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Topics to be covered

General Review: Basic concepts of Probability and Random variables (discrete and

continuous cases), moments and moment generating function and its applications.

. Discrete Probability Distributions: Uniform - Bernoulli - Binomial - Negative Binomial -

Geometric - Poisson - Hyper Geometric.

Continuous Probability Distributions: Uniform - Exponential - Normal - Beta - Gamma -

- Chi-squared.

Bivariate Distributions (discrete and continuous cases): Joint probability function - Joint
distribution function - Marginal distributions - Expectations of jointly distributed random

variables - Joint moment generating function.

. Conditional Distribution: Conditional distribution function - Conditional expectation -

Moment generating function.

Stochastic Independence of random variables: some consequent results of independence

on Joint probability functions - Covariance - Correlation.

Distributions of functions of random variables (Transformations): The case of one

variable and two variables (discrete and continuous).
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Chapter One

Basic concepts of Probability and Random variables

1.1 Basic concepts of Probabilities

An Experiment

An experiment is some procedure (or process) that we do.

Sample Space
The sample space of an experiment is the set of all possible outcomes of an

experiment. Also, it is called the universal set, and is denoted by ().

An Event

Any subset of the sample space A c () is called an event.
Note

@ c Q:Is the impossible event.

Q c Q: Is the sure event.

Complement of an Event
The complement of the event A is denoted by Aor A. The event A consists of all

outcomes of () but are not in A.

Probability
Probability is a measure (or number) used to measure the chance of the occurrence

of some event. This number is between 0 and 1.

Equally Likely Outcomes
The outcomes of an experiment are equally likely if the outcomes have the same

chance of occurrence.

Probability of an Event

If the experiment has n({1) equally likely outcomes, then the probability of the event

E is denoted by P(E) and is defined by: P(E) = % .
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Thus, probabilities have the following properties
1. 0 < P(A) < 1foreacheventA.

2. P(Q) = 1.
3. P(p) = 0.
4. P(A°) = 1— P(A).

Some Operations on Events

Union: The event A U B consists of all outcomes in 4 or in B or in both A and B.

Intersection: The event 4 N B consists of all outcomes in both A and B.

Sub event: The event 4 is called a sub event of B “A4 < B” if event B occurs whenever

the event 4 occurs.

Addition Rule
P(AUB) =P(4) + P(B)—P(ANB)

Mutually exclusive (disjoint) Events

Two events are mutually exclusive if they have no sample points in common, or

equivalently, if they have empty intersection. Events A4,,4,, ..., A, are mutually

exclusive if A; N A; = ¢ for all i # j, where ¢ denotes the empty set with no sample

points.

For this case:
1. P(AnB)=0.

. A and Ac are disjoint.

2
3. P(AUB) = P(A) + P(B). “ special case of addition rule”
4

. P(UZLA) = Y2, P (4.

Disjoint Events Joint (Not Disjoint) Events

Exhaustive Events

The events A4, 4,, ..., A, are exhaustive events if: A, UA, U ...UA, = Q.

For this case: P(A; UA, U ..UA,)) =P(Q) =1.

‘D
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A Partition

A collection of events A4, 4,, ..., A, of a sample space ( is called a partition of ( if
Ay, Ay, ..., A, are mutually exclusive and exhaustive events.

Example 1.1

0 =1{12345,6},A={12},B={23}and C = {1,5,6}. Find:P(A4), P(B), P(C),P(AN
B),P(BNC)and P(AU C).

Solution
P(A)=P(B) =3 ,P(C) =3 ,P(ANB) == ,P(BNC) =0,

P(AUC)=P(A)+P(C)—P(ANC) =

Wl

e
2

lr

What can we say about B&C?
Since P(B N C) = 0, Then B&C are disjoint events.

Conditional Probability
The conditional probability of A, given B, written as P(A|B), is defined to be

__ P(AnB)
P(AIB) = —
Independence

Two events A and B are said to be independent if B provides no information about
whether A has occurred and vice versa. In symbols:

- P(ANB) = P(4)P(B), Or

- P(A4|B) = P(A), Or

- P(B|A) = P(B).

Return to Example 1.1. Compute P(A|C).
P(AnC) 1/6 1
P(A|C) = = =-.
“4loy P(C) 1/2 3

Are A&C independent?

Since P(A|C) = % = P(A), then A&C are independent.
1.2 Random Variable

The outcome of an experiment need not be a number, for example, the outcome when

a coin is tossed can be 'heads' or 'tails'. However, we often want to represent
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outcomes as numbers. A random variable is a function that associates a unique
numerical value with every outcome of an experiment X: Q) — R. The value of the
random variable will vary from trial to trial as the experiment is repeated.

There are two types of random variable discrete and continuous.

1.2.1 Discrete Random Variable
The random variable X is discrete and is said to have a discrete distribution if it can
take on values only from a finite X € {x,, x,, ..., x,,} or countable infinite sequence X €
{x1, x5, ... }. Discrete random variables are usually represents count data, such as, the
number of children in a family, the Friday night attendance at a cinema, the number
of patients in a doctor's surgery and the number of defective light bulbs in a box of
ten.

Example 1.2

Consider the experiment of successive tosses of a coin. Define a variable X as X = 1 if
the first head occurs on an even-numbered toss, X = 0 if the first head occurs on an
odd-numbered toss; and define the variable Y denote the number of the toss on which
the first head occurs. The sample space for this experiment is Q=
{H,TH,TTH,TTTH, ... }. Therefore,

w Xw) | Y(w)

H 0 1
TH 1 2
TTH 0 3

1 4

TTTH

Both X and Y are discrete random variables, where the set of all possible values of X
is {0,1} (finite), and the set of all possible values of Y is {1,2,3,4,...} (infinite but

countable).

1.2.2 Continuous random variable

A continuous random variable usually can assume numerical values from an interval
of real numbers, perhaps the whole set of real numbers R; X € {x: a <x < b; a,b €
R}. Continuous random variables are usually measurements, for example, height,

weight, the amount of sugar in an orange, the time required to run a mile.



http://www.stats.gla.ac.uk/steps/glossary/probability_distributions.html#discvar
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1.3 Probability Function

1.3.1 Discrete Case (Probability Mass function)

The probability distribution of a discrete random variable is a list of probabilities

associated with each of its possible values. It is called the probability mass function
(pmf) which is usually denoted by fy (x), f(x), p(x)or p, and is equal to P(X = x).
The probability mass function must satisfy

1. 0<f(x)<1forallx,

2. Y fx)=1.
Example 1.3

Consider the following game. A fair 4-sided die, with the numbers 1, 2, 3, 4 is rolled
twice. If the score on the second roll is strictly greater than the score on the first the
player wins the difference in euro. If the score on the second roll is strictly less than
the score on the first roll, the player loses the difference in euro. If the scores are
equal, the player neither wins nor loses. If we let X denote the (possibly negative)
winnings of the player, what is the probability mass function of X?

Solution

The total number of outcomes of the experiment is 4 x 4 = 16. The sample space of
this experiment is

Q={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3), ...(4,3),(4,4)}. Thus, X can take
any of the values -3, -2,-1,0, 1, 2, 3.

The pmf can be found as follow

f(=3) = P(X = -3) = P{(4, D} = 1,

f(=2) = P(X = -2) = P{(4,2)} + P{(3, 1)} = —

16’
' 1
f(3) =P(X =3) = P{(1,4)} = —.
Hence, the distribution of X can be written as
X -3 -2 -1 0 1 2 3 Total
f(x) 1/16 2/16 3/16 4/16 3/16 2/16 1/16 1

Example 1.4
Consider an experiment of tossing an unfair coin twice. The probability is 0.6 that a

coin will turn up heads on any given toss, and let X be defined as the number of heads




216 STAT Actuarial Probability Weaam Alhadlaq

observed. Find the range (possible values) of X, as well as its probability mass

function. Then find P(X =1),P(X =1.5),P(1<x<3),P(1<x<3),PX>4) &

P(X > -2).

Solution

I. The sample space of this experiment is Q = {HH,HT,TH,TT}, therefore, the
number of heads will be 0, 1 or 2. Thus, the possible values of X are {0, 1, 2}.

Since this is a finite countable set, the random variable X is discrete. Next, we need

to find the pmf
w X
HH 2
HT 1
TH 1
TT 0

P(H) = 0.6 & P(T) = 0.4, Therefore we have

f(0)=P(X=0)=P(TT) = (0.4)(0.4) = 0.16,
f(1)=P(X=1)=P(HT)+ P(TH) = (0.6)(0.4) + (0.4)(0.6) = 0.48,
f(2)=P(X=2)=P(HH) =(0.6)(0.6) = 0.36.

Hence, the distribution of X can be written as

X 0 1 2 Total
f(x) 0.16 | 0.48 0.36 1

I[I. Now we can calculate the probabilities as follow
P(X=1)=0.48

P(X=15)=0
P(1<x<3)=PX=1)+PX=2)=0.48+0.36 = 0.84,
P(1<x<3)=PX =2)=0.36,

P(X>4)=0.

6. PX>-2)=PX=0+PX=1D+PX=2)=1

v N e

Example 1.5

Suppose the range of a discrete random variable is {1, 2, 3, 4}. If the probability mass
function is f (x) = cx for x =1, 2, 3, 4. Find is the value of c, then calculate
P(X =3.25),P(X >2),P(1<X<5)

Solution
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I. Since f(x) is a pmf, it should satisfy two conditions
1. First,f(x)20—->c¢c=0.

2. Second, Y f) =1=>f(D+fR)+fBR)+f4) =1
=>c+2c+3c+4c=1=210c=1=>c=0.1

x-
10’

Sf)=3x =1,2,3,4

I
1. P(X=3.25)=0
2. PX>2)=fR)+f(A) =—=+—-=2=07
3. PA<KX<B) =f+f)+fA)==+=+—-===09
1.3.2 Continuous Case (Probability Density function)
The probability density function of a continuous random variable is a function which
can be integrated to obtain the probability that the random variable takes a value in

a given interval. It is called the probability density function (pdf) which is usually
denoted by fx(x) or f(x). Symbolically, P(a < X < b) = f;f(x)dx = the area under

the curve of f(x) and over the interval (a,b).

AY

T

S

=Y

a b
The probability density function must satisfy

1. f(x) =0orallx,
2. [7 flodx =1.

Note: In the continuous case for any x € R.

1. f(x)#PX =x),

2. PX=x)=0,

3. Pla<X<b)=Pa<X<b)=Pa<X<b)=Pa<X<bh)
Example 1.6

Zx; 0 <x < 1
Letf(x) = { 0; otherwise

I. Checkif f(x) is pdf.
Solution
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Since,

1.x>0=>f(x)=2x>0,

2. folf(x)dx = fol 2x dx =1,

Thus, f(x) is a pdf.

L. Calculate P G <X< %),P(X =0.5) & P(-2 < X < 0.75)

Solution

1 1
1. P G <X< %) = [ f(x)dx = [?2x dx = 0.1875.

2. P(X=05)=0
0.75 0.75
3. P(-2<X<0.75)=[" f(x)dx = [~ 2x dx = 0.5625.
Example 1.7

Let X be a continuous random variable with the following pdf f(x) =

{ke‘x; x =0
0; otherwise

[. Find k.
Solution
The probability density function must satisfy two conditions
1. fx)20=2ke™>20=2k=>0
2. ffooof(x)dx =1= fooo ke™*dx=1= —kle=* —-e°]=1=>—-k[0-1] =1
>k=1 =>fkx)=e*;x=>0.
ILFindP(1<X<3),PX>4)&P(X=4)
Solution
1. PA<X<3)=[ e*dx=—[e?—e '] =0318.
2. PX>4) =["e*dx =—[e™® — e *] = —[0 — 0.0183] = 0.0183.
3. P(X=4)=P(X>4)=0.0183.

1.4 Cumulative distribution function (CDF)

All random variables (discrete and continuous) have a cumulative distribution

function (CDF) denoted by F(x). Itis a function giving the probability that the random
variable X is less than or equal to x, for every value x. Formally, the cumulative

distribution function F(x) is defined to be:
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F(x)=P(X<x) for —oo<x<oo,
1.4.1 Discrete Case
For a discrete random variable, the cumulative distribution function is found by

summing up the probabilities

F(x) = Zt<xf(t)-
Example 1.8
Return to Examples 1.4,1.5. Find the distribution function CDF for the r.v. X.

Solution

For example 1.4 we have

X 0 1 2 Total
f(x) 0.16 0.48 0.36 1
F(x) 0.16 0.64 1

In a formal way,

0; x<0
0.16; 0 <x <1
064, 1<x<2

1, x=2

F(x) =

Thus, we can immediately calculate:

P(X<1)=F() = 0.64.
PX>0)=1-PX<0)=1-F(0)=1-0.16 = 0.84, and so on.
For example 1.5 we have

i

F(x)=PX<x) =7}

=179’
_ —y2z t_ 1.2 _3_
Let say we want to calculate P(X < 2) = F(2) = )i, T o= =03
Generally,
X 1 2 3 4 Total
f(x) 0.1 0.2 0.3 0.4 1
F(x) 0.1 0.3 0.6 1
Formally,
0; x <1
01, 1<x<?2

F(x)=403; 2<x<3
06, 3<x<4
x =>4

—_—
l—k
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1.4.2 Continuous Case
For a continuous random variable, the cumulative distribution function is the integral
of its probability density function on the interval (—oo, x).
F(x) = [, f(x)dx
Result
The different Inequalities probabilities can be written by using the CDF as follow
» P(X<a)=F(a),
" PX>a)=1-PX<a)=1-F(a),
" Pa<X<b)=PX<b)—PX<a)=F(b)—-F(a).
Example 1.9
Return to Examples 1.6,1.7. Find the distribution function CDF for the r.v. X.
Solution
For example 1.6 we have

F(x)=f0xedx=x2; 0<x<1,

Formally,
0; x<0
F(x) ={x%, 0<x< 1.
1; x=>1

Now, we can immediately calculate the probabilities on the form P(X < x) or
P(X < x), such as
P(X < 0.5) = F(0.5) = 0.52 = 0.25,
P(X<3) =1,
P(X < —=2) = 0.
For example 1.7 we have
F(x) = foxe‘x dx =—[e™*—e’l=1—-e7% x>0,
Formally,

0; x<O0
FQx) = {1 —e™ x=0

Now, letfindP(X < 4) =F(4) =1—e~* =0.9817,
P(0.25< X <0.5) =F(0.5) —F(025) =1—e7%> — (1 —e7%25) = 0.1723.

10
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Chapter Two
Mathematical Expectation, Moments and Moment

Generating Function

2.1 Mathematical Expectation
In this section, we learn a general definition of mathematical expectation, as well as

some specific mathematical expectations, such as the mean and variance.

2.1.1 Expected value of a random variable

For a random variable X, the expected value (mean, average, a predicted value of a

variable) is denoted E (X), uy or u.

Discrete case

If £ (x) is the pmf of the discrete random variable X, then the expected value of X is
pu=EX) =Xyxf(x) =2ex P(X =x).

Continuous case

If £ (x) is the pdf of the continuous random variable X, then the expected value of X is

E(X) = ffooox f(x)dx.

Note: although the integral is written with lower limit —oco and upper limit oo, the
interval of integration is the interval of non-zero-density for X.

Example 2.1

Compute the expected values of the r.v.’s which presented in Examples 1.4 & 1.6.
Solution

For Example 1.4, the expected value is calculated by E(X) = Y., x f(x). Thus,

X -3 -2 -1 0 1 2 3 Total
fGx) | 1/16 | 2716 | 3/16 | 4/16 | 3/16 | 2/16 | 1/16 1
xf(x) | -3/16 | -4/16 | -3/16 | 0 3/16 | 4/16 | 3/16 | E(X) =0

For Example 1.6, the pmfis f (x) = 1x—0; x = 1,2,3,4. Then

EX)=Yxf(x)=1fD)+2.f2)+3.f(3) +4.f(4)
=01+04+09+16=23.

11
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Example 2.2
Compute the expected values of the r.v.’s which presented in Examples 1.7&1.8.
Solution

For Example 1.7, the pdfis f(x) = 2x; 0 < x < 1. Thus,
E(X) = fjoooxf(x)dx = folx (2x)dx = é

For Example 1.8, the pdfis f(x) = e™; x > 0. Hence,
E(X) = fooox e *dx

Use integration by parts:

u=x dv = e *dx
du = dx v=—"%
Hence,

E(X) = fooox e Xdx = —xe ™| — fooo— e Xdx =0+ fooo e ¥dx = —[e ® —e’] = 1.

Expectation of a function
If g is a function, then E(g(X)) is equal to ¥, g(x)f(x) if X is a discrete random
variable, and it is equal to f_oooo g(x)f(x)dx if X is a continuous random variable.
Corollary
Let a,b € R are two constants and g,, g, are two functions of a random variable X.
Then

» E(aX+b)=aE(X)+b.

» E(agi(X) + bg,(X)) = aE(g,(X)) + bE(g,(X)).
Corollary
If X;,X,,...X,)Y are nindependentr.v.’s and g4, g», ..., gn are any functions then
E[g9:(X1) - g2(X2) - o - gn(X)] = E[g1(X1)] - E[g2(X2)] - ... E[gn(X3)]

= [Ii21 ELg: (X0)].

Example 2.3
Compute the expected values of g(X) = X? — 1 and h(X) = 3X + 2 in Examples 1.4
& 1.6.
Solution

For Example 1.4, the expected value is calculated by

12
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E(g(X)) =E(X?-1) = E(X?) — 1. Thus,

X -3 -2 -1 0 1 2 3 Total
fGo) | 1/16 | 2/16 | 3/16 | 4/16 | 3/16 | 2/16 | 1/16 1
x*f(x)| 9/16 | 8/16 | 3/16 | 0 | 3/16 | 8/16 | 9/16 | E(X) = 2.5

Hence, E(X?—1)=25—1=15.
Also, E(3X +2) = 3E(X) +2 = 3(0) + 2 = 2.

For Example 1.6, the expected value is calculated by

E(g)) =EX* -1 =EX?) - 1= Exx*f(x) - 1

=0+ 1(0.1) +4(0.2) +9(0.3) + 16(04) —1=10—-1 = 0.

Also, EBX +2)=3EX)+2=3(3)+2=11.

Example 2.4

Compute the expected value of g;(X) = X 5 in Example 1.7, and the expected value of
g>(X) = X? + X in Example 1.8.

Solution

For Example 1.7, the pdfis f(x) =2x; 0 <x < 1.Thus,
2 o 2 1 2 1 5 6 & 6
E(g:(X)) = E(X3) = [ X3 f)dx = [/ x5 (2x)dx =2 [ x5 dx = S X3 s = -

For Example 1.8, the pdfis f(x) = e™; x > 0. Hence,

E(g,(X))=EX*+X) =EX?»)+EX) = f x% e *dx + 1
0

Use integration by parts:

u = x? dv = e *dx
du=2xdx v=-—-e*
Hence,

E(X?) = ["x? e dx = —x?e~*|§ — [ —2xe¥dx = 0+ [ 2x e ¥dx =
2 [Fxe*dx =2E(X) =2(1) = 2.
Therefore, E(gz(X)) =2+1=3.

2.1.2 Variance of a Random Variable
The variance (which denoted by V(X), 6% or 62) is a measure of the "dispersion" of X

about the mean. A large variance indicates significant levels of probability or density

13
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for points far from E (X). The variance is always positive (62 > 0). It is defined as the

average of the squared differences from the Mean. Symbolically,

V(X) = E[(X — ux)?],
This is equivalent to

V(X) = E(X?) — pi = EX?) — [EQOD]%
Y.x%f(x) if Xisdiscreter.v.

Where E(X?) =1 .»
ere E(X*?) {f_ooxzf(x) if X is continuous r.v.

The second formula is commonly used in calculations.

2.1.3 Standard deviation
The standard deviation of the random variable X is the square root of the variance,
and is denoted oy = \/a_f = m
Corollary
Leta, b € R are two constants. If X is a random variable with variance V' (x), then
» V(aX £ b) = a*V(X).

Example 2.5
Compute the variance and standard deviation of the r.v.’s which presented in

Examples 1.4. Then, calculate V(X — 6).
Solution

V(X) = E(X?) — [E(X)]?

From Example 2.1, we found that E(X) = 0
Now, let calculate E(X?)

X -3 -2 -1 0 1 2 3 Total
f(x) | 1/16 | 2/16 | 3/16 | 4/16 | 3/16 | 2/16 | 1/16 1
x*f(x) | 9/16 | 8/16 | 3/16 | 0o | 3/16 | 8/16 | 9/16 | E(x?>) =25

Then, V(X) = E(X2) — [E(X)]? = 2.5 — 0% = 2.5, 04 = V2.5 = 1.58,

andV(X —6) =V(X) = 25.

Example 2.6
Compute the variance and standard deviation of the r.v's which presented in

Examples 1.7. Then, calculate V(3X — 6).

Solution

14
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From Example 2.2, we found that E(X) = §

E(X?) = f_ooooxzf(x) = fol x2(2x)dx = % = 0.5.

2

S V(X) = E(X?) — [EX)]? = 0.5 — (g) = 0.0556, oy = v/0.0556 = 0.2357, and

V(33X —6) = 32V (X) = 9(0.5556) = 0.5

2.1.4 Mean and Variance for Linear Combination
Suppose X;, X, ..., X;,, are n independent random variables with means
U1, Uy, ..., ky and variances o, 07, ..., 2. Then, the mean and variance of the linear
combination Y = }i-; a;X;, where a;, a,, ..., a, are real constants are:

py = EY) =X aipyy = aE(Xq) + azE(X3) + - + a,E(Xy)
and

of =V(X) = XL afaf = aiV(Xy) + adV(Xp) + -+ adV(Xy)

respectively.

2.1.5 Chebyshev's inequality

If X is a random variable with mean y and standard deviation o, then for any real number
k >0,

1 ) : ol '
P[IX — u| > ko] < = P(uy ko, < X; py ko )27
_ 1 -~ - -
= P(u—ka<X<u—k0)21—ﬁ

gy — kery Hy iy + ke

Example 2.7
Let Y be the outcome when a single and fair die is rolled. If E(Y) = 3.5and V(Y) =

2.9. Evaluate P (|Y — 3.5| = 2.5).

Solution

Since the distribution is unknown, we cannot compute the exact value of the
probability. To estimate the probability we will use Chebyshev's inequality.

ko =25 = 1.7k = 2.5 = k = 1.47. Thus,

L _ 0.463.

P(IY=35/225) < =

15
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Example 2.8

Toss 100 coins and let X count the number of heads where E(X) = 50,V (X) = 25.
Estimate the probability that 40 < X < 60.

Solution

To estimate the probability we will use Chebyshev's inequality.

60=u+ok = 60=50+5k =10=5k => k=2,

P(40 < X < 60) = 1 — = = 0.75.
2
2.2 Central Moments and Raw Moments

2.2.1 Central Moments
The rth central moment of a random variable X (moment about the mean u) denoted

by u, is the expected value of (X — u)”; symbolically,

U = E[(X — 7] for r =0,1,2,...
Therefore,
= p=E[X-w°]=EQ) =1
= The first central moment y; = E[(X —uw)] = EX) —u = 0.
* The second central moment u, = E[(X — p)?] = V(X) = o2 (The Variance).

2.2.2 Raw Moments
The rth moment about the origin of a random variable X, denoted by y; , is the

expected value of X”; symbolically,

U, = EX") for r=2012...
Therefore,
= up=EX®)=EQ)=1.
= The first raw moment u; = E(X) = u (The expected value of X).

» The second raw moment uj = E(X?).

Notes

= Itis known that V(X) = E(X?) — [E(X)]? thus u, = u} — u.°.

16
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=  Henceforth, the term "moments" will be indicate to "raw moments".

2.3 Moment Generating Function

If X is a random variable, then its moment generating function (MGF) denoted by

My (t) or M(t) is defined as

|( Z e f(x) if X is a discrete r.v
Me(®) = ™) ={ .
L f e™ f(x)dx if X isa continuousr.v

We say that MGF of X exists, if there exists a positive constant h such that My (t) is
finite for all t € [—h, h].
Notes

*  We always have My (0) = E[e%*] = 1.

» There are some cases where MGF does not exist.

Example 2.9
For each of the following random variables, find the MGF.

I. Xis a discrete random variable, with pmf

f&) =

Solution

My () = E(e™) = $2_1 e f (x) = e"Df (1) + e"@f(2) = je* + e,

II. Y is a random variable, with pdf
f)=1, 0<y<1
Solution

et 1  et—e® ef-1

My(t) = E(e") = [ e®f(y)dy = [, eWdy == |} === =

Why is the MGF useful?
There are basically two reasons for this:
= First, the MGF of X gives us all moments of X. That is why it is called the

moment generating function.

17
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= Second, the MGF (if it exists) uniquely determines the distribution. That is, if
two random variables have the same MGF, then they must have the same
distribution. Thus, if you find the MGF of a random variable, you have indeed

determined its distribution.

2.3.1 Finding Moments from MGF

Remember the Taylor series for e*: for all x € R, we have
x _ x%  x3 _ v ﬁ
e’ = 1+X+E+§+"' _Zk=0 g
Now, we can write
etX — ZIC?:O

Thus, we have

t2x%  t3x3
2! + 3!

(tx)k
k!

o thxk
=Zk=07=1+tx+ + -

k 2 3
My(t) = E[e™] = SR E(X*) == 1+ EQ)t + EX) S+ E(X3) =+ .
Proposition
The rth moment about the origin can be found by evaluating the rt derivative of the

moment generating function at ¢t = 0. That is
dT
LM@)leeo = MT(0) = EQX") = i

Example 2.10

10
Let X be a r.v. with MGF M, (t) = (% et + g) .Drive the first and the second moments

of X.
Solution
By using the previous proposition we can find the moments as follow

= The first moment is

B0 == EM@lieg = & (et +2) g = 10 (Bt +2) (2et) lomg

-2y -2oam

= The second moment is

, dz2 d2 (1 2 10 d 1 2 9 1
EQX?) =y = 5M(O)|¢=0 = F(?et +§) le=0 = ;10 (Eet +§) (Eet) le=o

= [90 (Get+ %)8 Get)z +10(Get + %)9 Gef)] leo =2+ 21 = 13.33.
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Example 2.11
1
Let X be a r.v. with MGF My (t) = (1 — 2t) 2 .Drive the Mean (expected value) and
the standard deviation of X.
Solution
= The mean is
d d _1 1 _3
E(X) =U= EM(tNt:o = E(l — 2t) 2|t=o = _5(1 — 2t) 2(_2)|t=0 =1L
= The variance is
V(X) = E(X?) — p?
2 d? d 2 3 _S
E(X?) = S M(O)lieo = = (1 = 26) 2lomg = =2 (1 = 26) 2(=2)]roo =
5
3(1 - Zt)_5|t=0 = 3.
VX)=EX?»)—u?=>vVX)=3-12=2.
Hence, the standard deviation is oy = V2 = 1.41.

Example 2.12
Find the MGF of the r.v. X, then use it to find the first four moments. Where

X
f(x)=§; 0<x<?2

Solution
2 xel®
My (t) = E(e™) = [ dx.
0 2
Use integration by parts:
X
u=>: dv = e™dx
1 etx
du ==dx v=—
2 t
Hence,
xetx 2 etx eZt etx eZt eZL‘ 1
My(t) =5 - [P dx = - g = -
2t 0 2t t 2t2 t 2t2  2t2

Since the derivative of My (t) does not exist at t = 0, we will use the Taylor series

form. Thus, we have to put the MGF on the form

2 3
Myx(t) =1 +E(X)t+E(X2)%+E(X3)%+..._

We have
_Loet e 1 @) g
MX(t)_2t2+ t  2t2 2¢2 2t2
1 (2t-1) 2.2 3.3 4,4 545 646
= st o (L2064 275 + 2767 + 2%¢% + 277 + 2°° + -]
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1 (2t-1) , (2e-1) | 2(2t-1) | 2%e(2e-1) | 28t%(2t-1) | 2%¢3(2¢-1) | 25t*(2t-1)

+ + + + + + + + o
T 22 2t2 t 2! 3! 4! 5! 6!
= oo 22— 142 2—ﬁ+24t3—23t2++25t4—24’53+26’55—
2t2 t 2t2 ! 3! 4! 4! 5! 5! 6!
25¢%
6!
3 3 4 4 5 5
=1+(2-D)e+ E-De+ (E-D)e+ (E-D) e+
3! 4! 4! 5! 5! 6!

:1+it+(2__2_)ﬁ+(z_£)£+(£_£)§+...
12/ 2! 4 20/ 3! 5 30/ 4!

iefer2d e ()5BS

Therefore, by comparing with the Taylor form the first four moments are

_ 4 2y — 0. 3y _ 28 _ 16, 4y 2t _ 16
E(X)—3,E(X)—2,E(X)—5—5,E(X)—3—3
2.3.2 Moment Generating Function for Linear Combination
Theorem
Suppose X;, X5, ..., X,, are n independent random variables, and the random variable

Yis definedas Y = X; + X, + .-+ X,;; Then

My (t) = My, 4x,4..+x,(t) = My, (£)My, (t) ... Mx ()
Proof
My(t) = E[et] = E[etX1+X2+-+Xm)] = p[otX1ptk2  ptin]
= E[e**|E[et*?] ...E[e'*™] (since Xi's are independent)
= My, (t)My, (t) ... My _(2).
Special cases
» IfXandY are two independent r.v.'s (n=2), then My, (t) = My (t)My(t).
» IfXandYarei.id. r.v.s (independent identically distributed), then My, (t) =
[M(t)]?; where M (t) is the common MGF.
Proposition
If X is any random variable and Y = a + bX, then
My (t) = e My(bt)

] i i = X;ﬂ . — _g £
In particular, if Z = - ;then M, (t) = e oMy (G)
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Proof

My(t) = E(e'’) = E(et(@+bX) = F(eat+btX) = F(eat, gbtX)
= eME(eP™™)  (e* isa constant)

= e**My(bt) (from MGF definition).

Example 2.13
Let X be a discrete random variable with values in {0, 1, Z,...} and moment generating

function M(t) = % Find, in terms of M (t), the generating functions for

L. Y=3X+7

Solution

My (t) = e7tMy(3t) = et (i

_ o7t _ -1
3_3t)—e 1-0

ILW=-X

Solution

My (t) = My(—t) = —

3+t

Example 2.14
Let Xand Y are two independent random variables. Find the MGF for Z = X + Y, if

et-1 1
L My(t) =— My() = —
Solution
t_l 1 t—l
Mz(t) = My(t)My(t) = (e ; )(1_4t) = t(e1—4t)'

1L My(t) = My(t) = M(t) = i + %e .

Solution

My (t) = [M(D]? = G + zet)z.
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Chapter Three
Frequently Used Discrete Probability Distributions

Distributions to be Covered
= Discrete uniform distribution.
= Bernoulli distribution.
= Binomial distribution.
= Geometric distribution.
= Negative binomial distribution.
= Hypergeometric distribution.

=  Poisson distribution.

3.1 Discrete Uniform Distribution

The discrete uniform distribution is also known as the "equally likely outcomes”
distribution.
A random variable X has a discrete uniform distribution if each of the k values in its

range, say X , X, , ..., Xx, has equal probability. Then,

1
fx)=f(xk) = {E; X = X1,X2, ey Xg

)
0; otherwise

where k is a constant.

Parameter of the Distribution: k € N* (number of outcomes of the experiment).

Mean and Variance
Suppose X is a discrete uniform random variable on the consecutive integers a, a +

1,a + 2,...,b for a<b. The mean and the variance of X are

__b+a

EX)=pn=—,

2 (b—a+1)?-1
V(X)=0°= —

Note

If you compute the mean and variance by their definitions, you will get the same

answer.
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Example 3.1
Let X represent a random variable taking on the possible values 0f {0, 1, 2, 3,4, 5, 6, 7,

8, 9}, and each possible value has equal probability. Find the distribution of X. Then,
calculate the mean and the variance.
Solution

X has a discrete uniform distribution, thus

1
=—: x=0,1,..,9.
f) =15 x=0

—0+1)%—
Therefore, E(X) = ()ZLO =4.5 and V(X) = % = 8.25.

3.2 Bernoulli Distribution

Bernoulli trial It is a trial has only two outcomes, denoted by S for success and F for
failure with P(S) = pand P(F)=q= 1 — p.

Suppose that X is a r.v. representing the number of successes (x = 0 or 1). Therefore,
X has a Bernoulli distribution (X~Ber(p)) and its pmf is given by

p*q'™*;, x=0,1.
0; otherwise

£ = ) = |
Parameter of the Distribution: 0 < p < 1 (probability of success).

Mean and Variance
If Xis a discrete random variable has Bernoulli distribution with parameter p then,
EX)=pu=p and V(x) =02 =pq.

Example 3.2
Let X~Ber(0.6). Find the mean and the standard deviation

Solution
p=06=>qg=1-06=04.
E(X)=p=0.6andV(X) =pq = (0.6)(0.4) = 0.24 = ¢ = 0.49.

3.3 Binomial Distribution

If we perform a random experiment by repeating n independent Bernoulli trials
where the probability of successes is p, then the random variable X representing the

number of successes in the n trials has a binomial distribution (X~Bin(n,p)). The
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possible values for binomial random variable X depends on the number of Bernoulli
trials independently repeated, and is {0, 1, 2, ..., n}. Thus, the pmf of X is given by

f@) = fosnp) = {%;)pan—x; x=01,.n.

otherwise

n!

where (;l) = S

Parameters of the Distribution: n € N* (number of trails or sample size) and 0 <
p < 1 (probability of success).

Characteristics of Binomial Distribution

1. There is a fixed number, n, of identical trials.

2. The trials are independent of each other.

3. For each trial, there are only two possible outcomes (success/failure).

4

. The probability of success, p, remains the same for each trial (constant).

Mean and Variance
If Xis a discrete random variable has binomial distribution with parameters n, p then,

E(X)=u=np andV(x) = 62 = npq.
Proof
I. E(X) =np.
E(X) = XRooxf (%) = X0 x(Pp*q" ™
— n

= Yro1 x(7)p*q™* (Set summation from 1, since when x = 0 the expression= 0)

—yn n! X n—xX — YN . __n@m-1)!
= Zix=1% p 4 = X=X x(x—1)!(n—x)!

pan—x

' x!(n—x)!

=ny" (n-1)! X  n—X

*=1 G- P 4

_ (n—-1)! -1 n— _ _
—an;‘zlmpx q"* (AssumeY =X-1=>X=Y+1)

(n-1)!

— n—1 (n-1)! y  n—(y+1) _ n—1 y  n—-y—1
=P 2y=o yn-Gy P4 = TP 2y=o yi(n—-y-1)!
=np Xys (n;l) pYq=D-y (Assumem =n —1)

=np Yyo (’;) pYq™™Y =np (1) = np.
(The part (7;) pYq™™Y is a binomial pmf for y successes in m trails. Hence, the

summation= 1).
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II. V(X) = npq.
V(X) = E(X?*) = [E(X)]* = E(X?) — [np]* = E(X?) — n®p?
=E(X?—-X+X) —n?p? (Add and subtractX)
=EX?—-X)+EX)—n?p? =EX?—-X) + np — n?pZ.
Now, let’s simplify the part E(X? — X):

E(X?—X) = E(X(X = 1)) = Ziox(x — Df(x) = Tiox(x — D(D)p g™
=y x(x— 1)(n)pan_x (Set summation from 2, since when x = 0,1 the expression= 0)
_on _on _ . nn-1)(n-2)! X n—x
= Yx=2x(x — 1) xl(n x)' =2r=2X(x—1) x(x—-1)(x—2)!(n—x)! P=q

(n-2)! _

=n(n—1p? Y. Z%px‘zq”‘x (AssumeZ =X -2=X=7+2)

(n-2)! -
= Tl(Tl - 1)p ZZ Z|(nn(z+2))|pzqn (Z+2)

=n(n - 1)p Zn 2 __(n-2)! pzqn—z—z

z'(n—z—Z)!
=n(n - Dp? Xize(",?)p?q™ 27" (Assume k = n — 2)
=n(n - Dp* T-o(5)p*q"* = n(n — Dp* (1) = n(n - Dp*
(The part (k)pz k=7 is a binomial pmf for z successes in k trails. Hence, the

summation = 1).

Therefore,

V(X) =E(X?—-X)+np —n?p? = n(n — 1)p? + np — n?p?
= n’p? —np® + np — n’p® = np —np® = np(1 - p) = npq.

Moment Generating Function
If Xis a discrete random variable has binomial distribution with parameters n, p then,

the MGF of X is
My (t) = (pe' + )"

Proof
Hint: The binomial formula gives )% - (n)u" X = (u+v)"

My(t) = E(e™) = ¥i_oe™f(x) = Xi_oe™(D)p*q" ™ = ¥t o(D) (pe)*q"*
= (pet + ™
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Note

The Bernoulli distribution is a special case of the binomial distribution when n = 1.
Example 3.3

Suppose 40% of a large population of registered voters favor the candidate Obama. A
random sample of n = 5 voters will be selected, and X, the number favoring Obama
out of 5, is to be observed. What is the probability of getting no one who favors Obama
(i.e. P(X = 0))?. Then compute the mean and the variance.

Solution

n=5p=-—=04=q=06

100
X~Bin(5,0.4)

5
Fx) = (x) (0.4)*(0.6)5; x = 0,1,2,3,4,5.

Hence,

P(X = 0) = £(0) = (§)(0.4)°(0.6)° = 0.0778.

E(X) =np =5(0.4) = 2.

V(X) =npq = 5(0.4)(0.6) = 1.2.

Example 3.4

If the MGF of the r.v. X is My (t) = (0.8 + 0.2e*)*. Find P(X < 3),P(-1 < X < 2)
and the mean.

Solution

The MGF is on the form (pe® + q)", thus, X~Bin(4,0.2). So, the possible values of X
are 0,1,2,3,4.

Therefore,

PX<3)=fO+fD+fR)+fB)=1-f4) =1-(3)(0.2)*(0.8)°
=1-0.0016 = 0.9984.

P(-1<X <2)=f(0)+f(1) = (;)(0.2)°(0.8)* + (7)(0.2)*(0.8)°

= 0.4096 + 0.4096 = 0.8192.

E(X) =4(0.2) =0.8.

26




216 STAT Actuarial Probability Weaam Alhadlaq

3.4 Geometric Distribution
A single trial of an experiment results in either success with probability p, or failure
with probability g =1—p. The experiment is performed with successive

independent trials until the first success occurs. If X represents the number of trails

until the first success, then X is a discrete random variable that can be 1,2,3, .... X is
said to have a geometric distribution with parameter p (X~Geom(0.01)) and its pmf
is given by

=1ox =12, ..
otherwise

FG) = fesp) = { P

Parameter of the Distribution: 0 < p < 1 (probability of success).
Characteristics of Geometric Distribution

1. The outcome of each trial is Bernoulli, that is either a success(S) or failure(F).
2. The Probability of success is constant P(S) = p.

3. The trials are repeated until ‘one’ successes occur.
For example

* A coinis tossed until a head is obtained.

=  From now we count the no. of days until we get a rainy day.

Mean and Variance

If Xis a discrete random variable has geometric distribution with parameter p then,

1 1-
E(X)=u=; andV(x)zazzp—fzg—z.

Proof

Hint
Leti € R: |i] < 1.

n o in—1 — 1 2 — 1
DMt =14 20+ 3i% + REnEL

. o -1 _ 2
Ymean(n+ 1" = R

1
L EX) =
EX)=X3axf(x) =YX x pqg* t =pXeixq*t =p(1+2q +3¢* + )
14 _ b 1

T a-9? p?2 p
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ILV(X) = ;’—2

1)2 1
VX) = EXY) - [EQ) =EX?) - ;) =EGD—;
Now,
E(X?) = Y5, x*f(x) = X3 x* - pq*™*
=¥% (x? + x — x)pq*~! (Add and subtract x)
= Yaea[x(x + 1) — x]pg*~!
=Yoo x(x + Dpg* ™ = X xpg* ™t = p i x(x + D™ = E(X)

2 1 _2p 1_ 2 1

TP T R 2

Therefore,

2 1 1 1 1-p q
Vi) =———~———=——-"=— ="~
()pzppzpzppz p?

Moment Generating Function
If X is a discrete random variable has geometric distribution with parameter p then,

the MGF of X is

pet
MX (t) = 1—qet.

Proof

Hint: Foranyi € R: |i| < 1; Yo i" 1 =Y ji"=1+i+i?+- = ﬁ

My(8) = E(e™) = 37, e%f(x) = £52, e%pq* ™" = pet X5 et Vg

1 pet

=pe' Xita(qe) T =pet o=
Example 3.5

In a certain manufacturing process it is known that, on the average, 1 in every 100
items is defective. What is the probability that the fifth item inspected is the first
defective item found? Find the mean and the variance.

Solution

Let X represents the no. of items until the first defective item is found. The probability

1

of successes (defective item) is p = i 0.01.Thus, X~Geom(0.01). So, we want to

find
P(X =5) = f(5) = (0.01)(0.99)* = 0.0096.
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1
- =100.
h=G01 - 100
, 099
= = 9900.

3.5 Negative Binomial Distribution

If r is an integer, then the negative binomial random variable X can be interpreted as
being the number of trails until the rth success occurs when successive independent
trials of an experiment are performed for which the probability of success in a single

particular trial is p. The pmf of X~NBin(r, p) is given by

x—1 B
F(x) = f(x;r,p) = {(r _ 1)prqx Lox=rr+1,r+2,..
0; otherwise

Parameters of the Distribution: r € N*(number of successes), 0 <p <1
(probability of success).

Characteristics of Negative Binomial Distribution

1. The outcome of each trial is Bernoulli, that is either a success(S) or failure(F).

2. The Probability of success is constant P(S) = p.

3. The trials are repeated until ‘r’ successes occur.
Note
The geometric distribution is a special case of the negative binomial distribution

whenr = 1.

Moment Generating Function
If X is a discrete random variable has negative binomial distribution with parameters

k, p then, the MGF of X is

pet )r
1—-qet) ’

My (6) = (
Proof

Hint: The sum of a negative binomial series Z,‘?’zo(k::l)uk =1-u™.

My(8) = E(e™) = X3, e™f(x) = X e (()p a™ ™

— prert Z;ozr(f:i)et(x—r)qx—r
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=pTe™ ij:r(fj)(qet)x_r (LetY =X—-1r=>X=Y+7)

r

=pTe’t Zy 0(y+r 1)(qet)y =pTe™(1 — get)™" = (Ltt) ]

1—qe

Mean and Variance

If X is a discrete random variable has negative binomial distribution with parameters

r, p then,
r r(1-p) rq

E(X) =,u=; andV(x) =g? =T=F.
Proof
. EX) = %

d d( pet \

E(X) = MX(t)lt 0= GE\1—qet le=0
_( pet \ T [(1-qet)pet+petqet _(peY)” _ v _ . _T
=T (1—qef) [ (1-qet)? ] It 0= (1 qet)r+1 It 0o=T (1-q)r+1 — Tpr+1 T

V. V(X) = I%

V(X)) =EX*) - [EO]

d £y’ d _
EXD) = 2 My(©)lmg = 2 o = Lr(pet) (1 - e TV,

= [re") (=0 + D) (1 = ge") "+ (=qe) +r2(pe") " (pe")(1 - qe*) "]l
= [TPT(—(T' + 1))(1 — )—(T+2)(_q) +7r2pT(1 - )—(r+1)]

=[r@r+Dp~?q+1r?p7l] = [ 1) +5= —r;q (p+q=1)
Hence,
2
r2+rq N\ _rq
v =R - (5) =4
Example 3.6

Bob is a high school basketball player. He is a 70% free throw shooter. That means
his probability of making a free throw is 0.70. During the season, what is the
probability that Bob makes his third free throw on his fifth shot?. Find the MGF.

Solution
Let X represents the no. of throws until the third free throw is done. The probability

of successes (free throw) is p = 0.7.Thus, X~NBin(3,0.7). So, we want to find
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P(X =5) = f(5) = (371)(0.7)*(0.3)°~% = 0.1852.
t 3
My (0) = (%)
Example 3.7
Sara flips a coin repeatedly and counts the number of heads (successes).. Find the
probability that Sara gets
. The fourth head before the seventh flip.
II. The first head on the fourth flip.
Solution
The probability of successes (getting head) is p = 0.5. Let X represents the no. of
throws until the fourth head is shown. Thus, X~NBin(4,0.5). So, we want to find
L P(X <6)=fx(®)+ fx(5) + fx(6) = (;71)(05)* + (§73)(0.5)° + (§73)(0.5)°
= 0.0625 + 0.125 + 0.1563 = 0.3438.
Now, let Y represents the no. of throws until the first head is shown. Thus,
Y~Geom(0.5).
IL. P(Y =4) = f,(4) = (0.5)* = 0.0625.

Comparison

* For Bernoulli and binomial distributions the number of trails is fixed (1 for Ber.
And n > 1 for Bin.) while the number of successes is variable.
* For geometric and negative binomial distributions the number of trails is variable

and the number of successes is fixed (1 for Geom. r > 1 for NBin.).

3.6 Hypergeometric Distribution

A B
M-K
n K

In a group of M objects, K are of Type I and M — K are of Type II. If n objects are

randomly chosen without replacement from the group of M, let X denote the number
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that are of Type I in the group of n. Thus, X has a hypergeometric distribution
X~H(M,n,K). The pmf for X is

f(x) =fO;MnK) = (x)((ﬂ):x ; x =Max[0,n— (M - K)], ..., Min[n, K]

0; otherwise

Parameters of the Distribution: M € N*(population size),n € N* (sample size),
K € N*(population elements with a certain characteristic).
Characteristics of Hypergeometric Distribution
n’ trials in a sample taken from a finite population of size M.
. The population (outcome of trials) has two outcomes Success (S) and Failure(F).

1
2
3. Sample taken without replacement.
4. Trials are dependent.

5

. The probability of success changes from trial to trial.

Mean and Variance
If X is a discrete random variable has hypergeometric distribution with parameters

M, n, K then,

_ nk(M-K)(M-n)

_ ., — K )
EX)=u= — andV(x) =0 YETE)

Proof

We will assume that the bounds of X are 0 and n.
nkK

I. EX) = 7

BOO = Elooxf () = B - B3

K\(M-K
=yl_,x (")((% (Set summation from 1, since when x = 0 the expression= 0)
(K-1)!
_ g x'(K_—x)'( _mKon  GenGearnos
= Lx=1X" = 7 &x=1 -1
n‘(M =T m-DIM—n)!
——le ()( (Let=X—-1,L=M-1,S=K—-1landr=n-—1)
G))
__Zy 0 __(1) (Y~H(L,T,S) :Sumofpmf: 1)

)
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nk(M-K)(M-n)
ILV(X) = %
V(X) = EX?) - [EX)]?

B(X?) = Do x?f () = S - W)

9)
n 2. &Go) Set tion f 1, si h =0th ion= 0
X (M) (Set summation from 1, since when x = 0 the expression= 0)
K! M—-K (K-1)!
=y X2 x!(K—x)!(n—X _ Nk $n 5 DI x)'( =Xy ( )(
= Lix=1 M = Ty &x=1 M-1)! M x=1%X (
n!(M-n)! (n—-1)!(M-n)!

We use the same variable substitution as when deriving the mean.

O Ol @

The first sum is the expected value of a hypergeometric random variable with

E(xD) =257y + 1) D) e lz ), 5 G S)l

parameters (L,1,S). The second sum is the total sum that random variable's pmf.

2y _ NK _n nK [(n—-1)(K-1) .
EQX?) =2 [EW) +1] =2 [F+1] = M[W+1],Thus,
(n-1)(K- 1) n (n-1)(K- 1) nkK
Vix) = [ (M-1) 1] _( ) - [ M-1) M

_nkK [M(n—l)(K—1)+M(M—1)—nk(M—1)]
T M M(M-1)

- 2 —

MZ(M 5 [MnK — Mn — MK + M + M* — M — nkM + nk]
nK

_ 2
_MZ(M—1)[ Mn — MK + M* + nk] =

m[M(M n) — K(M —n)]

_ nK(M-n)(M—K)
T M2(M-1)

Example 3.8

Lots of 40 components each are called acceptable if they contain no more than 3
defectives. The procedure for sampling the lot is to select 5 components at random
(without replacement) and to reject the lot if a defective is found. What is the
probability that exactly one defective is found in the sample if there are 3 defectives
in the entire lot.

Solution

M = 40,n=5K = 3.
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Let X represents the no. of defective items in the sample. X~H (40,5,3). We want to
find

PX=1)=fQ1)= (i()4(03‘)‘7) = 0.3011.

Does the procedure being used is good?

3.6.1 Binomial Approximation to Hypergemetric Distribution

Suppose we still have the population of size M with K units labeled as ‘success’
and M — K labeled as ‘failure,” but now we take a sample of size n is drawn with
replacement. Then, with each draw, the units remaining to be drawn look the same:

still K ‘successes’ and M — K ‘failures.’ Thus, the probability of drawing a ‘success’ on
each single draw is p = %, and this doesn't change. When we were drawing without

replacement, the proportions of successes would change, depending on the result of

previous draws. For example, if we were to obtain a ‘success’ on the first draw, then
: « ’ K-1 .

the proportion of ‘successes’ for the second draw would be YL whereas if we were

to obtain a ‘failure’ on the first draw the proportion of successes for the second draw

would be L.
M-1

Proposition
If the population size M — o0 in such a way that the proportion of successes % —
p,andnis held constant, then the hypergeometric probability mass function

approaches the binomial probability mass function i.e. H(M,n, K) — Bin (n p= %)

As arule of thumb, if the population size is more than 20 times the sample size (M >
20n), then we may use binomial probabilities in place of hypergeometric
probabilities.

