

College Physics

A Strategic Approach

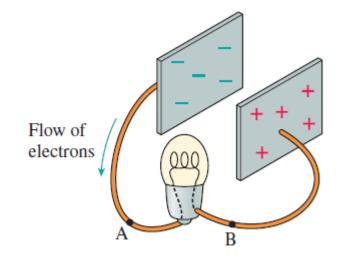
THIRD EDITION

Randall D. Knight • Brian Jones • Stuart Field

Lecture Presentation

Chapter 22 Current and

Resistance


Chapter 22 Current and Resistances

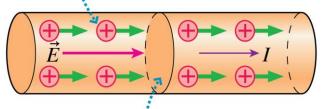
Section 22.1 A Model of Current Section 22.2 Defining and Describing Current Section 22.5 Ohm's Law and Resistor Circuits

Section 22.1 A Model of Current

The Flow of electrons

The current at point B is *exactly equal* to the current at point A.

Section 22.2 Defining and Describing Current


© 2016 Pearson Education, Ltd.

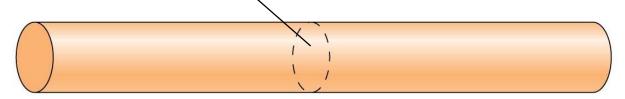
Definition of Current

• The electric current is defined as the amount of charge Δq transferred through a cross-sectional area of the wire in time interval Δt . The current *I* is due to the motion

$$I = \frac{\Delta q}{\Delta t}$$

Definition of current

The current I is due to the motion of charges in the electric field.



We imagine an area across the wire through which the charges move. In a time Δt , charge Δq moves through this area.

- The SI unit of current is the ampere (A).
- 1 A = 1 C/s

QuickCheck 22.2

Every minute, 120 C of charge flow through this cross section of the wire.

The wire's current is

- A. 240 A
- B. 120 A
- C. 60 A
- D. 2A
- E. Some other value

Example 22.2 Charge flow in a lightbulb

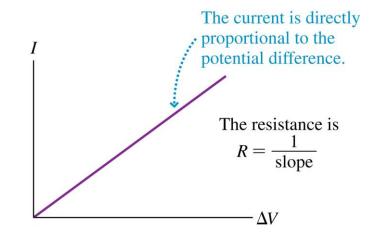
A 100 W lightbulb carries a current of 0.83 A. How much charge flows through the bulb in 1 minute?

SOLVE According to Equation 22.2, the total charge passing through the bulb in 1 min = 60 s is

 $q = I \Delta t = (0.83 \text{ A})(60 \text{ s}) = 50 \text{ C}$

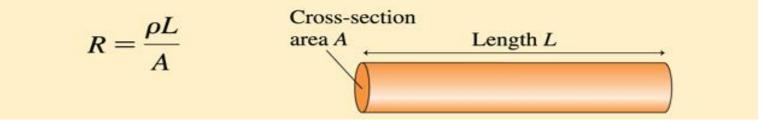
Section 22.5 Ohm's Law and Resistor Circuits

© 2016 Pearson Education, Ltd.


Ohm's Law and Resistor Circuits

• Ohm's Law describes the relationship between the potential difference across a conductor and the current passing through it:

$$I = \frac{\Delta V}{R}$$


Ohm's law for a conductor of resistance R

• The current through an ohmic material is directly proportional to the potential difference.

Resistance

The **resistance** is a property of a particular wire or conductor. The resistance of a wire depends on its resistivity and dimensions.

- ρ : resistivity in Ω .m
 - l: length of conductor in m
- A : cross-sectional area of conductor in m^2

Resistivities of materials

Material	Resistivity $(\mathbf{\Omega} \cdot \mathbf{m})$
Copper	$1.7 imes10^{-8}$
Aluminum	$2.7 imes10^{-8}$
Tungsten (20°C)	$5.6 imes10^{-8}$
Tungsten (1500°C)	$5.0 imes10^{-7}$
Iron	$9.7 imes10^{-8}$
Nichrome	$1.5 imes10^{-6}$
Seawater	0.22
Blood (average)	1.6
Muscle	13
Fat	25
Pure water	$2.4 imes 10^5$
Cell membrane	$3.6 imes 10^7$

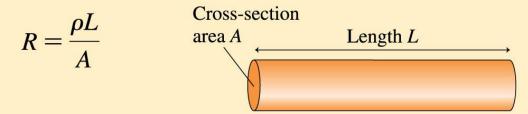
Problems

What is the current produced with a 10 volt battery through a resistance of a 100 ohms?

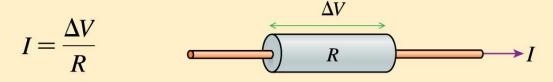
$$I = \frac{\Delta V}{R} = \frac{10}{100} = 0.1 \,A$$

What is the resistance of a wire made of a material with a resistivity of $3.20 \times 10^{-8} \Omega$.m if its length is 3.50 m and its diameter is 0.50 mm?

$$R = \frac{\rho l}{A} = \frac{3.20 \times 10^{-8} \times 3.50}{\pi \left(\frac{0.50 \times 10^{-3}}{2}\right)^2} = 0.57 \ \Omega$$


Summary: Important Concepts

Resistance, resistivity, and Ohm's law


The **resistivity** ρ is a property of a material, a measure of how good a conductor the material is.

- Good conductors have low resistivity.
- Poor conductors have high resistivity.

The **resistance** is a property of a particular wire or conductor. The resistance of a wire depends on its resistivity and dimensions.

Ohm's law describes the relationship between potential difference and current in a resistor:

