to the cubic root of a = 155, with $p_0 = 5$.
- (4) Show that the iterative procedure for evaluating the reciprocal of a positive number N using the secant method is

$$x_{n+1} = x_n + (1 - N)x_{n-1}, \quad n = 1, 2, \cdots$$

Then use this formula to find the first approximation to the reciprocal of 5 using $x_0 = 0.05$ and $x_1 = 0.1$.

(5) Find the first approximation for the nonlinear system

$$x^3 + 3y^2 = 21$$
$$x^2 + 2y = -2$$

using Newton's method, starting with initial approximation $(x_0, y_0)^T = (1, -1)^T$.