Lecture 6

Calculation of doses

Dose: is the amount of drug to be taken by a patient for the intended medicinal effect.

The dose may be expressed as a:

- Single dose: refers to the amount that taken at one time.
- **Daily dose**: refers to the amount taken per day (it may be subdivided and taken in divided doses, two or more times per day).
- **Total dose**: refers to the amount taken during the time-course therapy

Dose regimen: means the schedule of dosing (e.g. three times daily for five days).

The dose of a drug is based on:

- Biochemical and pharmacological activity of the drug.
- Physicochemical property of the drug.
- The dosage form.
- The route of administration.
- The patient.

Minimum effective concentration (MEC): is the minimum concentration that can be expected to produce the drug's desired effects.

Minimum toxic concentration (MTC): is the base level of blood serum concentration that produces dose-related toxic effect.

Loading or priming dose: is the dose that is larger than the usual initial dose and is required to achieve the desired blood drug level.

TABLE 7.1	SELECTED ROUTES OF ADMINISTRATION AN	ND			
REPRESENTATIVE DOSAGE FORMS					

ROUTE OF ADMINISTRATION	REPRESENTATIVE DOSAGE FORMS		
Oral (mouth, GI tract)	Tablets, capsules, lozenges, solutions, drops, syrups, and suspensions		
Sublingual (under the tongue)	Tablets		
Parenteral (injection)	Solutions and suspensions		
Epicutaneous/ Transdermal (skin)	Ointments, creams, powders, lotions, aerosols, and patches		
Conjunctival (eye)	Solutions, suspensions, and ointments		
Intranasal (nose)	Solutions, sprays, and ointments		
Intrarespiratory (lungs)	Aerosols and inhalant solutions		
Rectal (rectum)	Ointments, creams, suppositories, solutions, and suspensions		
Vaginal (vagina)	Ointments, creams, tablets, suppositories, gels, solutions, and emulsion foams		
Urethral (urethra)	Solutions and suppositories		

Calculation the number of doses

Number of doses = $\frac{Total amount}{Size of dose}$

If the dose of a drug is 200 mg, how many doses are contained in 10 g ?

10 g = 10,000 mg

Number of doses = Total Quantity/Size of Dose

Number of doses = 10,000 (mg)/200 (mg)= 50 doses

Calculation the size of a dose

Size of $dose = \frac{Total \ amount}{Number \ of \ doses}$

How many teaspoonfuls would be prescribed in each dose of an elixir if 180 mL contained 18 doses?

Size of dose = 10 mL = 2 teaspoonfuls

• How many grams of a drug will be needed to prepare 72 dosage forms if each is to contain 30 mg?

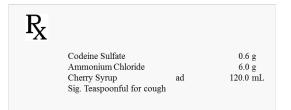
 $Number of \ doses = \frac{Total \ amount}{Size \ of \ dose}$

Total amount = 72×30 *mg*

Total amount = 2160 mg = 2.16 g

Determine the quantity of an ingredient in each specified dose.

 $Quantity in each dose = \frac{Quantity in total amount}{Number of doses}$


If 0.050 g of a substance is used in preparing 125 tablets, how many micrograms (mcg) are represented in each tablet?

 $Quantity in each dose = \frac{Quantity in total amount}{Number of doses}$

0.050 g = 50000 mcg

Quantity in each dose = $\frac{50000 \ (mcg)}{125}$ = 400 mcg

How many milligrams of codeine sulfate and ammonium chloride will be contained in each dose of the following prescription?

Teaspoonful = 5 mL

Number of doses =
$$\frac{Total amount}{Size of dose}$$

Number of doses = 120/5 = 24 doses

Amount of code sulfate = 0.6 g / 24 = 0.025 g = 25 mg.

Amount of ammonium chloride = 6.0 g / 24 = 0.25 g = 250 mg.

Low-dose and high-dose therapies

The above terminologies are different than standard-dose therapy. The most common example for low dose therapy is 81 mg aspirin rather than the standard dose of 325 mg.

High-dose therapy is usually related to chemotherapy where the patient might go under excessive amount of chemo-drug to fight cancer cells.

Tablet splitting

Different tablets are SCORED or GROOVED to allow breaking into halves.

How many grams of a drug substance are required to make 120 mL of a solution each teaspoonful of which contains 3 mg of the drug substance?

1 teaspoonful = 5 mL

Each 5 mL of the solution contain 3 mg of drug.

3 mg of drug	 5 mL
hence;	
X mg	 120 mL

$$X = \frac{120 \times 3}{5} = 72 \ mg \ or \ 0.072g$$

Pediatric Patients:

Neonate (newborn): from birth to 1 month. Infant: 1 month to 1 year. Early childhood: 1 year through 5 years. Late childhood: 6 years through 12 years. Adolescence:13 years through 17 years.

Proper drug dosing depends on a number of factors

- In the neonate, the biological functions of organs are underdeveloped. For instance, kidney function develops over the period of the first 2 years.
- On the other hand, in geriatrics (elderly people), the function capacity of most organ systems is declined.

Different rules of dosage in which the pediatric dose was a function of the adult dose, based on relative age or weight, were proposed for pediatrics:

Drug dosage based on Age:

Before the physiologic differences between adult and pediatric patients were clarified, Pediatric patients were treated with drugs as if they merely miniature adults.