King Saud University: Mathematics Department MAth-254 Second Semester 1445 H **Final Examination** Maximum Marks = 40Time: 180 mins. — I.D. No. – Name of the Student:-- Section No. -Name of the Teacher:-Note: Check the total number of pages are Six (6). (15 Multiple choice questions and Two (2) Full questions) The Answer Tables for Q.1 to Q.15 : Marks: 2 for each one $(2 \times 15 = 30)$ Ps. : Mark {a, b, c or d} for the correct answer in the box. Q. No. 1 2 3 5 6 10 11 12 13 14 15 a,b,c,d | Quest. No. | Marks Obtained | Marks for Questions | |---------------|----------------|---------------------| | Q. 1 to Q. 15 | | 30 | | Q. 16 | | 5 | | Q. 17 | | 5 | | Total | | 40 | | Question 1 | | $=xe^{-x}$ and $x_0=4$, t | hen the first appr | oximation x_1 by Newton's method | |------------|----------------|--|--|--| | (| (a) 3.3333 | (b) 5.3333 | (c) 4.3333 (c) | d) None of these | | Question 2 | | e best iterative form linear equation $1 - \epsilon$ | | proximation of the multiple root of $x_0 = 0.1$ is: | | (8 | a) 0.0980 | (b) 0.0890 | (c) 0.009 | (d) None of these | | Question 3 | | terminant of the Ja $^2 = 1$, $xy = 1$ at the | cobian matrix of e point $(1,1)$ is $-$ | the system of nonlinear equations 4, then the value of α is: | | (a | a) 2 | (b) 3 (c |) 1.5 (d |) None of these | | Question 4 | L is a le | atrix $A = \begin{pmatrix} 3 & 1 \\ 6 & 1 \end{pmatrix}$
ower triangular mat
of the system $L\mathbf{y} =$ | rix, and U is an | U using Doolliitle's method, where upper triangular matrix, then the | | (a | a) $[-1, 6]^t$ | (b) $[-1, -2]^t$ | (c) $[-1, 2]^t$ | (d) None of these | | Question 5 | | near system $2x+y=1$
n matrix T_G is equal | | en the l_{∞} -norm of the Gauss-Seidal | | (a | a) 0.25 | (b) 0.5 (c) |) 0.75 (d) | None of these | | Question 6 | | | | al vector r is 0.005, then the error the linear system A x = $[1, -0.5]^T$ | | (; | a) 0.040 | (b) 0.020 | (c) 0.025 | (d) None of these | | Question 7 | | to points: $(0, f(0))$ and $2\cos x$ at $\pi/2$ by a left | | the approximation of the function olynomial is: | | (a | a) $\pi/2$ | (b) 0.0 | (c) $\pi/4$ | (d) None of these | | Question 8 | : Using da | ta points: $(0,1),(1,$ e approximate value | 2), (2, 3), if $L_0(1$ of $f(1.5)$ by a qu | $L_2(1.5) = -0.125$ and $L_2(1.5) = 0.375$, adratic Lagrange polynomial is: | | (a | 2.5 | (b) 1.5 | (c) 3.5 | (d) None of these | | | | | | | | $\frac{\text{on 10:}}{\text{difference}}$ | $= x^3$ defined on [0.2] formula for the approx | [2, 0.3]. Then absolute roximation of $f'(0.2)$ | e error using the Two-point is: | |--|---|--|--| | (a) 0.12 | (b) 0.07 | (c) 0.19 | d) None of these | | on 11: If $f''(x) = 3$ -point ce | $x^4 f(x)$ and $f(0) = 1$
entral difference form | $f(0.5) = \alpha, f(0.7) = 0$ ula for $f''(x)$, the va | = 1.75, $f(1) = 2$. Then using lue of α is: | | (a) 1.8484 | (b) 1.9999 | (c) 1.4884 | (d) None of these | | $\frac{\mathbf{n} \ \mathbf{12:}}{\mathbf{n} \ \mathbf{12:}} \ \mathbf{1f} \ f(1) = 0$ integration | $0.5, f(1.5) = lpha, f(1.8)$ n rule the value of \int_1^{∞} | f(x) = 1.5, f(2) = 2.5, f(3)
f(x) dx = 3, then | (2.5) = 3 and using the best
