Gene Therapy (II)

Dr. Aws Alshamsan Department of Pharmaceutics Office: AA87 Tel: 4677363 <u>aalshamsan@ksu.edu.sa</u>

Objectives of this lecture

By the end of this lecture you will be able to:

- 1. Describe the different strategies for gene therapy
- 2. Select the suitable strategy based on the clinical case
- 3. Understand the complexity of clinical application of gene therapy
- 4. Evaluate proposed strategies according to the therapeutic need

Gene Therapy Strategies

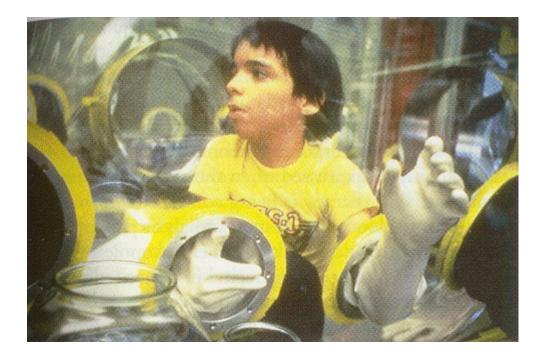
•Replacement of a missing or defective gene

 Introduction of gene(s) to influence cellular process

Interference with gene products

Replacement strategy

- Applies to diseases caused by single gene defects
- Transfer of a functional copy of the defective or missing gene
- Examples: enzyme deficiencies


Replacement strategy

- To apply this strategy, three requirements must be met:
 - 1. The specific gene defect must be known
 - 2. A functional copy of the gene must be available
 - Target cells must be available and amenable to transfection methods resulting in longterm expression

Replacement strategy

Gene with defect	Disease/Disorder
Adenosine deaminase (ADA)	SCID
lpha-1-antitrypsin	Emphysema
CF transmembrane regulator	Cystic fibrosis
Clotting factor VIII	Hemophilia A
Clotting factor IX	Hemophilia B
β -chain of hemoglobin	Sickle cell anemia

David Phillip Vetter (September 21, 1971 – February 22, 1984)

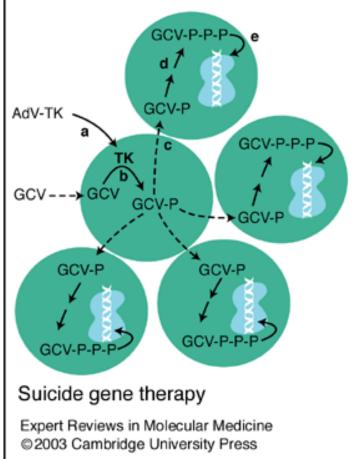
Gene therapy trial

- First clinical trial in gene therapy was initiated in September 14, 1990
- Hematopoietic stem cells were isolated from the patient (4 y/o girl) and transduced with retroviral vector containing ADA gene
- 25% recovery of normal ADA in patient T cells

Why was ADA suitable?

- Single gene defect
- Gene was isolated and cloned in 1983
- HSC are easy to obtain and maintain *in vitro*

Influence strategy


- Applies to complex disorders were more than one gene is involved
- Based on *in vitro* cloning of human genes that were derived from human tissue
- Examples: cancer

Areas of investigation

- Enhancement of anti-tumor response
- Introduction of drug-resistance genes
- Introduction of drug-sensitivity genes
- Replacement of tumor suppressor genes

Introduction of drugsensitivity genes

- Suicide gene therapy
- Gene that converts non-toxic prodrug into a toxic metabolite
- Bystander effect
- Gancyclovir triphosphate
- Problem: it can transfect normal cells too

Now you are able to:

- Describe the different strategies for gene therapy
- ✓ Select the suitable strategy based on the clinical case
- Understand the complexity of clinical application of gene therapy
- Evaluate proposed strategies according to the therapeutic need