Example 3.9

A box contains 6 blue and 4 red balls. An experiment is performed a ball is chosen and
its color observed. Find the probability, that after 5 trials, 3 blue balls will have been
chosen when

[. The balls are replaced.

[I. The balls not replaced.
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Solution

I. Let X represents the no. of blue balls in the sample. X~Bin(5,0.6). So, we want to
find
P(X =3) = (3)(0.6)°(0.4)? = 0.3456.

II. Let Y represents the no. of blue balls in the sample. Y~H(10,5,6). So, we want to
find
P(Y=3)= (%35((,%) = 0.4762.

Example 3.10

It is estimated that 4000 of the 10,000 voting residents of a town are against a new
sales tax. If 15 eligible voters are selected at random and asked their opinion, what is
the probability that at most 3 favor the new tax? Use binomial approximation.
Solution

M = 10000,n = 15,K = 6000. To use the binomial approximation we have to check
iftM > 20n?

M = 10000 > 20 - 15 = 300.

Thus, X the no. of voting that favor the new sales tax in the sample has binomial
distribution with parameters n = 15,p = % = 0.6.
PX<3)=f0)+f()+f(2)+f(3)

= (3)(0.6)°(0.4)*° + (%) (0.6)(0.4)* + (%7)(0.6)2(0.4)** + (%) (0.6)*(0.4)*?

= 0.0019.

3.7 Poisson Distribution

The Poisson distribution is often used as a model for counting the number of events
of a certain type that occur in a certain period of time (or space). If the r.v. X has

Poisson distribution X ~Poisson(A)then its pmfis given by

e_AAx- —
fOO = fls) = ¥= 012
0; otherwise

Parameter of the Distribution: 4 > 0 (The average)
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For example

= The number of births per hour during a given day.

= The number of failures of a machine in one month.

= The number of typing errors on a page.

= The number of postponed baseball games due to rain.
Note
Suppose that X represents the number of customers arriving for service at bank in a
one hour period, and that a model for X is the Poisson distribution with parameter A.
Under some reasonable assumptions (such as independence of the numbers arriving
in different time intervals) it is possible to show that the number arriving in any time
period also has a Poisson distribution with the appropriate parameter that is "scaled"
from A. Suppose that 4 = 40 ‘meaning that X, the number of bank customers arriving
in one hour, has a mean of 40’. If Y represents the number of customers arriving in 2
hours, then Y has a Poisson distribution with a parameter of 80. In general, for any
time interval of length t, the number of customers arriving in that time interval has a

Poisson distribution with parameter At = 40t. So, the number of customers arriving

during a 15-minute period (t =% hour) will have a Poisson distribution with

parameter 40 - i = 10. In general, If W represents the number of customers arriving

in t hours W ~Poisson(At) therefore,

fw) = ;o w=0,1,2,...

e~ MW
W'

Mean and Variance

If X is a discrete random variable has Poisson distribution with parameter A then,

EX)=V(x) = A
Proof
Hint: e* = Z;‘{;O’;—T.
. EX)=A.
E(X) = Yx=oxf (x)

—llx
=Yy X" Z ” (Set summation from 1, since when x = 0 the expression= 0)
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_ /lx A A1 L
Zx 1 (x ! = Ae Zx:l G—1)! (Let Y=X 1)
_ » _
- AZy 0 i = le Ael = ).
ILV(X) = 4

V(X) = E(X?) - [E(X)]?
EX)=EX?2—X+X)=EX(X-1D+X]=E[XX-1D]+EX)
—EXX—-D]+21=32x(x—Df(x) +1

= Y=z x(

;Lx—z
(x=2)!

o) e_)llx 2 ,—A Voo
=Zx=2m+/1=le Yy + A (LetZ =X —2)
=2e Y2 = " Eyd=2erer 4 1=212+ A
Hence,

VX)) =22 +1—2% =L

Moment Generating Function
If X is a discrete random variable has Poisson distribution with parameter A then, the
MGF of X is
My (t) = eMe'-1),
Proof
. x o X"
Hint: e* =}, —

A/lx

P (e 2)” e—1geth
x! Z x! €

My(t) = E(e™) = ELoe™f(x) = o™
— eMef-1)

Example 3.11

Suppose that the number of typing errors per page has a Poisson distribution with
average 6 typing errors. What is the probability that

I. the number of typing errors in a page will be 7.

II. the number of typing errors in a page will be at least 2.

[II. in 2 pages there will be 10 typing errors.

IV. in a half page there will be no typing errors.
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Solution
. Let X represents the no. of typing errors per page.

Therefore, Ay = 6 = X~Poisson(6).

e=6
7!

7
& —0.1377.

PX=7)=
ILPX>2)=fQ)+fB)+=1-PX<2)=1-F(0)—f(1)

e %60 e %

=1- — = 0.9826.
0! 1!

[II. Let Y represents the no. of typing errors in 2 pages.

Therefore, 1y = Ayt = 62 =12 = Y~Poisson(12).

P(Y = 10) = = 0.1048.

6_12(12)10
|

IV. Let Z represents the no. of typing errors in a half pages.

Therefore, 1, = A4t = 6 % = 3 = Z~Poisson(3).

e~330
0!

P(Z =0) = = 0.0498.

3.7.1 Poisson Approximation to Binomial Distribution

For those situations in which nis large (=100) and p is very small (<0.1), the Poisson
distribution can be used to approximate the binomial distribution. The larger the n
and the smaller the p, the better is the approximation. The following mathematical
expression for the Poisson model is used to approximate the true (binomial) result:

£x) = —e_(np;f”p)x

Where n is the sample size and p is the true probability of success (i.e. 1 = np).
Example 3.12

Given that 5% of a population are left-handed, use the Poisson distribution to
estimate the probability that a random sample of 100 people contains 2 or more left-
handed people, then compare the result with the true probability using the binomial
distribution.

Solution

Let X represents the no. of left-handed on the sample.

To use Poisson approximation we should checkif n > 100 and p < 0. 1.

Sincen =100 > 100,p = 0.05 < 0.1 we can use Poisson approximation.
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A=np =100-0.05=5 = X~Poisson(5).

Thus,

-5 0 -5
P(X>2)=1-P(X<2)=1-f(0)—f(1)=1-"""0_25— 09596 =
0.96.

Now, let us use binomial distribution.
PX>2)=1-P(X<2)=1-f(0)—-f(1)
=1—("3°)(0.05)°(0.95)1%° — (*%°)(0.05)(0.95)°° = 0.9629 = 0.96.
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Chapter Four

Frequently Used Continuous Probability Distributions

Distributions to be Covered
= Uniform distribution.
= Exponential distribution.
* Gamma distribution.
= Chi-squared distribution.
= Beta distribution.

=  Normal distribution.

= Standard normal distribution.

= T distribution.

4.1 Uniform Distribution

A uniform distribution, sometimes also known as a rectangular distribution, is a

distribution that has constant probability.

a

f)

I 1
b

The probability density function for a continuous uniform distribution on the

interval [a, b] is

1

f)=f;ab)=1p—q’ a<x<bh

We write X~U(a, b)

0; otherwise

Parameters of the Distribution: a, b € R (The limits of the interval)
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Mean and Variance

If X is a continuous random variable has uniform distribution with parameters a and

b then,
EX) =22 and V()= (ba)”
2 12
Proof
Hint
b? —a? = (b—a)(b+ a),
b3 —a3® = (b—a)(b?+ ab + a?) and
(b —a)? = b? — 2ab + a®.
L EX) =22,
_— —(Px g L[] = L [pPma’] _ 1 [G-a®+a)] _ atb
E(X)_faxf(x)dx_fab—adx_b—a[z]la_b—a[ 2 ]_b—a[ 2 ]_ 2
__ (b-a)?
1L v(x) =42

V(X)) =EX?) - [EO]

b b x2 3 3 3
s L= = ] =

1 [(b—a)(b2+ab+a2)] __ b%+ab+a?
" b-a 3 - 3 :

Hence,

b2+2ab+a® _ 4b?+4ab+4a?-3b%*—6ab—3a?
3 4 - 12

V(X) =

b%+ab+a? (a+b)2 __ b%+ab+a?
3 2 -

__ b%*-2ab+a? _ (b—a)?

- 12 T 12

Moment Generating Function
If X is a continuous random variable has uniform distribution with parameters a and

b then, the MGF of X is

ebt_pat
M (t) = )"
Proof
My() = E(e™) = [P e f(x)dx = [ dx = 20 _|b = £ ="
X a a b-a t(b—a) a t(b—a) .

Note that the above derivation is valid only when t # 0. However, remember that it

always when t = 0, My (t) = E(e*@) = E(1) = 1.
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Example 4.1

The daily amount of coffee, in liters, dispensed by a machine located in an airport
lobby is a random variable X having a continuous uniform distribution with a = 7 and
b = 10. Find the probability that on a given day the amount of coffee dispensed by
this machine will be

. at most 8.8 liters.

[I. more than 7.4 liters but less than 9.5 liters.

I1I. at least 12.5 liters.

Solution

)= gig =

L P(X<8.8)=["2dx=32=22"=0.6.
IL P(7.4<X<9.5) =2"2-9¢.7

3
IILP(X > 12.5) = 0.

Example 4.2
Abus arrives every 10 minutes at a bus stop. It is assumed that the waiting time for a
particular individual is a r.v. with a continuous uniform distribution. What is the
probability that the individual waits more than 7 minutes. Find the mean and the
standard deviation.
Solution
Let X is the waiting time for the individual. Thus, X~U(0,10).

10-7

P(X>7) =1—0=0.3.

u=¥=5 and o = /$=2.89.

4.2 Exponential Distribution

A continuous random variable X is said to have an exponential distribution X~Exp(0)

if it has probability density function

ee—ex. X > 0
= ; 9 = ’ N
f(x) = f(x;0) {0; otherwise’

where 6 > 0.

42




216 STAT Actuarial Probability Weaam Alhadlaq

The exponential distribution is usually used to model the time until something
happens in the process.
For example
* The exponential random variable is used to measure the waiting time for
elevator to come.
* The time it takes to load a truck.

* The waiting time at a car wash.

. e 1 =
Another form of exponential distribution is f(x) = € #;  x = 0. However, for the

rest of this course, we will use the first form.

Parameter of the Distribution: 6 > 0.

Cumulative Distribution Function
F(x) =P(X <x)= [ e % dx =—e 0%|F =1 - 0%,

Direct way to find probabilities
. PX<a)=F(a)=1-e%,

I.P(a<X <b)=F(b)—F(a) =e 92 —¢70P,
LP(X = b) = e,

Mean and Variance

If X is a continuous random variable has exponential distribution with parameter 6

then,
1 1
E(X) = g and V(x) = 7
Proof
. E(X) = %

E(X) = ["xf(x)dx = [ 6xe™%%dx = 6 [,” xe~®*dx.

Use integration by parts:

u=x dv = e % dx
e—Gx
du = dx v=——

0 —-0x 00 p—0x o0 —O9x
B0 =0 [ re-0rtn = 0[5+ (75 0] = 0 e vren =~

1
o
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IL V(X) = .
V(X) =EX?*) - [EX)]?
E(X?) = foooxzf(x)dx = fooo Ox%e %%dx = Hfoooxze_exdx.

Use integration by parts:

u = x? dv = e dx
—-0x
du = 2x dx v=—ee
0 _ 2,-0x o o0 —-0x . _
E(X?) =0 [, x%e 9de=6[—%|0 +2; xee dx]=0+2fO xe %%dx

—-0x —-0x -0x —-0x
xe o0 o e _ e _ _ e m—i
— g+ f dx| =2 [ dx = 2 = 2

=2 [_
Hence,

r=2- () =&

Moment Generating Function
If X is a continuous random variable has exponential distribution with parameter 6
then, the MGF of X is
My(t) ==
Proof
My(t) = E(e™) = fooo e*f(x)dx = foooetx e 0%dx =0 foooe‘(e‘t)xdx

= 0 (-t _ 6
6t 0 7ot

Note that the above derivation is valid only when t < 6.
Example 4.3

The time between arrivals of cars at Al’s full-service gas pump follows an exponential
distribution with a mean time between arrivals of 3 minutes. Al would like to know
the probability that the time between two successive arrivals will be 2 minutes or
less. Then find the variance.

Solution

Let X represents the time between two successive arrivals.

0 = § = X~Exp G)
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2
P(X<2)=F(2)=1—-e3=0.4866.
1
V(X)=E=32 =09,

4.2.1 Lack of Memory Property (Memoryless)

Let X be exponentially distributed with parameter 8. Suppose we know X > t. What
is the probability that X is also greater than some value s + t? That is, we want to
know P(X > s + t|X > t). This type of problem shows up frequently when we are
interested in the time between events; (Such as, queuing system). For example,
suppose that costumers in a particular system have exponentially distributed service
times. If we have a costumer that’s been waiting for one minute, what’s the probability
that it will continue to wait for more than two minutes?

Using the definition of conditional probability, we have

P(X>s+t N X>t)

P(X>s+tX>1t) ===

If X > s +t, then X > t is redundant, so we can simplify the numerator as

P(X>s+t|X>t)=%
Using the CDF of the exponential distribution,
—6(s+t)
P(X>s+t|X>¢) =280 _¢ = g 0s

P(X>t) e-0t
[t turns out that the conditional probability does not depend on t. Thus, In our queue
example, the probability that a costumer waits for one additional minute is the same
as the probability that it wait for one minute originally, regardless of how long it’s
been waiting.
This is called the lack of memory property,

PX>s+t|X>t)=P(X>s).

Example 4.4

On average, it takes about 5 minutes to get an elevator at stat building. Let X be the
waiting time until the elevator arrives. Find the pdf of X then calculate the probability
that

. you will wait less than 3 minutes?

[I. you will wait for more than 10 minutes?
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[I.you will wait for more than 7 minutes?
[V.you will wait for more than 10 minutes given that you already wait for more than
3 minutes?
Solution
1
X~Exp (g)

fx) = %e“i; x> 0.

3

. PX<3)=1—e5=0.4512.
II. P(X >10) = e 2 = 0.1353.

7
[LP(X >7) =e 5 = 0.2466.
IVP(X>10|X>3)=PX>7+3|X>3)=P(X>7)=0.2466.

4.2.2 Relation Between Exponential and Poisson Distributions
An interesting feature of these two distributions is that, if the Poisson provides an

appropriate description of the number of occurrences per interval of time, then the

exponential will provide a description of the length of time between occurrences.

Consider the probability function for the Poisson distribution,

flx) =

where, 1 is the mean rate of arrivals and t is a period of time.

—(At) x
e x=0,1,2,..,

x!

Defining the r.v. Y as the time of an event, we have (by definition),
F(t)=P(T<t)=1—-P(T >t).
Now, The 1starrival occurs after time t iff there are no arrivals in the interval [0, t].

Therefore,

—(At) 0
e At _
@’ _ e At_

P(T > t) = P(zero events occur intimeQtot) =P(X =0) = 5

Hence,
F)=P(T<t)=1-P(T>t)=1—-e"%,
which is the distribution function for the exponential distribution with parameter A.
Briefly,
X (no. of occurrences per interval of time t) ~Poissin(At),

Y (time between occurrences)~Exp(A).
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Example 4.5
If we know that there are on average 10 customers visiting a store within 2 hours
(120 minutes) interval, then the r.v. that represents the number of costumers is

X~Poisson(At = 10). From another point of view, the r.v. that represents the time

. 10 .
between costumers arrivals Y~Exp (/1 = E)’ where the average time between

. ... 1 120 i
customers’ arrival is 1T = 12 minutes.

4.3 Gamma Distribution

The gamma distribution is another widely used distribution. Its importance is largely
due to its relation to exponential and normal distributions. Before introducing the

gamma random variable, we need to introduce the gamma function.

4.3.1 Gamma function
The gamma function denoted by I'(«), is an extension of the factorial function to real
(and complex) numbers. Specifically, if n € {1,2,3,...}, then
r'm)=mn-1)!
More generally, for any positive real number «, I'(a) is defined as

r'(a) = fooo x®te *dx; a> 0.

