

**KING SAUD UNIVERSITY
COLLEGE OF SCIENCES
DEPARTMENT OF MATHEMATICS**

Semester 461 / MATH-244 (Linear Algebra) / Mid-term Exam 2

Max. Marks: 25

Max. Time: $1\frac{1}{2}$ hrs.

Note: Scientific calculators are not allowed.

Question 1: [Marks: 1+1+1+1+1]

Which of the given choices are correct?

- (i) Let $A = \{u_1, u_2, u_3, u_4\}$ is a subset of \mathbb{R}^3 . Then the set A must be:

a) a subspace of \mathbb{R}^3 b) linearly dependent c) linearly independent d) a basis of \mathbb{R}^3 .

- (ii) For the matrix $M = \begin{bmatrix} 1 & -2 & 0 & 3 & -4 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$, which of the following statements is true?

a) $\text{nullity}(M) = 2$ b) $\text{rank}(M) = 3$ c) $\text{nullity}(M) = 3$ d) $\text{rank}(M) = 0$.

- (iii) Let $B = \{(1,0,0,1), (-1,1,0,1), (0,0,1,1)\}$ and $C = \{v_1, v_2, v_3\}$ be two ordered bases for a vector

subspace of the Euclidean space \mathbb{R}^4 . If ${}_B P_C = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 1 & 1 \\ 2 & 0 & 0 \end{bmatrix}$ is the transition matrix from C to B ,

then the vector v_3 is equal to:

a) (1,1,0) b) (2,0,0) c) (2,0,0,2) d) (0,1,0,2).

- (iv) Let u and v be any two vectors in a real inner product space $(V, \langle \cdot, \cdot \rangle)$ such that $\|u\| = 3 = \|v\|$.

Which of the following statements is true?

a) $|\langle u, v \rangle| \leq 6$ b) $|\langle u, v \rangle| > 6$ c) $|\langle u, v \rangle| > 9$ d) $|\langle u, v \rangle| \leq 9$.

- (v) Let $W = \{w_1, w_2, w_3, w_4, w_5\}$ be an orthogonal set of nonzero vectors in an inner product space E of dimension 5. Then W must be:

a) a basis for E b) a subspace of E c) equal to E d) linearly dependent.

Question 2: [Marks: 3 + 3 + 4]

- (a) Show that $F = \{(x, y, z) \in \mathbb{R}^3; x - y + z = 0, 2x + y - z = 0, x + y + z = 0\}$ is a vector subspace of \mathbb{R}^3 .

- (b) Show that $V = \left\{ \begin{bmatrix} 0 & 2x - y \\ x & y \end{bmatrix} : x, y \in \mathbb{R} \right\}$ is a real vector space under usual addition and scalar multiplication of matrices. Also find $\dim(V)$.

- (c) Let $G = \{(0,0,3,3), (1,0,0,1), (-1,1,0,1), (0,0,1,1)\} \subseteq \mathbb{R}^4$. Find a basis B for $\text{span}(G)$ with $B \subseteq G$ and then find a basis C for \mathbb{R}^4 such that $B \subseteq C$.

Question 3: [Marks: 4 + 3 + 3]

- (a) Let $B = \{(0,1,1), (1,1,0), (1,0,1)\}$ and $C = \{(1,1,0), (1,0,2), (1,1,1)\}$ be two ordered bases for the Euclidean space \mathbb{R}^3 and $[v]_C = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$. Then construct the transition matrix ${}_B P_C$ from basis C to B , and then find the coordinate vector $[v]_B$.

- (b) Consider the vector space $M_2(\mathbb{R})$ of 2×2 real matrices with the inner product:

$$\langle A, B \rangle := \text{trace}(AB^T), \forall A, B \in M_2(\mathbb{R}).$$

- If $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, then compute the angle θ between the matrices A and B .

- (c) Let x and y be nonzero orthogonal vectors in an inner product space. Then show that $\{x, y\}$ is linearly independent and $\|x + y\|^2 = \|x\|^2 + \|y\|^2$.

***!