King Saud University
Department of Mathematics
1st Semester 1433-1434 H

MATH 253-MATH 352 (Numerical Analysis)
2nd Midterm Exam
Duration: 90 Minutes

Student's Name	Student's ID	Group No.	Lecturer's Name

Question No.	I	II	III	Total
Mark				

[I] Determine whether the following is True or False. Justify your answer.
(1) In Newton forward difference formula $P_{n}(x)=\sum_{k=0}^{n}\binom{s}{k} \triangle^{k} f\left(x_{0}\right), \triangle^{2} f\left(x_{0}\right)$ equals $f\left[x_{0}, x_{1}, x_{2}\right]$.
\qquad
(2) Simpson's rule for numerical integration gives exact result when applied to $f(x)=\frac{x^{4}+\sqrt{2} x^{2}}{x}$.
(3) Using the Composite Trapezoidal Rule with $n=4$, the integral $\int_{0}^{2} x^{3} d x$ is approximated by 4.25 .
(4) If the composite midpoint rule is used to compute $\int_{0}^{2} 3 x^{2} d x$ with an error of at most 10^{-3}, then the minimum number of subintervals needed is 12 .
[II] Use Lagrange interpolating polynomials of degree 2 to approximate $f(1.25)$, where $f(1.1)=0.4860, f(1.2)=0.8616$ and $f(1.3)=1.598$.

OVER
[III] Use the data in the following table to answer all parts of this question.

x	0.1	0.2	0.3	0.4	0.5
$f(x)$	1.01005	1.04081	1.09417	1.17351	1.28402

(a) Approximate $f(0.25)$ using Newton's forward divided difference formula with 3 points.
(b) If you know that $f(x)=e^{x^{2}}$, find the absolute error of your approximation in (a).
(c) Approximate $f^{\prime \prime}(0.3)$ using a 3 -point formula.
(d) Compute the composite Simpson's approximation for $\int_{0.1}^{0.5} e^{x^{2}} d x$ with $n=4$.