4.3.2 Some useful Properties for Gamma distribution

L r(3)=vm

2
II. T(a+1)=al(a), a>0.

Proof

Fra+1)= fooox“ e *dx (Form gamma function definition).

Use integration by parts:

u=x% dv = e *dx
du = ax® ldx v=—*
Fla+1) =—x% | + fooo ax® le ™™ dx

=a fooo x% e *dx = al'(a). (Form gamma function definition)

111 fooo x® e Bxdy = Hal), a,B > 0.

Ba+1 4
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Proof
Lety = fx :>dy=ﬁdxzdx=%y,thus,x:0—>oo = y:0 — oo then,

[0e] (o] a (o]
fo xa e“ﬂxdx — fo (Z) e_yd_y — 1 J‘O ya e_ydy

B B - pa+i
= r;iﬁ ) (Form gamma function definition)
Example 4.6

. Findl (g)

II. Find the value of the following integral I = fooo xbe™>*dx.

Solution

NS p(3Y23.3 (325,31 (Y 5.3, _15
L F(E)_z r(z)_z zr(z)_z 2 zr(z)_z 2 2 \/E_s\/;'
L 1= [ xS 5% dx ="l = & = 0.0092,

4.3.3 Definition of Gamma Distribution
We now define the gamma distribution by providing its PDF.
A continuous random variable Xis said to have agamma distribution with

parameters @ > 0 and f > 0, denoted by X ~ Gamma(a, B), if its pdf is given by
a
B a-le=px, x>

fr®) = flsa,B) ={T@” '
0;

otherwise
Parameters of the Distribution: « > 0, > 0.

Mean and Variance

If X is a continuous random variable has gamma distribution with parameters «, 5

then,
EX)=2 and V()=
Proof
LE(X) = %.
= ,fzz) ' Ff;iff ) (Using property I1I)
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_ 1 d@ _a -
@ B 5 (Using property II)
V.V(X) = %.

VX)) =EX?) - [EX)]?

2y = [ x2 BT a-1,-B B [ jari =
E(X?) = |, xf(x)dx—f x? )x“ xdx—r(a)fo x%tle=hPxdx

_ B r(a+2) )

=T gz (Using property I11)

_ 1 (atDar(e) _ a(a+l) )

~ @ 52— gz - (UsingpropertylI)
Hence,

V(X) =

a(a+1) _ (a)z _«

B2 B B

Moment Generating Function
If X is a continuous random variable has gamma distribution with parameters «,

then, the MGF of X is

My () = (i_)“.
Proof

My(t) = E(e™) = [ e f(x)dx = [ e ‘Z“)xa lo=Bxdy

F(oz)f x@le=(B-0xgy = B~ . _[@ (Using property I1I)

r(@ B-n¢
_ BT _ (B
N (ﬁ—t) '
Note that the above derivation is valid only when t < f5.

4.3.4 Special Cases

First Case

Ifwelet & = 1, we obtain f(x; 1, 8) = fe F*; x > 0. Thus, we conclude that
Gamma(l,p) = Exp(f).
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Second Case

Ifwelet a = g,ﬁ = %, we obtain f (x;2 l) = U;xfle_?; x = 0, which is the pdf

S0
of the Chi-squared distribution with v degrees of freedom. (This distribution will be
discussed in section 4.4).

Third Case

If we let § =1, we obtain f(x;a,1) = ﬁx“"le"x; x => 0, which is called the

standard gamma distribution with parameter a.

4.3.5 Incomplete Gamma Function

When X follows the standard Gamma distribution then its cdf is

o0 x¥—1g—X

F'(x;a) = fo @

This is also called the incomplete gamma function.

dx; x=0.

Proposition
If X~Gamma(a, ), then
F(x; a,f) = P(X < x) = F*(Bx; a),
where F* is the incomplete gamma function, and F is the cdf of the gamma
distribution.
Note
Table 4.1 in appendix (A) provides some values of F*(x; @) fora = 1,2,...,10 and
x = 12,..,15.
Example 4.7
Let X represents the survival time in weeks, where X~Gamma(6,0.05). Find the mean
and the variance, then calculate the probabilities P(60 < X < 120), P(X < 30).

Solution

_a _ 6
T B2 (0.05)2

a

p=y= —— = 120 weeks, and o = 2400.

P(60 < X < 120) = P(X < 120) — P(X < 60) = F(120; 6,0.05) — F(60; 6,0.05)
F*(120-0.05;6) — F*(60 - 0.05;6) = F*(6;6) — F*(3;6) = 0.554 — 0.084 = 0.47.
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Example 4.8

Suppose that the time, in hours, taken to repair a heat pump is ar.v. X having a gamma
distribution with parameters @ = f = 2. What is the probability that the next service
call will required

[. atleast 2 hours to repair the heat pump.

[I. atmost 1.25 hours to repair the heat pump.

Solution

2
flx) = %xz_le_zx = 4xe?*,

L PX>2)=1-P(X<2)=1-F(2;2,2)=1-F'(4;2)=1-0.908 =
0.092.

. P(X<1.25) = [ 4xe~2%dx

Use integration by parts:

u = 4x dv = e ?*dx
e—2x
du =4 dx v=— >
P(X < 1.25) = —2xe 2¥[§% + [*° 2¢72%dx = —2(1.25)e 2129 4 0 —

e—2x|(1).25

=1-3.5e72% = 0.7127.

Why do we need gamma distribution?

-

[ TN T
wnmnun
L Pt it

[=R=R=1-N=]-]
i

Any normal distribution is bell-shaped and symmetric. There are many practical
situations that do not fit to symmetrical distribution. The Gamma family pdfs can yield

a wide variety of skewed distributions. £ is called the scale parameter because values

other than 1 either stretch or compress the pdf in the x-direction.
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4.4 Chi-squared Distribution

The r.v. X is said to has a Chi-Squared distribution with parameter v (X~y2) if its pdf
is given by
O lee_E; x=0
f@) =flxv) =4 22r(3)
0; otherwise

Parameter of the Distribution: v > 0 (The degrees of freedom ‘df’).

Mean and Variance

If X is a continuous random variable has chi-squared distribution with parameter v
then,
E(X)=v and V(x) = 2v.

Moment Generating Function
If X is a continuous random variable has Chi-squared distribution with parameter v

then, the MGF of X is

v
1

Me(t) = (=) = - 26)73,
Note

Table 4.2 in appendix (A) provides some Lower Critical values for Chi-square

distribution.

Example 4.9
If X~x? find a, b if

. PX<a)=0.1.

Solution

a = 2.83. (From the table)

II. P(X=>=b)=0.99.

Solution

PX=2b)=1—-PX<b)=099 = P(X<b)=1-0.99 =0.01.
Therefore, b = 1.24.
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4.5 Beta Distribution

A continuous random variable X is said to have a beta distribution X~Beta(a, f) if it

has probability density function

1

fxX)=fap)= {B(a,ﬁ)
0;

x*1(1-x)F"1 0<x<1
otherwise

Where the beta function is defined as B(a, ) = fol x* 11— x)Pldx = %

r'(a+p) — _
Thus, f(x) =#rfﬁ)x“ (1 —x)F 1,

Parameters of the Distribution: a, f > 0.

Mean and Variance

If X is a continuous random variable has beta distribution with parameters a and

then,

% SR R
E(X) = a+pB and V(x) = (a+B)2(a+B+1) "

Moment Generating Function
The moment-generating function for the beta distribution is complicated. Therefore,

we will not mention it.

Example 4.10
If X~Beta(3,2), Find P(X < 3),P(X = 7) and P(X < 0.5).

Solution
_IB+2) 31,4 .~N2—1 _ 4 204 N _ 2014 _ .
f(x) = rare X 1-x)'= 5 X 1—-x)=12x*(1—-x);0<x < 1.

P(X<3)=[ 12x*(1-x)dx =1.
P(X=7)=0.
P(X < 0.5) = fOO'S 12 x?(1 —x)dx = 12 foo.s (x?2 —x¥)dx =12 ();—3—%4) 0°

= (4x3 — 3x%)|5° = 0.3125.
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4.6 Normal Distribution

The normal distribution is one of the most important continuous distributions. Many
measurable characteristics are normally or approximately normally distributed, such
as, height and weight. The graph of the probability density function pdf of a normal

distribution, called the normal curve, is a bell-shaped curve.

Six)

/ﬂ\

A continuous random variable X is said to have a normal distribution X~N (y, o) if it

has probability density function

— 2
1 _1(¥)- —00 < x < oo,

) =fma)={gvanc 7
0;

otherwise

Parameters of the Distribution: —oo < y < o (The mean), 0 > 0 (The standard

deviation).

Mean and Variance

If X is a continuous random variable has normal distribution with parameters u and
o then,

E(X)=u and V(x) = g?.

Moment Generating Function
If X is a continuous random variable has normal distribution with parameters y and

o then, the MGF of X is

MX(t) — eﬂt+%02t2.
Note

The proof for the normal distribution MGF will be reviewed later in this chapter.
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4.6.1 Some properties of the normal curve f(x) of N(u, o)

I.  f(x) is symmetric about the mean p.

II. The total area under the curve of f(x) = 1.

[II. The highest point of the curve of f(x) at the mean p.

IV. The mode, which is the point on the horizontal axis where the curve is a
maximum, occurs at = y, (Mode = Median = Mean).

V. The curve has its points of inflection at X = u + o is concave downward if u —
0 < X < pu + o and is concave upward otherwise.

VI. The normal curve approaches the horizontal axis asymptotically as we proceed
in either direction away from the mean.

VII. The location of the normal distribution depends on y and its shape depends on

My < Uz; 01 = 03 My = Uz; 01 < 03 My < Uz; 01 < 0
Where the solid line represents N (4, 0;), and the dashed line represents N (u,, 6,).

4.6.2 Standard Normal Distribution
The special case of the normal distribution where the mean y = 0 and the variance

02 =1 called the standard normal distribution denoteN(0,1). Thus, the pdf is

reduced to

1 —lzz_ B
f(z) =f(z01) = \/T—n_BZ ; 0 <z < oo,
0; otherwise

Notations
*» Therandom variable which has a standard normal distribution is usually denoted
by Z.

= |f 0 < a <1 the notation z, refers to the point in the standard normal distribution Z
suchthat P(Z < z,) = «a.
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Moment Generating Function

If Z is a continuous random variable has standard normal distribution then, the MGF

of Z is
tZ
M;(t) =e>=.
Proof
o %) 1 _1.2 %) 1 1,2
M;(t) = E(e¥) = [__ef(z)dz=[__e" = 2 dz=[__ = 2(2°-2t2) g,
oo 12 -
=/ \/%e (77 26246%-t%) 4, (add and subtract t2)
2 1 2 o L, 2 2
=e 2 [ \/%_ne_g(zz_mHZ) dz=e"z [_ %9 2D dr=eT7 1= e 7.
o 1 Llz_)2 I
U 7z dz = 1 because it is a pdf of a N(t, 1)).

Deriving the MGF of a Normal Distribution

1
Recall the MGF of the normal distribution My (t) = eHtH30°t

Proof
We know that Z = Xd;“ = X = 0Z + pn. Where Z~N(0,1) and X~N(u, o).
Using the theorem: If Y = a + bX = M, (t) = e**My(bt), we get

1,242 1 2.2
My (t) = Maz+u(t) = el My(at) = et - e2” F= et

Note
Table 4.3 in appendix (A) provides the area to the left of Z for standard normal

distribution.

4.6.3 Calculating Probabilities of Standard Normal Distribution

The standard normal distribution is very important because probabilities of any

normal distribution can be calculated from the probabilities of the standard normal

distribution.

I.  P(Z < a) from the table.

I. P(Z=b)=1— P(Z<Db)whereP(Z <b) from the table.

. Pa<Z<b)=P(Z<b)—P(Z<a), where P(Z < a) and P(Z < b) from the
table.
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Proposition

If X~N(u,0), then Z = ’%“ ~N(0,1).

4.6.4 Calculating Probabilities of Normal Distribution

. PX<a)=P (Z < af:”) from the table.
I. PX=b)=P (Z > —) =1-P (Z < D?T”), where P (Z < %) from the table.

L PlasXx<b)=P(tlsz<t)=p(z<2t)-P(z<ZY),

where P (Z < %) and P (Z < ﬂ) from the table.

g

Example 4.11

If Z~N(0,1). Find P(Z < 1.5),P(Z > 0.98),P(Z < 0) and P(—1.33 < Z < 2.42).
Solution

P(Z < 1.5) = 0.9332.

P(Z >0.98) =1—-0.8365 = 0.1635.

P(Z <0)=0.5.

P(-133<Z2<242)=P(Z <242)—-P(Z <—-1.33)=0.9922 — 0.0918 = 0.9004.

Example 4.12

Suppose that the birth weight of Saudi babies X has a normal distribution with mean

1 = 3.4 and standard deviation ¢ = 0.35.

[.  Find the probability that a randomly chosen Saudi baby has a birth weight
between 3.0 and 4.0 kg.

II. What is the percentage of Saudi babies who have a birth weight between 3.0 and

4.0 kg.
Solution
. PB<X<4)=P (30‘33: <7< 40‘::’) = P(~-1.14 < Z < 1.71)

= P(Z < 1.711) = P(Z < —1.14) = 0.9564 — 0.1271 = 0.8293.

II. P(3<X<4)-100% = 0.8293-100% = 82.93%.
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4.6.3 Normal Approximation to Binomial

The binomial distribution is symmetrical (like the normal distribution) whenever p =
0.5. When p # 0.5, the binomial distribution is not symmetrical. However, the closer
p is to 0.5 and the larger the sample size n, the more symmetric the distribution
becomes. Fortunately, whenever the sample size is large, you can use the normal
distribution to approximate the exact probabilities of the items of interest.
Proposition

IfX is a binomial r.v. with mean u = np and variance 6 = npq, then the limiting form

of the distribution of

X-np

vnpq '’

As n — oo, is the standard normal distribution N(0,1).

Note
As a general rule, you can use the normal distribution to approximate the binomial

distribution whenever np,nq = 5.
Steps to solving a Normal approximation to the Binomial distribution

Step 1. Check if appropriate to use the approximation.

Rule of Thumb: np > 5andnq = 5.
Step 2. Calculate p = npando = /npg wherep + q = 1.

Step 3. Approximate the r.v. X with anormal r.v. N(n = np,o = /npq).

Step 4. Use the continuity correction factor.
Change all the ‘<’ to ‘<’ and >’ to ‘2’, remember to correct the endpoints to
new value (i.e. X > 6 would change to X > 7 and X < 9 would change to
X < 8).2.Forthe ‘2, subtract 0.5, and for the ‘<’, add 0.5.
P(X>a)=P({ =2a—-0.5),
P(X<b)=P(Y <b+0.5),
PX=c¢)=P(c—05<Y<c+0.5),
where Y~N(u, o).

Step 5. Solve the normal problem.
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p(X:c):p(wSZSW).

Example 4.13
Let X be the number of times that a fair coin when flipped 40 times lands on head.
Use normal distribution to find the probability that

[. it will be equal to 20.

II. it will be less than 17.

Solution
p(H) =p =0.5=q=p(T),
n =40,x = 20.

Stepl.np =nqg =40x 0.5=20=5.
Step 2.1 = 20,0 = \/npq = V10 = 3.16. thus, X ~ N(20,3.16).

Step 3.

L. P(X=20)=P(MSZSM)

3.16 3.16

= P(—0.16 < Z < 0.16)

= P(Z <0.16) — P(P(Z < —0.16)
= 0.5636 — 0.4364 = 0.1272.

(16+0.5)—20)

IL P(X < 17) = P(X < 16) =P(ZS e

= P(Z < —1.11) = 0.1335.

59




216 STAT Actuarial Probability Weaam Alhadlaq

4.7 Student’s t Distribution

A continuous random variable T is said to have a t distribution with parameter v if it

has probability density function

v+1 v+1
_> t2\" 2z
\2) te o
O = few) = e (1F5) T3 o <t<e
0; otherwise

Parameters of the Distribution: v > 0.

4.7.1 Some properties of the t distribution

[. It has mean of zero.

[I. Itis symmetric about the mean (mean=median=mode).

[II. Compared to the standard normal distribution, the t distribution is less peaked
in the center and has higher tails.

[V. It depends on the degrees of freedom.

V. tdistribution approaches the standard normal distribution as v approachesoo.

Notation

P(T<t,) =a.

Note

Table 4.4 in appendix (A) provides the Lower Critical Values for t Distribution.

