King Saud University

College of Science

244 Math

First Midterm Exam

Department of Mathematics

1 1/2 Hours

Name:	Student No.:
Section / Group No.:	Sequence No.:

Question No.	I	ll(a)	ll(b)	ll(c)	ll(d)	III	IV	V	Total
Mark									

I. Determine whether the following statements are always true or sometimes false, and justify your answer with a logical argument or a counter example:

(a) Let A and B be two square matrices such that $AB = \mathbf{0}$. If A is invertible then $B = \mathbf{0}$.

True	False
Justification:	

(b) If tr(A) = 0, then A is not invertible. True False Justification:

(c) If A and B are two $n \times n$ matrices, then

 $(A + B)(A - B) = A^2 - B^2$.

Justification:		
(f) The equation $\sqrt{2}$	$\overline{2x_1} - 6x_2 + 3x_3 = \pi$ i	s a linear equation.
True	False	

False

True Justification:

True

(a) If
$$A^{3} = \begin{bmatrix} 8 & 0 & 0 \\ 0 & -27 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
 then A^{2} is equal to:
i. $\begin{bmatrix} 8 & 0 & 0 \\ 0 & 27 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
ii. $\begin{bmatrix} 2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.
iii. $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
iv. $\begin{bmatrix} 4 & 0 & 0 \\ 0 & -9 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.

(b) If
$$A = \begin{bmatrix} 1 & 4 \\ 2 & 6 \end{bmatrix}$$
 then A^{-2} is equal to:
i. $\begin{bmatrix} -3 & 2 \\ 1 & -\frac{1}{2} \end{bmatrix}$.
ii. $\begin{bmatrix} 11 & -7 \\ -\frac{7}{2} & \frac{9}{4} \end{bmatrix}$.
iii. $\begin{bmatrix} 9 & 28 \\ 14 & 44 \end{bmatrix}$.
iv. $\begin{bmatrix} 6 & -4 \\ -2 & 1 \end{bmatrix}$.

(c) The homogeneous system of linear equations:

 $5x_1 - x_2 + x_3 = 0$ $x_1 - 2x_2 - x_3 = 0$

has:

i. No solution.	ii. One solution.
iii. Three solutions.	iv. Infinitely many solutions.

(d) If
$$A = \begin{bmatrix} x & y \\ y & x \end{bmatrix}$$
, then A is invertible if:

i.
$$x = y$$
 and $x \neq 0$.ii. $x \neq y$ or $x \neq -y$.iii. $x \neq 0$ and $y \neq 0$.iv. $x \neq y$ and $x \neq -y$.

III. Solve the following system by Gaussian elimination:

IV. What conditions must b_1 , b_2 , and b_3 satisfy in order for the following system of linear equations to be consistent:

 V. Let A be the matrix

$$A = \begin{bmatrix} 1 & 0 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{bmatrix}$$

Determine whether $\boldsymbol{A}\;$ is invertible, and if so, find its inverse?

Good Luck