Name:	Student No.:
Section / Group No.:	Sequence No.:

Question No.	I	II	III	IV	V	Total
Mark						

I. Determine whether the following statements are always true or sometimes false, and justify your answer with a logical argument or a counter example:
(a) If A and B are two square matrices of the same size with $\operatorname{det}(A B)=0$ then $\operatorname{det}(A)=0$.
\qquad
TrueFalse Justification:
(b) $T(x, y)=(0,0)$ defines a linear operator on \mathbb{R}^{2} but $T(x, y)=(1,1)$ does not.False Justification:
(c) If A is a square matrix whose entries are all integers and $\operatorname{det}(A)=1$ then all the entries of A^{-1} are integers.
False Justification:
(d) If \boldsymbol{u} and \boldsymbol{v} are two vectors in \mathbb{R}^{n} such that $\|\boldsymbol{u}-\boldsymbol{v}\|=0$ then $\boldsymbol{u}=\boldsymbol{v}$.
 False Justification:
(e) If A is a 3×3 matrix with $\operatorname{det}(A)=k, k$ scalar, then $\operatorname{det}(\operatorname{Adj} A)=\frac{1}{k}$.
\square False Justification:
(f) If \boldsymbol{u} and \boldsymbol{v} are two vectors in \mathbb{R}^{n} such that $\boldsymbol{u} \boldsymbol{v}=0$ then $\|\boldsymbol{u}+\boldsymbol{v}\|+\|\boldsymbol{u}-\boldsymbol{v}\|=0$.
\square True Justification:

II. Choose the correct answer:

(a) If $A=\left[\begin{array}{cc}k-1 & -2 \\ -6 & k-2\end{array}\right]$, then A is not invertible if:
i. $k=1 \quad$ or $k=2$.
ii. $k=-1$ or $k=-4$.
iii. $k=-2$ or $k=5$.
iv. $k=3$ or $k=8$.
(b) If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y)=(x+2 y,-x+y)$ is a one to one linear operator then $\left[T^{-1}\right]$ is equal to:
i. $\left[\begin{array}{cc}-1 & 2 \\ -1 & -1\end{array}\right]$.
ii. $\left[\begin{array}{cc}1 / 3 & -2 / 3 \\ 1 / 3 & 1 / 3\end{array}\right]$.
iii. $\left[\begin{array}{cc}1 / 3 & 2 / 3 \\ -1 / 3 & 1 / 3\end{array}\right]$.
iv. $\left[\begin{array}{cc}1 & -2 \\ 1 & 1\end{array}\right]$.
(c) If \boldsymbol{u} and \boldsymbol{v} are two orthogonal vectors in \mathbb{R}^{n} such that $\|\boldsymbol{u}\|=\|\boldsymbol{v}\|=3$ then $d(\boldsymbol{u}, \boldsymbol{v})$ is equal to:
i. 9 .
ii. 18 .
iii. 0 .
iv. $3 \sqrt{2}$.
(d) In \mathbb{R}^{2}, the standard matrix of a reflection about the x-axis followed by a rotation through an angle θ is:
i. $\left[\begin{array}{cc}-\cos \theta & -\sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$.
ii. $\left[\begin{array}{cc}-\cos \theta & \sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$.
iii. $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]$.
iv. $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta\end{array}\right]$.
(e) For any vector \boldsymbol{u} in \mathbb{R}^{n} and any scalar k, if $\|k \boldsymbol{u}\|=-k\|\boldsymbol{u}\|$ then:
i. $k \geq 0$.
ii. $k \leq 0$.
iii. $k \neq 0$.
iv. None of the above.
III. Use row operations and cofactor expansion to evaluate $\operatorname{det}(A)$ where:

$$
A=\left[\begin{array}{cccc}
0 & 2 & 5 & 2 \\
-1 & 0 & -2 & 0 \\
3 & -1 & -3 & 2 \\
6 & 0 & 10 & 0
\end{array}\right]
$$

IV. Use Cramer's rule to solve for x_{2} without solving for x_{1}, x_{3}, and x_{4}.

$$
\begin{aligned}
& 2 x_{2}+5 x_{3}+2 x_{4}=-15 \\
& x_{1}+2 x_{3} \quad=-6 \\
& 3 x_{1}-x_{2}-3 x_{3}+2 x_{4}=9 \\
& 6 x_{1}+10 x_{3}=-30
\end{aligned}
$$

V. Determine whether the linear operator $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by the equations is one to one; if so, find the standard matrix for the inverse operator, and find $T^{-1}\left(w_{1}, w_{2}, w_{3}\right)$.

$$
\begin{aligned}
& w_{1}=x_{1}-2 x_{2}+x_{3} \\
& w_{2}=2 x_{1}+x_{2}+x_{3} \\
& w_{3}=x_{1}+x_{3}
\end{aligned}
$$

