

Name:	Student No.:
Section / Group No.:	Sequence No.:

Question No.	I	II	III	IV	v	Total
Mark						

I. Determine whether the following statements are always true or sometimes false, and justify your answer with a logical argument or a counter example:

(a) If <i>A</i> and <i>B</i> are two squeen in the squeen in the squeen in the squeen in the squeen is the squ	uare matrices of the same size with $det(AB) = 0$ then $det(A) = 0$. False
(h) T(r, y) = (0, 0) define	\mathbb{D}_{2} = \mathbb{D}_{2} but $T(x,y) = (1,1)$ does not
Justification:	False
(c) If A is a square matrix U True Justification:	whose entries are all integers and det $(A) = 1$ then all the entries of A^{-1} are integers. False
 (c) If A is a square matrix True Justification: (d) If u and v are two ve 	whose entries are all integers and det $(A) = 1$ then all the entries of A^{-1} are integers. False rectors in \mathbb{R}^n such that $ u - v = 0$ then $u = v$.
 (c) If A is a square matrix True Justification: (d) If u and v are two ve True Justification: 	whose entries are all integers and det $(A) = 1$ then all the entries of A^{-1} are integers. False ectors in \mathbb{R}^n such that $ u - v = 0$ then $u = v$. False

(e) If A is a 3×3 matrix	with det $(A) = k$, k scalar, then det $(AdjA) = \frac{1}{k}$.
True Justification:	False
(f) If u and v are two ve	ctors in \mathbb{R}^n such that $\boldsymbol{u} \cdot \boldsymbol{v} = 0$ then $\ \boldsymbol{\mu} + \boldsymbol{v}\ + \ \boldsymbol{\mu} - \boldsymbol{v}\ = 0$.
(f) If <i>u</i> and <i>v</i> are two ve True Justification:	ctors in \mathbb{R}^n such that $\boldsymbol{u} \cdot \boldsymbol{v} = 0$ then $\ \boldsymbol{\mu} + \boldsymbol{v}\ + \ \boldsymbol{\mu} - \boldsymbol{v}\ = 0$. False
(f) If <i>u</i> and <i>v</i> are two ve True Justification:	ctors in \mathbb{R}^n such that $\boldsymbol{u} \cdot \boldsymbol{v} = 0$ then $\ \boldsymbol{u} + \boldsymbol{v}\ + \ \boldsymbol{u} - \boldsymbol{v}\ = 0$. False
(f) If <i>u</i> and <i>v</i> are two ve	ctors in \mathbb{R}^n such that $u \cdot v = 0$ then $ u + v + u - v = 0$. False

II. Choose the correct answer:

(a) If $A = \begin{bmatrix} k - 1 & -2 \\ -6 & k - 2 \end{bmatrix}$, then A is not invertible if:			
i. $k = 1$ or $k = 2$.	ii. $k = -1$ or $k = -4$.		
iii. $k = -2$ or $k = 5$.	iv. $k = 3$ or $k = 8$.		
(b) If $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x, y) = (x + 2y, -x + y)$ is a one to one linear operator then $[T^{-1}]$ is equal to:			
i. $\begin{bmatrix} -1 & 2 \\ -1 & -1 \end{bmatrix}$.	ii. $\begin{bmatrix} \frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix}$.		
iii. $\begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ -\frac{1}{3} & \frac{1}{3} \end{bmatrix}$.	iv. $\begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$.		
(c) If u and v are two orthogonal vectors in \mathbb{R}^n such that $\ u\ = \ v\ = 3$ then $d(u, v)$ is equal to:			
i. 9.	ii. 18.		
iii. 0.	iv. $3\sqrt{2}$.		

-

(d) In \mathbb{R}^2 , the standard matrix of a reflection about the x-axis followed by a rotation through an angle θ is:i. $\begin{bmatrix} -\cos \theta & -\sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$.ii. $\begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$.iii. $\begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$.(e) For any vector \boldsymbol{u} in \mathbb{R}^n and any scalar k, if $\|k\boldsymbol{u}\| = -k \|\boldsymbol{\mu}\|$ then:i. $k \ge 0$.iii. $k \ne 0$.

III. Use row operations and cofactor expansion to evaluate det(A) where:

 $A = \begin{bmatrix} 0 & 2 & 5 & 2 \\ -1 & 0 & -2 & 0 \\ 3 & -1 & -3 & 2 \\ 6 & 0 & 10 & 0 \end{bmatrix}$

IV. Use Cramer's rule to solve for x_2 without solving for x_1 , x_3 , and x_4 . $2x_2 + 5x_3 + 2x_4 = -15$

V. Determine whether the linear operator $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by the equations is one to one; if so, find the standard matrix for the inverse operator, and find $T^{-1}(w_1, w_2, w_3)$.

w 1	=	x_1	-	$2x_2$	+	x_3
w 2	=	$2x_1$	+	x_{2}	+	x_3
w ₃	=	x_1			+	x_3