

King Saud University Department of Mathematics 1st Semester 1433-1434 H

Student's Name	Student's ID	Group No.	Lecturer's Name	

Question No.	Ι	II	III	Total
Mark				

[I] Determine whether the following is **True** or **False**. **Justify** your answer.

(1) In Newton forward difference formula
$$P_n(x) = \sum_{k=0}^n \binom{s}{k} \Delta^k f(x_0), \Delta^2 f(x_0)$$
 equals $f[x_0, x_1, x_2]$. ()

(2) Simpson's rule for numerical integration gives exact result when applied to $f(x) = \frac{x^4 + \sqrt{2}x^2}{x}$. ()

(4) If the composite midpoint rule is used to compute $\int_0^2 3x^2 dx$ with an error of at most 10^{-3} , then the minimum number of subintervals needed is 12. ()

[II] Use Lagrange interpolating polynomials of degree 2 to approximate f(1.25), where f(1.1) = 0.4860, f(1.2) = 0.8616 and f(1.3) = 1.598.

)

[III] Use the data in the following table to answer all parts of this question.

ſ	x	0.1	0.2	0.3	0.4	0.5
	f(x)	1.01005	1.04081	1.09417	1.17351	1.28402

- (a) Approximate f(0.25) using Newton's forward divided difference formula with 3 points.
- (b) If you know that $f(x) = e^{x^2}$, find the absolute error of your approximation in (a).
- (c) Approximate f''(0.3) using a 3-point formula.
- (d) Compute the composite Simpson's approximation for $\int_{0.1}^{0.5} e^{x^2} dx$ with n = 4.