King Saud University
Department of Mathematics
1st Semester 1433-1434 H

MATH 253-MATH 352 (Numerical Analysis)
1st Midterm Exam
Duration: 90 Minutes

Student's Name	Student's ID	Group No.	Lecturer's Name

Question No.	I	II	III	Total
Mark				

[I] Determine whether the following is True or False. Justify your answer.
(1) $p^{*}=3.141$ approximates π to four significant digits.
(2) The sequence $\alpha_{n}=\frac{2 n^{2}+4 n}{(n+1)^{2}}$ satisfies that $\alpha_{n}=2+O\left(\frac{1}{n^{2}}\right)$.
(3) The minimum number of iterations needed to solve $\cos x-x=0$ on $\left[0, \frac{\pi}{4}\right]$ using the Bisection method with accuracy 10^{-4} is 13 .
(4) For $g(x)=\sqrt{\frac{5}{x+2}}$ on $[1,2]$, the convergence of $p_{n}=g\left(p_{n-1}\right)$ is guaranteed.
(5) 1 is a simple root of $f(x)=x^{2}-2 x+1$.
(6) The sequence $p_{n}=\frac{1}{e^{n}}$ converges linearly to zero.
[II] Let $f(x)=x^{3}-20$. For $p_{0}=3.5$ and $p_{1}=2$,
(1) find p_{2} using the secant method and compute the absolute error.
(2) find p_{3} using the method of False Position and compute the relative error.
[III] Use Newton's method to find a root of $x^{3}-2 x^{2}-2$ on [2,3] with accuracy 10^{-2}.

