

Student's Name	Student's ID	Group No.	Lecturer's Name	

Question No.	Ι	II	III	IV	Total
Mark					

[I] Determine whether the following is **True** or **False**. Justify your answer.

(1) The vector
$$\mathbf{b} = \begin{bmatrix} 5\\6 \end{bmatrix}$$
 is in the column space of $A = \begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix}$. ()

(2) $S = \{(1,0,0), (0,2,0), (1,-2,0)\}$ spans R^3 . ()

(3) The solution space of the system $A\mathbf{x} = \mathbf{0}$ is a plane through the origin, where $A = \begin{bmatrix} 1 & -3 & 1 \\ 2 & -6 & 2 \\ 3 & -9 & 3 \end{bmatrix}$. ()

(4) The coordinate vector $(p(x))_S$ of $p(x) = 2 - x + 3x^2$ with respect to the basis $S = \{1 + x, 1 - x, x^2\}$ of P_2 is (2, -1, 3).

(5) $W = \{A = [a_{ij}]_{n \times n} : A^T = -A\}$ is a subspace of M_{nn} . ()

[II] Choose the correct answer.

(1) The vectors $\mathbf{v_1} = (0, 3, 1, -1)$, $\mathbf{v_2} = (6, 0, 5, 1)$ and $\mathbf{v_3} = (4, -7, 1, 3)$ are

(a) Linearly independent	(b) Linearly dependent	(c) None
--------------------------	------------------------	----------

(2) If $\mathbf{u} = (4, 1, 2, 2)$, $\mathbf{v} = (0, 2, 1, -2)$ and $\mathbf{w} = (3, 1, 2, 2)$ then $\| -2\mathbf{u} \| + \| 2\mathbf{v} \|$ and $\| \frac{1}{\|\mathbf{w}\|} \mathbf{w} \|$ are respectively (a) -4 and $3\sqrt{2}$ (b) -4 and 1 (c) 16 and 1 (d) None

- (3) If V is a vector space with a basis S = {v₁, v₂, v₃, v₄}, then
 (a) dim(V) < 4 (b) S is linearly dependent (c) dim(V) = 4 and {v₁, v₂, v₃} does not span V (d) None
- (4) If A = [a_{ij}]_{4×6} with rank(A) = 2, then
 (a) nullity(A^T) = 2
 (b) The number of parameters in the general solution of A**x** = **b** is 3
 (c) None
- (5) If $\mathbf{f_1} = 1$, $\mathbf{f_2} = e^x$ and $\mathbf{f_3} = e^{2x}$, then $\{\mathbf{f_1}, \mathbf{f_2}, \mathbf{f_3}\}$ (a) Form a linearly independent set in $C^2(-\infty, \infty)$ (b) Form a linearly dependent set in $C^2(-\infty, \infty)$ (c) None

[III] For
$$A = \begin{bmatrix} 1 & 0 & -1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 1 \end{bmatrix}$$
, find

(1) A basis for each of the row space of A, the column space of A, and the nullspace of A.

(2) A basis of the row space of A consisting entirely of row vectors in A.

[IV]

(1) Determine if the set of all real pairs (x, y) with operations (x, y) + (x', y') = (xx', yy') and k(x, y) = (kx, ky) form a vector space or not. Justify your answer.

(2) Show that $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$, where $\mathbf{v_1} = (2, 0, -1), \mathbf{v_2} = (4, 0, 7)$ and $\mathbf{v_3} = (-1, 1, 4)$, form a basis for \mathbb{R}^3 .