the value of α is: | | (a) 1.75 | (b) 1.5 (c) 2 | .25 (d) None | of these | | $\frac{\text{n 13:}}{\text{in the app}} $ | $\frac{1}{1}$ $dx = 0.4055$, then roximation is: | using simple Simpse | on's rule, the absolute error | | (a) 0.0112 | (b) 0.0001 | (c) 0.0025 (d | l) None of these | | solution of | the differential equa | tion is $y(x) = (x+1)$ | $)^2 - 0.5e^x$, then the absolute | | (a) 0.0293 | (b) 0.0392 | (c) 0.0329 | (d) None of these | | | | | lue of $y(0.5)$ using Taylor's | | (a) 1.1331 | (b) 1.1328 | (c) 1.2839 | (d) None of these | | | | | | | | (a) 0.12 on 11: If $f''(x) = 3$ -point certain (a) 1.8484 on 12: If $f(1) = 0$ integration (a) 1.75 on 13: If $\int_{1}^{2} \frac{1}{x+1}$ in the approximation of error by using (a) 0.0293 on 15: Given $4y'$ method of | (a) 0.12 (b) 0.07 On 11: If $f''(x) = x^4 f(x)$ and $f(0) = 1$ 3-point central difference form (a) 1.8484 (b) 1.9999 On 12: If $f(1) = 0.5$, $f(1.5) = \alpha$, $f(1.8)$ integration rule the value of $\int_1^1 f(1) = \int_1^2 \frac{1}{x+1} dx = 0.4055$, then in the approximation is: (a) 0.0112 (b) 0.0001 On 14: For the initial value problem, solution of the differential equal error by using Euler's method (a) 0.0293 (b) 0.0392 On 15: Given $4y' - y = 0$, $y(0) = 1$, method of order two when $n = 1$ | (a) 0.0112 (b) 0.0001 (c) 0.0025 (d) 14: For the initial value problem, y' + x² = y + 1, y(0) solution of the differential equation is y(x) = (x+1) error by using Euler's method for the approximation (a) 0.0293 (b) 0.0392 (c) 0.0329 (b) 0.0392 (c) 0.0329 (c) 0.0329 (d) 0.0293 (d) 0.0392 (e) 0.0329 (e) 0.0392 (f) 0.0329 (f) 0.0392 (f) 0.0329 (g) 0.0392 (f) 0.0329 (h) (h | Question 9: If $f(x) = \frac{3}{x}$ and $f[1, 1, 1, 2] = \alpha$, then α is equal to: (a) 1.5 (b) -1.5 (c) -4.5 (d) None of these Question 16: Let $f(x) = \ln(x+2)$ and $x_0 = 0, x_1 = 0, x_2 = 1, x_3 = 1$, find the best approximation of $\ln(2.5)$ by using the cubic Newton's polynomial. Compute absolute error and the error bound. **Question 17:** The function tabulated below is $f(x) = x \ln x + x$. | x | 0.9000 | 1.3000 | 1.5000 | 1.6000 | 1.9000 | 2.3000 | 2.5000 | 3.1000 | |-----------------------|--------|--------|--------|--------|--------|--------|--------|--------| | $\frac{\omega}{f(x)}$ | 0.8052 | 1.6411 | 2.1082 | 2.3520 | 3.1195 | 4.2157 | 4.7907 | 6.6073 | Find the approximation of $(\ln 1.9 + 2)$ using three-point formula for f'(x) for smaller value of h. Compute the absolute error and the number of subintervals required to obtain the approximate value of $(\ln 1.9 + 2)$ within the accuracy 10^{-2} . ## The Answer Tables for Q.1 to Q.15: Marks: 2 for each one $(2 \times 15 = 30)$ Ps. : Mark {a, b, c or d} for the correct answer in the box (Math 10 12 13 3 5 6 8 9 Q. No. b b C b b C C a a C a a,b,c,d C a C The Answer Tables for Q.1 to Q.15: Marks: 2 for each one $(2 \times 15 = 30)$ | s. : Mai | k {a | , b, c | or d | } for | the c | orrec | t ansv | ver in | n the | box. | MAth | V | | 4 | | |----------|------|--------|------|-------|-------|-------|--------|--------|-------|------|------|----|----|----|----| | Q. No. | 1 | 2 | | | | | 7 | | 9 | 10 | П | 12 | 13 | 14 | 15 | | a,b,c,d | b | a | ь | С | b | a | ь | a | b | b | С | a | ь | a | b | The Answer Tables for Q.1 to Q.15: Marks: 2 for each one $(2 \times 15 = 30)$ | Q. No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |---------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----| | a,b,c,d | С | ь | a | a | c | С | a | b | c | С | a | b | c | c | a | Alvelevant Question 16: Let $f(x) = \ln(x+2)$ and $x_0 = 0, x_1 = 0, x_2 = 1, x_3 = 1$, find the best approximation of ln(2.5) by using the cubic Newton's polynomial. Compute absolute error and the **Solution.** Using $f(x) = \ln(x+2)$ and $x_0 = 0, x_1 = 0, x_2 = 1, x_3 = 1$, and x = 0.5, the cubic Newton's interpolating polynomial has the following form $$p_3(x) = f[x_0] + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + (x - x_0)(x - x_1)(x - x_2)f[x_0, x_1, x_2, x_3].