

King Saud University Department of Mathematics 1st Semester 1433-1434 H

(

(

)

)

Question No. I	TT	III	Total	
Mark			1000	

[I] Determine whether the following is **True** or **False**. **Justify** your answer.

(1) $p^* = 3.141$ approximates π to four significant digits.

(2) The sequence $\alpha_n = \frac{2n^2 + 4n}{(n+1)^2}$ satisfies that $\alpha_n = 2 + O\left(\frac{1}{n^2}\right)$.

(3) The minimum number of iterations needed to solve cosx - x = 0 on $\left[0, \frac{\pi}{4}\right]$ using the Bisection method with accuracy 10^{-4} is 13.

(4) For $g(x) = \sqrt{\frac{5}{x+2}}$ on [1,2], the convergence of $p_n = g(p_{n-1})$ is guaranteed.

(5) 1 is a simple root of $f(x) = x^2 - 2x + 1$.

(6) The sequence $p_n = \frac{1}{e^n}$ converges linearly to zero.

()

()

)

(

- **[II]** Let $f(x) = x^3 20$. For $p_0 = 3.5$ and $p_1 = 2$,
 - (1) find p_2 using the secant method and compute the absolute error.
 - (2) find p_3 using the method of False Position and compute the relative error.

[III] Use Newton's method to find a root of $x^3 - 2x^2 - 2$ on [2, 3] with accuracy 10^{-2} .