Example 4.14
Ifv= 15, find P(T <1. 753), to.99-

Solution

P(T < 1.753) = 0.95.

to'gg = 2602
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Chapter Five

Joint, Marginal, and Conditional Distributions

In the study of probability, given at least two random variables X, Y, .., that are
defined on a probability space, thejoint probability distributionforX,Y, ... is
a probability distribution that gives the probability that each of X, Y, ... falls in any
particular range or discrete set of values specified for that variable. In the case of only
two random variables, this is called a bivariate (joint) distribution, but the concept

generalizes to any number of random variables, giving a multivariate distribution.

For both discrete and continuous random variables we will discuss the

following

= Joint Distributions.

= Cumulative distribution.

= Marginal Distributions (computed from a joint distribution).
* Joint Mathematical Expectation

= (Conditional Distributions (e.g. P(Y = y|X = x)).

= Joint Moment Generating Function.

5.1 Joint Distributions

5.1.1 Joint Probability function
Joint distribution of two random variables X and Y has a probability function or

probability density function f(x,y) that is a function of two variables (sometimes

denoted fx y(x, ¥)).
Discrete Case

If X=ux4,%5,...,x, and Y = y,,y,, ..., ¥, are two discrete random variables, then the

values of the joint probability function of X and Y ‘f (x, y)’ is
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f(x,y) V1 V2 Yij Ym 2y f(xy)
X1 fCe,y1) | f(x1,y2) f(xl»J’j) f 1, ym) fx(x1)
X2 f(x,y1) | f(x2,92) f(xz'Yj) f (%2, Ym) fx (x2)
Xi fCey) | f(y2) f(xi,5) fCeonym) | fx(xi)
Xn f(xn: yl) f(xn: }’2) f(xn» yj) f(xn: ym) fX(xn)
2 Y| fr() fr(&2) fY(yj) fr m) 1

f(x,y) = P(X = x,Y = y) must satisfy
. 0<f(x,y) <1

1. Znyf(ny) =1L

Continuous Case

If X and Y are continuous random variables, then f(x, y) must satisfy
. f(x,y)=0.

1. fxfyf(x,y) dydx = 1.

5.1.2 Joint distribution function

If random variables X and Y have a joint distribution, then the cumulative
distribution function is

Y w2 _of(s,t); IfXYarediscreter.v.s

F ) = P X S ) Y S =
(x,y) ( x y) {f_yoo f_xoo f(s,t)dsdt; IfXY are continouosr.v.’s

Note

. a2
In the continuous case, I3y F(x,y) = f(x,y).

Some Properties of the Joint CDF

» F(x,y)is non-decreasing in both x and y.
= F(x,00) = F(x).

" F(oo,y) =F(y).

= F(oo0,00) = 1.

« F(x,~) = F(=,y) = F(=00,~0) = 0.
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5.1.3 Marginal probability Distributions
If X and Y have a joint distribution with joint density or probability function f(x,y)
then
» The marginal distribution of X has a probability function or density function
denoted fy(x) is equal to
Yy f(x,y); In the discrete case

fx(x) = {

f_oooof(x, y) dy; Inthe continouos case

* The marginal distribution of Y has a probability function or density function

denoted fy () is equal to
Y. f(x,y);  Inthe discrete case

fr&) ={

ffooof(x, y) dx; Inthe continouos case

5.1.4 Joint Mathematical Expectation

If g(x,y) is a function of two variables, and X and Y are jointly distributed random
variables with joint probability function f(x, y), then the expected value of g(x,y)
is defined to be

Yy 2290 f(xy); In the discrete case

E X, Y = e} oo}
[g(X, V)] {f_oo f_oog(x, v)f(x,y) dxdy; Inthe continouos case

Special cases

. IfgX,Y) =X, weget

Yy 2axf(x,y); In the discrete case
E[giX,Y)] =1 (o (oo _ .
o xf(x,y) dxdy; In the continouos case
Yax 2y fx,y) = Xpxf(x) = E(X); In the discrete case
- {fjooox IZ f(x,y) dydx = [°_xf(x)dx = E(X); In the continouos case

Similarly for g(X,Y) =Y.
I Ifg(X,Y) = (X —u)? we get

Yy 2alx = wAf(x,y); In the discrete case

FlgX,Y)| =14 .&% .o
lg(x.1)] {f_oo f_oo(x — w?f(x,vy) dxdy; Inthe continouos case
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Yelx—w? ¥, fx,y); In the discrete case
B fjooo(x —u)? ffooof(x, y) dydx; In the continouos case

Yolx—w?f(x) =VX); In the discrete case
B fjooo(x — w?f(x)dx =V(X); Inthe continouos case

Similarly for g(X,Y) = (Y — u)>.

Example 5.1

A company that services air conditioner units in residences and office blocks is
interested in how to schedule its technicians in the most efficient manner. The
random variable X, taking the values 1,2,3 and 4, is the service time in hours. The
random variable Y, taking the values 1,2 and 3, is the number of air conditioner units.

The joint probability function for X and Y is given in the table below

X: Service Time

1 2 3 4
Y:Numberof | 1 | 0.12 | 0.08 | 007 | 0.05
Air 2 | 008 | 015 | 021 | 013
Lomdiens 3 | 001 | 001 | 002 | 007
Units

I.  Proofthat f(x,y) is a joint probability function.

II. Find: £(2,1), fx(3),F(2,3),P(X <3,Y >2),P(X +Y < 4).
III. Find the marginal function fy (y).

IV. Find E(Y),V(Y), E(XY).

Solution
I.  First itisclearthat0 < f(x,y) <1, Vx,y.
Second, )., ny(x, y) =012+ 0.08 +--- 4+ 0.07 = 1.

1. f(2,1) = 0.08.
fx(3) = 0.07 + 0.21 + 0.02 = 0.3.
F(2,2) = f(LD) + f(1,2) + f(21) + f(2,2) = 0.12 + 0.08 + 0.08 + 0.15 =
0.43.
P(X <3,Y >2) = f(1,3) + f(2,3) = 0.01 + 0.01 = 0.02.
PX+Y<4)=FfLD+FL2D+F(13)+ 2D+ f(22) + f(3,1) =051
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[1L

Y 1 2 3 | Sum
fyr(¥)] 0.32 | 0.57 | 0.11 1

IV.

Y 1 2 3 Sum
fr(y) | 032 ] 057 | 0.11 1
yf(y) | 032 | 1.14 | 0.33 | E(Y) = 1.79
y2f(y)| 0.32 | 2.28 | 0.99 | E(Y?) = 3.59

Thus, E(Y) = 1.79,and V(Y) = E(Y?) — [E(Y)]? = 3.59 — (1.79)? = 0.38509.
Now,

E(XY) = Y51 Nama xyf (x, ) = (1)(1)(0.12) + (1)(2)(0.08) + (1)(3)(0.01) + - +
(4)(3)(0.07) = 4.86.

Example 5.2
Consider the joint probability function
fx,y)=clx+y);, 0<xy<2.
Find ¢, fx (%), fr ), F(1,1), V(X), E[X (X + 6)].
Solution

* To find c we know that
2
fxfyf(x,y) dydx=1= 1= cfoz foz(x +y) dydx = cfoz [xy + y?] |3dx

= CfOZ(Zx + 2)dx = C[xz + 2x]|% =8c>c= 1

8

Thus, f(x,y) = %.

1

- K@ =il +ydy=i[o+L]3

x+1

lx+2) =21 0<x <2
8 4

1 1

1 2 2 1 +
s RO =3[+ yde=i[+xy|B=c@y+2) =2 o<y <2

» F(1,LD)=PX<1Y<1= %fol fol(x +y) dydx = lfol [xy +y72] |3dx =

8
(e an =24 =
= VX)) =EX?) - [EX)]?

EQ) =1 f2xGe+ Ddx =2 202+ ) dx =3[+ 2|3 =1[+2| =1
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E(X?) =if02x2(x+ 1) dx =if02(x3 + x?%) dx =%[§+x3—3] 13 =i[§+§] =§.

~voo=3-[f -2

6l = 36

« E[X(X+6)]=EX?+6X)=EX?)+6EX)=2+6 (g) =2

5.1.5 Joint Moment Generating Function

Given jointly distributed random variables X and Y, the moment generating function
of the joint distribution is

Yx Xy etV f(x,y); In the discrete case

M t,t,) = E eXt1+Yt2 = 0 00 )
xy (t1,t2) ( ) {f_oo f_ooeXt1+yt2f(x, y) dxdy ; In the discrete case

Whel’e, —00 < tll tz < oo,

Some Properties

If X, Y are r.v’s and 1y, 1, are integer values, then
l.  Myy(0,0) = 1.

Il Myy(ty,0) = Mx(ty).

1. My (0,t;) = My(t,).

o
V. @Mx,y(tl,tz)hlztzzo = E(X™).

0"z
V. @Mx,y(tptz)hl:tz:o = E(Y"™).

r1+7:
VI. aiIiTZZMX'Y(tl’ t2)lt,=t,=0 = E(X™Y"2). (The (r; + r;)th joint raw moment)

Example 5.3

Consider the joint probability function

Y

fG,y)| -2 | 0 5
1 [015]025] 0.2
3 0.2 [0.05|0.15

X

Find M(t,, t,), then use it to find E(X), E(XY).

Solution

M(tll t2) = Z?C=1 Z:?/:—Z ext1+yt2f(x’ }’)
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= 0.15e!172t2 4 0.25eft + 0.2et15t2 4 0.2¢31172t2 4 0.05e3%1 + 0.15e3t1 75t
)
E(X) = a_thX,Y(tli t2)le,=t,=0
= 0.15e17%2 4 0.25e"1 + 0.2e"175%2 + 0.6e31172f2 + 0.15e3"1 4 0.45e30+3%2| _ _,
= 1.8.

R a -
E(XY) = MMX,Y(t1!t2)|t1=t2=0 = a_tz [0.158t1 2t + 0.253t1 + 0.Zet1+5t2 +

0.6e31172t2 + 0.15e31 + 0.45e30+5%] | _, _,

= [~0.3et172tz 4 gla¥5tz — 1 230172tz 4 D 5E3NSL]| =175,

5.2 Conditional Distributions

5.2.1 Conditional Probability function
The probability of the random variable X under the knowledge provided by the value
of Y is given by

_ &y,
fxir=y(xly) = o) f(y) > 0.

Note that fx|y—, (x|y) must satisfy
I fxy=y(xly) = 0.
{Zx fxiv=y(xly) = 1; In the discrete case
I

ffooo fxjy=y(x|y) dx = 1; In the continuous case

Similarly,

(x,y)
fY|X=x(y|x) = ff)(cx))/ ; f(x)>0.

5.2.2 Conditional Distribution Function
The conditional CDF is as follows
y—wf(sly); Inthediscrete case

= < < -
F(x|y) =P[X < x|Y < y] {fi‘wf(ub/) du; In the continuous case

Note

~F(xly) = f(xly).
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Example 5.4
If the joint probability function of X and Y is given by f(x,y) =2; 0<x<y < 1.

Find £ (x), f ), f (x1y), f (1), F (x|y), F (y|x), f (x]0.5), F (¥]0.25).

Solution
= f=[l2dy=2yll=2-2x=2(1-x); 0<x<L.

. f(y)=f0yde=2x|g=2y; 0<y<l1.

- fx|y=y(x|y)=%=%=—; O<x<y<l1.

- fy|x=x(}’|x)=f;fg)=2(12_x)=i; 0<x<y<l

= FG) = [ fGyde=[{ode=215=2 0<x<y<1

= FO = fOolmdy =[] dy=221 =5 0<x<y<1

1 1
. f(X|05)—E—2,0<X<E

y—0.25
0.75

= F(y]0.25) =

1 1
—5(4}/—1), Z<y<1'

5.2.3 Conditional Expectation
If X and Y are two r.v’s have a joint probability distribution f(x,y), then the
conditional expectation of any function of X, g(x) givenY = y is
229 fxy=y (xly); In the discrete case
ElgXlY =y] = {

fjooo g(X) fxjy=y(x]y) dx; Inthe continuous case

Similarly for E[h(Y)|X = x], where h(y) is a function of the r.v. Y.

Special Cases

. IfgX) =X, weget

Yx Xfxyr=y(x1y); In the discrete case

E(X|Y:)’):{ = Ux|y

ffooo X fxjy=y(x|y) dx; In the continuous case

which is the conditional expectation of X given Y (this expectation is considered

as a variable of Y).

L Ifg(X) = (X — uxy) we get

E|(X = uxy)’IY =y] = VXIY = y) = o,
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which is the conditional variance of X given Y

Corollary

The conditional variance can be expressed as

VXIY =y) = EX?|lY = y) — [EXIY = 9)]* = EX?Y =y) — &y
Theorem

Let X, Y be random variables,a,b € R,and g : R — R.Assuming all the following
expectations exist, we have

I. E(a|Y)=a.

I. E[(aX + b)|Y] =aEX|Y)+ b.

III. E[E(X|Y)] = E(X), similarly E[E(Y|X)] = E(Y).

Proof

The first two are not hard to prove, and we leave them to the reader.

Consider (IIT). We prove the continuous case and leave the discrete case to the reader.
EX|Y) = fjooo Xfx|y=y(x|y) dx (a function of Y). Thus,

E[EXINT = [T EXINfy () dy = [T [~ 2 f=y xly) dx]fy (y) dy

= [ 0 B2 fo ) dxdy = [, [ xf (o) ddy [, x[[7, £ (6, ) dy] dx

= J2, xf () dx = E(X).

Theorem

If X,Y have a joint distribution, then the marginal variance of X can be factored in

the form

V(X) = Ey[VIXIV)] + W[EXIY)].
Similarly,

V(Y) = Ex[V(Y1X)] + Vx[E(Y|X)].
Example 5.5

If f(x|y) = %; 0 < x <y < 1.Find E(X|V), V(X|Y).

Solution
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EXIY) = [ xf(xly)dx—fyxdx —|g=§; 0<y<Ll

2 3 2
E(X?%|y) = foyxzf(xly)dx = foy%dx =:—y|g =Y. 0 <y < 1.Thus,

3

V(XIY) = EQ2IY) - [E@IN2 =X -2 =2 0<y<1.

12

5.2.4 Moment Generating Function for Conditional Distributions
If X, Y have a joint probability distribution, and f(x|y) is the conditional probability
function of X, then the moment generating function for the conditional distribution

(if it exist) defined as

@ = Bty = = {2 L

Properties

1L % My y (£)|¢=o = E(X"|Y = y), which is the "*h conditional raw moment.

Example 5.6
If fxly) = %; 0 < x <y < 1.Find My y(¢) then use it to compute E(X|Y), V(X|Y).

Solution

Y oxt y_ xt y _ eyt_l
My (t) = f f(xly) dx = f dx “ o T T
Now,

yt _1 OT 242 343 Ter
My (©) = = (Zr oI —1) = (1+yt+y—!+yT+---+yr! o= 1)
B L GRS AL A LTI A ST
_1+2!+3!+ +(r+1)!+ _1+2 1'+ 2.+ +(r+1) r'+
Therefore,

Y

=0Ty
Hence,

E(XIY) = pyy = 2.
2
E(X?|Y) = pj =

vxly) =2
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Chapter Six
Covariance, Correlation, Independence of Variables

(Stochastic Independence)

6.1 Covariance of random variables

If random variables X and Y are jointly distributed with joint probability function
f(x,y), then the covariance between X and Y is defined as
oxy = Cov(X,Y) = E{[X - EQOI[Y —EW)]} = E[(X — ) (Y — py)]
= EXY) - EX)E().

Proof
axy = Cov(X,Y) = E[(X = ) (Y — uy)] = EQXY = Xuy — Yy + pixpy)

= E(XY) — ERuy) — E(Vpy) + EQugpy) = E(XY) — puyE(X) — puxE(Y) + pxpy

= E(XY) — uypx — pxtly + pixtty = E(XY) — 2uxuy + pxpy

= E(XY) — uxpy = EQXY) = E(XE(Y).

Some Properties for Covariance

If X, Y, Z are r.v’s and a,b are constants, then

. Cov(X,X) =V(X).

Il. Cov(X,Y) = Cov(Y,X).

I1l. Cov(X,a) = 0.

IV. Cov(aX,bY) = abCov(X,Y).

V. Cov(X+Y,Z) =Cov(X,Z) + Cov(Y, Z), this property can be generalized to
Cov(Z?lei,Z}"zl Y;) = izt Xje1 Cov(X,Y;).

VI VX 1Y) =V(X) + V() £ 2Cov(X,Y).

Proof
IL 111, IV are not hard to prove, and we leave them to the reader.