$$ which can be written as $$p_3(0.5) = f(0) + (0.5 - 0)f[0, 0] + (0.5 - 0)(0.5 - 0)f[0, 0, 1] + (0.5 - 0)(0.5 - 0)(0.5 - 1)f[0, 0, 1, 1],$$ Since $f'(x) = \frac{1}{x+2}$, so we find the first, second and third-order divided differences as follows: $$f[0,0] = \frac{f'(0)}{1!} = f'(0) = \frac{1}{0+2} = 0.5.$$ $$f[0,0,1] = \frac{f[0,1] - f'(0)}{1 - 0} = f(1) - f(0) - f'(0) = 1.0986 - 0.6932 - 0.5 = -0.0946.$$ $$f[0,1,1] = \frac{f[1,1] - f[0,1]}{1 - 0} = f'(1) - f(1) + f(0) = 0.3333 - 1.0986 + 0.6932 = -0.0721,$$ $$f[0,0,1,1] = \frac{f[0,1,1] - f[0,0,1]}{1-0} = -0.0721 + 0.0946 = 0.0225.$$ $ln(2.5) \approx p_3(0.5) = ln(2) + (0.5)(0.5) + (0.25)(-0.0946) + (-0.1250)(0.0225) = 0.9167,$ the required approximation of ln(2.5) and $$|f(0.5) - p_3(0.5)| = |\ln(2.5) - p_3(0.5)| = |0.9163 - 0.9167| = 4.0 \times 10^{-4}$$ the possible absolute error in the approximation. Since the error bound for the cubic polynomial $p_3(x)$ is $$|f(0.5) - p_3(0.5)| = \frac{|f^{(4)}(\eta(x))|}{4!} |(0.5 - 0)(0.5 - 0)(0.5 - 1)(0.5 - 1)|.$$ Taking the first four derivatives of the given function, $$f'(x) = \frac{1}{(x+2)}, \quad f''(x) = \frac{-1}{(x+2)^2}, \quad f'''(x) = \frac{2}{(x+2)^3}, \quad f^{(4)}(x) = \frac{-6}{(x+2)^4},$$ and we obtain $$|f^{(4)}(\eta(x))| = \left|\frac{-6}{(\eta(x)+2)^4}\right|, \text{ for } \eta(x) \in (0,1).$$ Since the fourth derivative of the function is decreasing in the interval as $$|f^{(4)}(0)| = 0.375$$ and $|f^{(4)}(1)| = 0.0741$, so $$|f^{(4)}(\eta(x))| \le \max_{0 \le x \le 1} \left| \frac{-6}{(x+2)^4} \right| = 0.375$$ and it gives $$|f(0.5) - p_3(0.5)| \le \frac{(0.0625)(0.375)}{24} = 9.7656 \times 10^{-4}$$ which is the required error bound for the approximation $p_3(0.5)$. Question 17: The function tabulated below is $f(x) = x \ln x + x$. Find the approximation of $(\ln 1.9 + 2)$ using three-point formula for f'(x) for smaller value of h. Compute the absolute error and the number of subintervals required to obtain the approximate value of $(\ln 1.9 + 2)$ within the accuracy 10^{-2} . Solution. Given $f(x) = x \ln x + x$ and $f'(x) = \ln x + 2$, gives x = 1.9. For the given data points we can use all three-points difference formulas with central difference at $$x_0 = 1.5$$, $x_1 = 1.9$, $x_2 = 2.3$, gives $h = 0.4$, for forward difference at $$x_0 = 1.9$$, $x_1 = 2.5$, $x_2 = 3.1$, gives $h = 0.6$, and for backward difference at $$x_0 = 1.3$$, $x_1 = 1.6$, $x_2 = 1.9$, gives $h = 0.3$. So the value of h = 0.3 for the backward difference formula is smaller than both the other formulas. Thus the best three-point formula for the smaller h in this case is the following backward difference formula $$f'(x_2) \approx \frac{f(x_2-2h)-4f(x_2-h)+3f(x_2)}{2h} = D_h f(x_2).$$ Thus using $x_2 = 1.9$ and h = 0.3, gives $x_2 - h = 1.6$, and $x_2 - 2h = 1.3$, we have $$f'(1.9) \approx \frac{f(1.3) - 4f(1.6) + 3f(1.9)}{2(0.3)},$$ $$f'(1.9) \approx \frac{[(1.6411) - 4(2.3520) + 3(3.1195)]}{0.6} = 2.6527.$$ Since the exact value of the derivative f'(1.9) is, 2.6419, therefore, the absolute error |E| can be computed as follows $$|E| = |f'(1.9) - D_h f(1.9)| = |2.6419 - 2.6527| = 0.0108.$$ The first three derivatives of the given function are as follows $$f'(x) = \ln x + 2,$$ $f''(x) = \frac{1}{x},$ $f''(x) = \frac{-1}{x^2}.$ Thus $$M = \max_{1.3 \le x \le 1.9} \left| \frac{-1}{x^2} \right| = \frac{1}{(1.3)^2} = 0.5917.$$ Since the error bound formula of backward difference formula is $$|E_B(f,h)| \leq \frac{h^2}{3}M,$$ and using the given accuracy required 10-2, we have $$\frac{h^2}{3}M \le 10^{-2}.$$ Then Then $$\frac{h^2}{3}(0.5917) \le 10^{-2}, \qquad \text{gives} \qquad h \le \sqrt{\frac{3 \times 10^{-2}}{0.5917}} = 0.2252.$$ Since $n = \frac{(1.9 - 1.3)}{0.2252} = 2.6643$ and so $n = 3$.