. Cov(X,X) =EX -X)—EMX)EX) = EX?) - [EX)]? = V(X).
V. Cov(X+Y,2) =E[(X+Y)Z] - E(X + Y)E(Z)

=EXZ+YZ)-[EX)+EW)]E(Z)=EXZ)+E(YZ)-EWX)E(Z)-E(Y)E(Z)
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= [E(XZ) — EXX)E(Z)] + [E(YZ) — E(Y)E(Z)] = Cov(X, Z) + Cov(Y, Z).

VI. VIX+Y)=Cov(X+Y,X+7Y) (FromlI)
= Cov(X,X) + Cov(X,Y) + Cov(Y,X) + Cov(Y,Y) (FromV)
= Cov(X,X) + Cov(X,Y) + Cov(X,Y) + Cov(Y,Y) (FromlII)
=VX)+V({)+2Cov(X,Y). (Froml)

We can prove the case V(X — Y)by the same way.

6.2 Correlation Coefficient

The correlation is a measure of the linear relationship between X and Y. It is obtained

by
Cov(X)Y) _ Cov(X)Y)

vOOv(y)  oxoy

where gy and gy are the standard deviations of X and Y respectively.

pxy = Corr(X,Y) =

Some Properties for Correlation

If X, Y are r.v’s and a,b,c,d are constants, then

I pxy = Prx-

II. pxx = 1. (strong positive relationship)

1. px_x = —1. (strong negative relationship)

V. -1 < Pxy <1

V. P(ax+b),(cY+d) = Pxy-

Proof

Cov(aXtb,cY+d) acCov(XY) _ Cov(XY) _
\/V(aXib)V(CYid) - \/CI.ZV(X)CZV(Y) - \/V(X)V(Y) - pX,Y'

VI. P(ax+b),(cY+d) —

Example 6.1
If f(x,y)= xTTy; 0 <x,y < 2.Find Cov(X,Y), V(X +7Y), pxy-
Solution

From example 5.2 we got

E(X) = E(Y) = % and V(X) = V(Y) = %
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= Cov(X,Y) = E(XY) — E(X)E(Y)

E(XY) = foz foz(xy)% dxdy = %foz foz(xzy + xy?) dxdy
_1e2(xy  x*y*\ 2, 1.2(8y 2 1 (4y%+2y%\ 2 _ 4
=3 (T‘l'T)Iody—gfo (?+2y )dy—g(T)Io =;=1333.

Cov(X,Y) =2~ (g)z = —0.0278.

. _ Cov(X,Y) __  0.0278 _

Pxy = ———=——= = —0.0909.
JVXOv(Yy) /(%)2

= VX +Y)=VX)+V(Y)+2Cov(X,Y) = % + i —2-0.0278 = 0.5556.

6.3 Independence of random variables

Random variables X and Y with cumulative distribution functions F(x) and F(y) are

said to be independent (or stochastically independent) if and only if the cumulative

distribution function of the joint distribution F (x, y) can be factored in the form
F(x,y) = F(x)F(y); forall (x,y).

Alternatively, stochastic independence can be defined via the probability functions,

that, X and Y are independent if and only if

fO,y) = f(x)f(y); forall (x,y).

Corollary

If Xand Y are two independent r.v.’s then

Flxly) = fxy) _ fre) _ F(x).

f o)
Similaly,
flx) = f(y).
Note

To proof that any two variables X and Y are independent we only need to proof one
of the following

L F(x,y) =FX)F().

I F(x]y) = F(x).

. F(y|x) = F(y).

V. fx,y)=fQf ).
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V. flxly) = f(x).
VL f(ylx) = f().

6.3.1 Joint Expectation Under Independence Condition

If the two r.v’'s X and Y are independent, then

L. E(XY)=EX)E(Q),
1. E(X|Y) = E(X),
1L E(Y|X) = E(Y),

(and vise versa).

Example 6.2

(L, 0<x<1l0<y<1 . .
If f(x,y)= {O; Otherwis , check if X and Y are independent.
Solution

First, let find the marginal probability functions
1

fx) =, 1dy =yl =1and
1

f) =), 1dx=xlg=1

Now, since

fOy)=1=f)fO).
Thus, the random variables X and Y are independent.

What is the distribution of X (or Y)?!

Example 6.3
Are the random variables X and Y with the following joint probability density table
independent?
Y values
0 1 2 3
1
0| 3 0 0 0
1 1 1
x |19 55 |5
values| 2 | o | 1 | 1 | o
4 8
30| =]0]o0
8
Solution
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First, let find the marginal probability functions

Y values

0] 1] 2] 3 [k
1 1
0 3 0 0 0 3
1 1 1 3
X 0515 s |8
values 2 0 1 1 0 3
4 8 8
3 | 0 % 0] 0 %

1 4 2 1
FOY 5151 5| 3 1

Now, since

f0,0) == #—==-2= f(0)f (0).

64

Thus, the random variables X and Y are not independent (dependent).

(We can use any pair other than (0,0) to reject that X and Y are independent).

6.3.2 Covariance Under Independence Condition
If Xand Y are two independent r.v.’s then
I. Cov(X,Y) =0. (Butthe converse is not true in general)

I VX+Y)=V(X)+V(Q).

Proof

. Cov(X,Y) =EXY)—EX)EQY) =EX)EY)—-EX)EQY) =0.

L VIX+Y)=VX)+ V() +2CovX,Y) =V(X)+V(Y)+0 (From I)
=V(X)+ V().

6.3.3 Correlation Under Independence Condition

If Xand Y are two independent r.v.’s then

pxy = Corr(X,Y) = 0;

but the converse is not true in general.
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Example 6.4
Let the joint probability density function of X and Y is
Y values
110 1 | f(x)
1 X2 L] =
% ) 16 | 16 | 16 | 16
3 3 6
values 0 16 0 16 | 16
1 |2 L2
16 16 16 16
5 6 5
f Ol wl ol 1
[.  AreXandY independent.
II. Find Cov(X,Y) and py y.
Solution
[. Since,

—1,-1) == = 0.0625 # 0.0977 = > = 2. 2 = £,(-1fy(~1
f(—1, )—16— . # 0. = e 1e 16_fX )fy (=1).
Therefore, X and Y are dependent.

II. Cov(X,Y)=E(XY)—-EX)E(Y)
5 6 5
EX)=E) = _1'E+0'E+ 1-3— 0.

EXY)=-1-—-1-—1-0-~-—1-1-—+-+41-1-—= 0. Thus,
16 16 16 16
Cov(X,Y) = 0 — 0 = 0. Therefore,

pxy = 0.

Note Cov(X,Y) = pyy = 0 even that X and Y are dependent.
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Chapter Seven
Distributions of Functions of Random Variables
(Transformations)

In this chapter, we will study how to find the distribution of a function of a random

variable with known distribution, which is called transformations of variables.

7.1 Discrete Case

7.1.1 The Case of One Variable
Suppose that X is a discrete random variable with probability function f (x). If g(x)is

a function of x, and Y is a random variable defined by the equation Y = g(X), then Y
is a discrete random variable with probability function f(y) = ¥, 4 f(x) -given a
value of y, find all values of x for whichy = g(x), (say, g(x1) = g(x;) = = g(x;) =
y), and then g(y) is the sum of those f(x;) probabilities.

Corollary
If X and Y are independent random variables, and g and h are functions, then the

random variables g(x) and h(x) are independent.

There are two cases
[.  One-to-one correspondence.
I[I. Not one-to-one correspondence.

However, we will focus on the first case.

If g is a one-to-one function, then the inverse image of a single value is itself a single
value. For instance, g(x) = x3, this inverse function is the cube root, while g(x) = x?,

this inverse function is the square root which may results in two values.

Steps to Obtain fy(y) for One-To-One Functions
. Compute Y values that corresponding to X values, y = g (x;), g7 1(x3), ....

II. Find the inverse x = g~1(y)
L () =P(Y =y) =PgX) =y) =P(X =g7*M) = fx(g7*®).
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Hence, the pmf of Y is
) =fx(g7r ) ¥y =g(x1),g0xz), .o
Example 7.1
If the r.v. X has pmf fy (x) = 1x—5; x = 1,2,3,4,5. Find the pmf of ther.v.Y whrerY = X —
3.
Solution

Note that Y = g(X) = X — 3 is a one-to-one function. Thus,

s x=12345=y=(1-3),(2-3),(3-3),(4—3),(5-3) =-2,-1,0,1,2.
" Y=X-3=2g9g')=X=Y+3=>g9"'(y)=x=y+3.

= ) =fx(g7 ) = by +3) =22,
Thus,; fy(y) = y—+3; y=-2,-10,1,2.

15

Example 7.2

If the r.v. X has pmf fy(x) = =; x = 0,1,2. Find the pmf of the r.v. Y whrer Y = X3.

W

Solution

Note thatY = g(X) = X3 is a one-to-one function. Thus,

= x=0,12=y=03%132%=0,18.

1 1
s Y=X324 (M) =X=VV=Y3=2g"1(y) =x =y5.

1

£ O)=f(97T0)) = fx (yg) =3

Thus,; fy(y) = %; y =0,1,8.

7.1.2 The Case of Two Variables

Suppose the two discrete r.v.’s (X, X,) has joint probability function fy_ x, (x, x;) and
joint sample space Qy y, . Let (Y1,Y;) be some function of (X;,X,) defined by Y, =

91(X1,X,) andY, = g,(X;,X,) with the single-valued inverse given by X; =

97" (Y1, Y,) and X, = g; (Y1, Y). Let Qy,y, be the sample space of ¥;,Y,. Then, the joint
probability function of (Y;,Y,) is given by
fror, Y1, Y2) = fx,x, (91_1(3’1'3’2)' 92" O, 3’2))-
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Example 7.3

Let the two r.v.’s X;, X, have a joint probability function as follow

X2
f(x1,x)| 0 1 2 3
0 0.06 | 0.07 | 0.11 | 0.07
X1 1 0.08 | 0.09 | 0.12 | 0.09
2 0.06 | 0.08 | 0.10 | 0.07

Find the pmf of the r.v. Y where Y = X; + X,.

Solution

= x,=012&x,=0,123= y=0,1.234,5.

=  We will compute the values of fy(y) by equivalency as follow

" fr) =P =y) Thus,
fy(0) = P(X; = 0,X, = 0) = 0.06,

fy(l) = P(Xl = O,XZ = 1) + P(Xl = 1,X2 = O) = 0.07 + 0.08 = 0.15,
fy(z) = P(X1 =0,X; = 2) +P(X1 =1,X, = 1) +P(X1 =2,X; = 0)

=0.11 + 0.09 + 0.06 = 0.26,

fy(3) = P(Xl = O’XZ = 3) +P(X1 = 1,X2 = 2) + +P(X1 = 2,X2 = 1)

=0.07+0.12 + 0.08 = 0.27,

Therefore,
y 0 1 2 3 4 5
£ 00]011(02]021]01] 0.0
YOl ¢ | s | 6| 71 9|7

7.2 Continuous Case

There are three techniques to compute the distribution of function of random

variable:

= Method of distribution function. (F(x))

= Method of change-of-variable. (One-to-One transformation)

= Method of moment-generating function. (Mx(t))
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7.2.1 Distribution Function Method (CDF)

Let Xy, .., Xp~f (x4, .., xp) and Y = g(Xy, ..., X,,). Then we follow the following steps
to obtain fy (y) by using the CDF technique

. Find Fx(x). (If it not given)

II. Findy rang in terms of x.

IIL. Compute  Fy(y) =P <y)=P@X) <y) =P(X <g7'(y) = Fx(97*®)

over the region whereY < y.
_ ar,(y) . .
IV. Compute f, (y) = e (by integrating the CDF).

Example 7.4

Let the probability density function of a random variable X is

fx () = {ZOx ;;t()h:rj\c/vfsel
Use the CDF method to find the probability density function of the random variable
Y = 8Xx3.
Solution

. FX(x)=f0xedx=x2|f§=x2
* Therangofy:0<x<1=20<x3<1=20<8x3<8=>0<y<8,

= F,(y)=P(Y<y)=PBX3<y)= P(X3 s%) = P(X < %yi) = Fy Gyi)
() =H%; 0<y<s.

" fy(y) =

dFy(Y) _ i —% y
dy 12y 6

Example 7.5

Let X~Exp(6) i.e. fy(x) = 8e~%%;x > 0. Use the CDF method to find the distribution

of the random variable Y = e”.

Solution

= Since X~Exp(0) then Fy(x) = 1 — e~ 9%,

* Therangofy:0<x<w=>e’<e*<e®*>1<y< .

* F(y) =P <y)=P*<y)=PUn(e") <n@®)) =PX <n®)) =
Fy(in(y) =1-e "0 =1 - en0™) =1-y7¢; 1<y <o,
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dFy(y) =09y~ 0+); 1 <y < 0.

) =
Example 7.6
Let X~N(u, 0). Use the CDF method to find the distribution of the random variable
7 = Xr
g

Solution

fr(x) = Tl

Note At this example we notice that it is difficult to compute Fy (x), therefore, we will

use the differentiation that % Fy(y) = fy(y).

= —0o < z < 00,

» Therangofz: —o0 < x < o0 = —F < T°F %

< <
. FZ(Z)ZP(ZSZ)=P(%SZ)=P(XSO‘Z+M)=FX(O'Z+,LL)

dFZ(z) dFx(oz+u) _ dFx(oz+p) L dx

f2(2) = dz dx dz

= fx(az + u) - o, (by using the chain rule) thus,
f2(z) = G'a\/lﬁ “alozHum? _ \/i_n e 20D = %ﬂ e —00 < Z < oo;
i.e. Z~N(0,1).

7.2.2 Change-of-Variable Method

7.2.2.1 One Variable

Definition

Let X be a continuous random variable with probability density function f (x) defined
over the rang c; < x <c,, and, letY = g(X) be an invertible function of X with

inverse functionX = g~1(Y).Then, using the change-of-variable technique, the

probability density function of Yis

) = felg7 o)) - [

defined over therang g7 (c;) <y < g (cy).
Example 7.7
Use the change-of-variable method to find the distribution of the random variable Y

in Example 7.4.
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Solution

= gl =%

* Therangofy:0<x<1=0<x3<1=20<8x3<8=>0<y<8,

« FO) =flgT ) [P “”I—fx(ﬁ) |1y = z(y—)y

1 1
=<y 3 0<y<8.

Example 7.8
If X~Uniform(2,5). Use the change-of-variable method to find the distribution of the
random variable ¥ = —=—,
14X
Solution
1
= fx(x) = 3

. Yzﬁ S Y4YX=X2Y=X-YX>Y=X(1-Y) = eryy.Hence,

— Y
97 ) =1

. Therangofy2<x<5=>3<1+x<6$ <—< == <y<—

« A =f(g70) L2 = 5 () |5 §(1 — )
_a-n7? 2 5
- 3 '3 <Yy < 6

Example 7.9

Let X~Exp(1) ie. fyx(x) = 2e=**;x > 0. Use the change-of-variable method to find

1
the distribution of the random variable Y = XB5.

Solution

1
= Y =XF = X=YPF Hence g 1(y) =Y~

1

1
* Therangofy:0 <x <o =0f <xf <

* A =flg7 ) [ = £ (F) - By = aByF e y > 0,8 > 0;

i.e. Y~Weibull Distribution.

|~

>0<y<ow
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7.2.2.2 Two Variables

Definition

Suppose the two contiuous r.v.’s (X1, X;) has joint probability function fy, y, (xq, x2)
and joint sample space Qy .. Let (Y4,Y;) be some function of (X;,X,) defined by Y; =

91Xy, X;) andY, = g,(X;,X,) with the single-valued inverse given by X; =

97 (Y1, Y;) and X, = g;' (Y3, Y,). Let Oy, be the sample space of Y1, Y,. Then, we usually
find Qy, y, by considering the image of (. x, under the transformation (Y3, Y,).
The joint pdf Y; and Y, is

fror, 152) = U fxox, (97 01, ¥2).97 (01, ¥2)),

where |/| refers to the absolute value of the Jacobian "J" which is given by

9x;  9xy 991 v1y2) 991 (1y2)
] — dy: 0y, — 0y, 0y,

Ox;  0x3 897 y1y2) 097 (Vi.y2)

0y; 0y 0y, ay,

Example 7.10
Let X; and X, are two independent random variables having exponential

distributions with parameters A; and A, respectively. Find the distribution of ¥; =

X1
X1+X5

X1 +X2 and Y2 =

Solution
" fr,(x) = e™M x> 0and fy, (x;) = e %2 5x, 2 0.
Since X; and X, are independent, hence

f(xl,xz) = Ale—l1x1_lze—lzx2 — 11128_(Alx1+’12x2)

X1

u Y]_:Xl +X2&Y2:X1+X2

= Xl == Y1Y2 = XZ == Yl - Y1Y2 = Yl(l - Yz).

Hence, g7 ' (v, 2) = ¥,¥, & 97 (1, ¥2) =y, (1 —y,).

X1

» Therangofy, &y,:0< <1=0<y,<1;

X1+ Xp

OSylyZSOO = 0Sy1S00

- _leyr ey | Y2 Vi _
J= 6_x: 6_xz 1=y, _y1|——y1y2—y1(1—y2)——y1.
dy, 0y,

" fry,(01,¥2) = |]|fx1X2(91_1(3’1’)’2)’92_1(3’1’3’2)) = |_y1|f (3’13’2'3’1(1 - yz))
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— /‘lllzyle_(llylyz‘i'lZyl(l_yz))

= L A,y e [h=yiyetlonal . 0 <y 0 <y, < 1.

Example 7.11
Let X; and X, are two independent random variables having Gamma distributions
with parameters @ = 2 and = 1. Find the distribution of X; + X,.
Solution
" fx,(x1) = xe7 ;x; = 0and fy, (x3) = x,67% ;x, 2 0.

Since X; and X, are independent, hence

f(xg, %) = xpe %1, x,e %2 = x; x,0”F1t¥2),
» LetV =X,&V,=X;+X,=2X, =Y.

Also, X, =Y, — Y.

Hence, 97" (y1,¥2) =y, & 92 O0.y2) =¥, = -

* Therangofy, &y,:0<x; =y; <0 &0<x, =y, —y; <0205y, <y,.

0x, O0xq
d d 1 0
= =00 = =1-0=1.
0x; 0x -1 1
oy, 0y,

" fr, 01Y2) = I (07 O y2),97 00, ¥2)) = 1Uf (v, v, —v,)
=W (yz _yl)e_(y1+y2_y1) =V (yz —yl)e_yz » Yy = V1 = 0.

fr,v2) = foyz y1 (V2 —y1)e 2 dy, = e™? foyz 1Yz — ¥1) dys

2 3 3 3 3

ie. Y, = X; + Xo~ Gamma(4,1).

7.2.3 Moment-Generating Function Method
Let X & Y are two random variables where My(t), My, (t) exist and equal, then,
depending on the uniqueness of the moment generating function of arandom variable

X and Y have the same distribution.
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Properties (From chapter two)
» If Y =aX + b, then My (t) = e’ My (at).
» IfXandY are two independent r.v’s, then My, (t) = My (t)My(t).

Example 7.12 (Sum of Independent Gammas).
Let X;~Gamma(a;, B) i = 1, ...,n. Independent random variables. Use the moment
generating function to find the distribution of ¥ = Y7, X

Solution

= My, () = (%)a" i=1,..,1n

= My(t) = Mgn 5, (t) = E(e'®at+X)) = E(et™n . etn) = E(e™1) ... E(e"¥n)
_ _ B ag B an _ B Z?:lai
= My, () ... My (£) = (ﬂ) (ﬁ) = (ﬂ)

Thus, Y =Y, X; ~ Gamma(Q L, a; , B).

Example 7.13 (Linear Function of Independent Normal r.v’s).
Let X; ~ N(y;, al-z) ;1 =1,..,n. Independent random variables. Use the moment
generating function to find the distribution of Y = 7\, a;X;.

Solution
trl-ztz
- MXl(t) = e”it+T’i = 1, v, N
" My(t) = M2?=1aiXi(t) = E(et(a1X1+...+aan)) — E(etale etaan)

= E(e'™%1) . E(e'*n) = My (ait) ... My (a,t)

o2a2¢2
a7 1t anant 2 2
tZl 1:“1‘11"' 21 191 ai

niaqt+ Unant+

=e . €

Thus,Y = ¥, a;X; ~ N (Z?zl ail , | X, 0ta; )

Example 7.14
Use the moment generating function to find the distribution of Z2 where Z~N(0,1).

Solution

2

z
. fZ(z)zv%e_?; —o0 < 7z < 00,

© z oo _(izz2t
u Mzz(t) = E(etzz) = f_ooetzz.\/%e_sz = \/%f_ooe ( 2 )szz
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2 oo _(1__H)ZZ .
= Efo e \"z )* dz (Symmetric about 0)

1/2

1 1
Lletu=2%2 =2z=u ,dz=zu 2z du and 0 < u. Hence

1-2t 1 1-2t

(o] - _l (o] _ = —=
Mzz(t) ZJ%IO e 2 )u%u Zduzx/%fo u ze ( 2 )udu

N| R

L R e W TS SO =

2

=T vzm Do T U ze Vim Nor
r(3) ()
—(1-207%

Thus, Z?~ Gamma (% ,%)

Example 7.15 (Sum of two exponential r.v’s).

Let X;,X,are two independent random variables have the same exponential
distribution with parameter 6. fy, (x;) = fe~%%, x; > 0. Use the moment generating
function to find the distribution of X; + X,.

Solution

0
- MXi(t) = ot

- MU(t) = MX1+X2 (t) = MX1 (t)MXz (t) = &% - (%)2

Thus, X; + X,~Gamma(2,6).
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Appendix A.

o

Table 4.1: The Incomplete Gamma Function: F(2;0) = [ =y® ‘e ¥ dy
o
@ 1 2 3 1 5 6 7 8 9 10
1 0.6320 0.2640 0.0800 0.0190 0.0040 0.0010 0.0000 0.0000 0.0000 0.0000
2 08650 0.5940 0.3230 0.1430 0.0530 0.0170 0.0050 0.0010 0.0000 0.0000
3 09500 0.8010 0.5770 0.3530 0.1850 0.0840 0.0340 0.0120 0.0040 0.0010
4 09820 0.9080 0.7620 0.5670 0.3710 0.2150 0.1110 0.0510 0.0210 0.0080
5 0.9930 0.9600 0.8750 0.7350 0.5600 0.3840 0.2380 0.1330 0.0680 0.0320
6 0.9980 0.9830 0.9380 0.8490 0.7150 0.5540 0.3940 0.2560 0.1530 0.0840
7 0.9990 0.9930 0.9700 0.9180 08270 0.6990 0.5500 0.4010 0.2710 0.1700
8 1.0000 0.9970 0.9860 0.9580 0.9000 0.8090 0.6870 0.5470 0.4070 0.2830
9 0.9990 0.9940 0.9790 0.9450 0.8840 0.7930 0.6760 0.5440 0.4130
10 1.0000 0.9970 0.9900 0.9710 0.9330 0.8700 0.7800 0.6670 0.5420
11 0.9990 0.9950 0.9850 0.9620 0.9210 0.8570 0.7680 0.6590
12 1.0000 0.9980 0.9920 0.9800 0.9540 0.9110 0.8450 0.7580
13 0.9990 0.9960 0.9890 0.9740 0.9460 0.9000 0.8340
14 1.0000 0.9980 0.9940 0.9860 0.9680 0.9380 0.8910
15 0.9990 0.9970 0.9920 0.9820 0.9630 0.9300
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Table 4.2: Lower Critical values for Chi-square distribution

df \a

O o N OO 0ol WIN|-

AW NN R R R R R R
O Ol Ol o|lu |l wWw N R O

60
120

.005
.00004
.0100
0717
.207
412
.676
.989
1.34
1.73
2.16
2.60
3.07
3.57
4.07
4.6
514
6.26
7.43
9.89
13.79
20.71
35.53
83.85

.01
.00016
.0201
115
297
.554
872
1.24
1.65
2.09
2.56
3.05
3.57
411
4.66
5.23
5.81
7.01
8.26
10.86
14.95
22.16
37.48
86.92

.025
.00098
.0506
.216
484
831
1.24
1.69
2.18
2.70
3.25
3.82
4.40
5.01
5.63
6.26
6.91
8.23
9.59
12.40
16.79
24.43
40.48
91.58

.05
.0039
.1026
.352
711
1.15
1.64
2.17
2.73
3.33
3.94
4.57
5.23
5.89
6.57
7.26
7.96
9.39
10.85
13.85
18.49
26.51
43.19
95.70

.10
.0158
.2107
.584
1.064
1.61
2.20
2.83
3.49
4.17
4.87
5.58
6.30
7.04
7.79
8.55
9.31
10.86
12.44
15.66
20.60
29.05
46.46
100.62

.90
2.71
4.61
6.25
7.78
9.24
10.64
12.02
13.36
14.68
15.99
17.28
18.55
19.81
21.06
22.31
23.54
25.99
28.41
33.20
40.26
51.81
74.40
140.23

.95
3.84
5.99
7.81
9.49
11.07
12.59
14.07
15.51
16.92
18.31
19.68
21.03
22.36
23.68
25
26.30
28.87
31.41
36.42
43.77
55.76
79.08
146.57

975
5.02
7.38
9.35
11.14
12.83
14.45
16.01
17.53
19.02
20.48
21.92
23.34
24.74
26.12
27.49
28.85
31.53
34.17
39.36
46.98
59.34
83.30
152.21

.99
6.63
9.21
11.34
13.28
15.09
16.81
18.48
20.09
21.67
23.21
24.73
26.22
27.69
29.14
30.58
32.00
34.81
37.57
42.98
50.89
63.69
88.38
158.95

.995
7.88
10.60
12.84
14.86
16.75
18.55
20.28
21.96
23.59
25.19
26.76
28.30
29.82
31.32
32.80
34.27
37.16
40.00
45.56
53.67
66.77
91.95
163.64
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Table 4.3: Area to the Left of the Z score for Standard Normal Distribution. s
Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
-3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
3.3 | _0.0005 | 0.0005 | 0.0005 | 0.0004 | 0.004 | 0.0004 | 0.0004 | 0.004 | 0.004 | 0.0003
-3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
-3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
3.0 | _0.0013 | 00013 | 00013 | 00012 | 00012 | 0.0011 | 00011 | 0.00i11 | 0.0010 | 0.0010
-2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
2.8 | _0.0026 | 0.0025 | 00024 | 00023 | 0.0023 | 0.022 | 00021 | 0.0021 | 0.020 | 0.0019
27 | _0.0035 | 00034 | 00033 | 00032 | 0.0031L | 0.030 | 00029 | 0.028 | 0.0027 | 0.0026
-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
25 | _0.0062 | 0.060 | 00059 | 0.0057 | 0.055 | 0.0054 | 00052 | 0.051 | 0.049 | 0.0048
-2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
22 | 00139 | 00136 | 00132 | 00129 | 00125 | 00122 | 00119 | 0.0116 | 0.0113 | 0.0110
-2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.0 | 00228 | 00222 | 00217 | 00212 | 00207 | 00202 | 00197 | 0.0192 | 0.0188 | 0.0183
1.9 | 00287 | 00281 | 00274 | 0.0268 | 00262 | 0.0256 | 00250 | 0.0244 | 00239 | 0.0233
1.8 | 00359 | 00351 | 00344 | 00336 | 00329 | 00322 | 00314 | 0.0307 | 0.030L | 0.0294
1.7 | _0.0446 | 00436 | 00427 | 0.0418 | 0.0409 | 0.0401 | 00392 | 0.384 | 0.0375 | 0.0367
216 | 00548 | 00537 | 00526 | 00516 | 0.0505 | 0.0495 | 00485 | 0.0475 | 0.0465 | 0.0455
1.5 | 0.0668 | 00655 | 00643 | 00630 | 0.0618 | 0.0606 | 00594 | 0.0582 | 0.0571 | 0.0559
1.4 | 00808 | 00793 | 00778 | 00764 | 0.0749 | 00735 | 00721 | 0.708 | 0.0694 | 0.0681
1.3 | 00968 | 00951 | 00934 | 00918 | 0.0901 | 00885 | 00869 | 0.0853 | 0.0838 | 0.0823
1.2 | 01151 | 01131 | 04112 | 0.093 | 0.1075 | 0.1056 | 0.1038 | 0.1020 | 0.1003 | 0.0985
11 | 01357 | 01335 | 04314 | 01292 | 01271 | 01251 | 0230 | 0.210 | 01190 | 0.1170
-1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
0.9 | 01841 | 01814 | 01788 | 0.762 | 0.1736 | 01711 | 0.1685 | 0.1660 | 0.1635 | 0.1611
208 | 02119 | 0.2090 | 02061 | 02033 | 0.2005 | 01977 | 01949 | 0.922 | 01894 | 0.1867
-0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.6 | 02743 | 0.2709 | 02676 | 0.2643 | 0.2611 | 0.2578 | 0.2546 | 0.2514 | 0.2483 | 0.2451
05 | 0.3085 | 0.3050 | 03015 | 02981 | 0.2946 | 0.2912 | 0.2877 | 0.2843 | 02810 | 0.2776
0.4 | 03446 | 0.3409 | 0.3372 | 0.3336_| 0.3300 | 0.3264 | 0.3228 | 0.3192 | 0.3156 | 0.3121
03 | 03821 | 03783 | 03745 | 0.3707 | 0.3669 | 0.3632 | 0.3594 | 0.3557 | 0.3520 | 0.3483
0.2 | 04207 | 04168 | 04129 | 04090 | 0.4052 | 04013 | 0.3974 | 0.3936 | 0.3897 | 0.3859
-0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.0 | 05000 | 04960 | 04920 | 04880 | 0.4840 | 04801 | 04761 | 0.4721 | 04681 | 0.4641
00 | 05000 | 05040 | 05080 | 05120 | 05160 | 05199 | 05239 | 05279 | 05319 | 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
02 | 05793 | 05832 | 05871 | 05910 | 05948 | 05987 | 0.6026 | 0.6064 | 0.6103 | 0.6141
03 | 06179 | 06217 | 0.6255 | 0.6293 | 06331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517
04 | 06554 | 06591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879
05 | 06915 | 06950 | 06985 | 0.7010 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 | 07881 | 07910 | 0.7989 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133
09 | 08159 | 08186 | 0.8212 | 0.8238 | 0.8264 | 08289 | 0.8315 | 0.8340 | 0.8365 | 0.8389
10 | 08413 | 08438 | 0.8461 | 0.8485 | 08508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621
11 | 08643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830
12 | 08849 | 08869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015
13 | 09032 | 09049 | 09066 | 0.9082 | 09099 | 09115 | 09131 | 09147 | 09162 | 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
15 | 09332 | 09345 | 09357 | 09370 | 09382 | 09394 | 0.9406 | 09418 | 0.9429 | 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
18 | 09641 | 09649 | 09656 | 0.9664 | 0.9671 | 09678 | 0.9686 | 0.9693 | 0.9699 | 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
20 | 009772 | 09778 | 09783 | 09788 | 09793 | 09798 | 0.9803 | 0.9808 | 0.9812 | 0.9817
21 | 009821 | 09826 | 09830 | 09834 | 009838 | 09842 | 09846 | 0.9850 | 0.9854 | 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
23 | 009893 | 09896 | 09898 | 09901 | 0.904 | 0.9906 | 0.9909 | 0.9911 | 09913 | 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
26 | 009953 | 09955 | 09956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
28 | 009974 | 09975 | 09976 | 09977 | 09977 | 09978 | 09979 | 0.9979 | 0.9980 | 0.9981
29 | 00981 | 09982 | 09982 | 09983 | 09984 | 09984 | 09985 | 0.9985 | 0.9986 | 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
31 | 009990 | 09991 | 09991 | 09991 | 09992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
34 | 009997 | 09997 | 09997 | 0.9997 | 09997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9998
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Table 4.4: Lower Critical Values for t Distribution. *
v=df €o.90 .95 o.975 .99 Lo.995
1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169
11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947
16 1.337 1.746 2.120 2.583 2921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845
21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787
26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
30 1.310 1.697 2.042 2.457 2.750
35 1.3062 1.6896 2.0301 2.4377 2.7238
40 1.3030 1.6840 2.0210 2.4230 2.7040
45 1.3006 1.6794 2.0141 24121 2.6896
50 1.2987 1.6759 2.0086 2.4033 2.6778
60 1.2958 1.6706 2.0003 2.3901 2.6603
70 1.2938 1.6669 1.9944 2.3808 2.6479
80 1.2922 1.6641 1.9901 2.3739 2.6387
90 1.2910 1.6620 1.9867 2.3685 2.6316
100 1.2901 1.6602 1.9840 2.3642 2.6259
120 1.2886 1.6577 1.9799 2.3578 2.6174
140 1.2876 1.6558 1.9771 2.3533 2.6114
160 1.2869 1.6544 1.9749 2.3499 2.6069
180 1.2863 1.6534 1.9732 2.3472 2.6034
200 1.2858 1.6525 1.9719 2.3451 2.6006
00 1.282 1.645 1.960 2.326 2.576
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