Question 1. [4,5] a) Determine and sketch the largest local region of the xy-plane for which the initial value problem

$$\begin{cases} (y-x)\sqrt{y}\frac{dy}{dx} = \sqrt{x+1} \\ y(0) = 4, \end{cases}$$

has a unique solution.

b) Find the orthogonal trajectories for the one parameter family of curves

$$y = \tan^{-1}(cx).$$

Question 2. [4, 4]. a) Solve the initial value problem

$$\begin{cases} (2y\sin x \cos x + y^2 \sin x)dx + (\sin^2 x - 2y\cos x)dy = 0\\ y(0) = 3 \end{cases}$$

b) Obtain the general solution of the differential equation

$$(x+2)^2 \frac{dy}{dx} = 5 - 8y - 4xy.$$

Question 3. [4, 4]. a) Solve the initial value problem

$$\left\{ \begin{array}{l} (2xy^2 + 3x^2y + 1 + \frac{2}{y})dx + (3x^2y + 2x^3 + \frac{x+3}{y})dy = 0, \ y > 0 \\ y(0) = 1. \end{array} \right.$$

b) Solve the differential equation

$$x(x^2 + y^2)(ydx - xdy) + y^6dy = 0.$$

(**Hint**: put 
$$ydx - xdy = y^2d\left(\frac{x}{y}\right)$$
,  $y \neq 0$ ).

Consider the initial value problem

$$(y-x)\sqrt{y} \ y' = \sqrt{x+1}, \qquad y(0) = 4.$$

Determine and sketch the largest region containing the point (0,4) on which the Picard-Lindelöf theorem guarantees a unique solution.

## Solution

First write the equation in standard form

$$y' = f(x,y) = \frac{\sqrt{x+1}}{(y-x)\sqrt{y}}.$$

For f (and  $\partial f/\partial y$ ) to be continuous we need the following restrictions:

- 1. The expression  $\sqrt{x+1}$  requires x+1>0 (for an open neighborhood we take x>-1).
- 2. The expression  $\sqrt{y}$  requires y > 0.
- 3. The denominator  $(y-x)\sqrt{y}$  must be nonzero, hence  $y-x\neq 0$  (i.e. avoid the line y=x).

Thus the natural domain for f is

$$D = \{(x,y) \in \mathbb{R}^2: \ x \ge -1, \ y > 0, \ y \ne x\}.$$

f and  $\partial f/\partial y$  are continuous. The point (0,4) satisfies x=0>-1, y=4>0, and  $y-x=4\neq 0$ . It lies in the connected component of the set

$$\{(x,y): x > -1, y > 0, y \neq x\}$$

$$R = \{(x,y) \in \mathbb{R}^2 : x > -1, y > 0, y > x\}.$$

(6×+1) u + 3x2 + 2u=0 (is Likeon) (6) Find the family of solution of the D. E x (x2-y2) ( i, dx-xdy) = 96 dy =0 Hint: ydx-xdy=gd(x), yto on some interval I y2x(x+y) d(x) + y6dy= x=uy Hunt uy3 (u2y2 +y2)d(a) + y6dy =0 d( x) = "d uys ( uz+1) du + y6 dy = u(u2+1)du+ ydy => [(u3+u)du+ ] ydy=0 1 4 4 2 + y2 = C 七(x4)+之(對+型=c x+ = x2 + 2 y2 = C x No a Region & Wag - co

( Sur ( 4/x) = lon x +c) (P2) Fid the general solution of the D. E. (x+z) = 5-8y-4xy. Solution (x+2)29 = 5 - 44(x+2) y'+ 4y= 5 (x+2)2 M(x)= e \( \frac{4}{(x+2)} \) = e \( \frac{4}{(x+2)} \) = (x+2) \( \frac{4}{(x+2)} \) 4 mx = y (x+z) 4 = \ \( \frac{5}{(x+z)^2} \) (x+z) 4 = y (x+2)4= 5) (x+2) dx= = (x+2) +e 1 = 3 (x+2)-4 (x+2)-4

Solution. The given family obeys

$$\frac{\tan y}{x} = c,$$

which on differentiation gives the following differential equation of the family

$$\frac{dy}{dx} = \frac{1}{x} \left( \sin y \cos y \right).$$

The differential equation of the orthogonal trajectories is

$$\frac{dy}{dx} = -\frac{x}{\sin y \cos y},$$

which is a variable separable equation with solution

$$\sin^2 y + x^2 = c_1$$

## **Solution Proposition for M204**

**Exercise** Solve the initial value problem

$$(2y\sin x\cos x + y^2\sin x)dx + (\sin^2 x - 2y\cos x)dy = 0, y(0) = 3$$

## Solution

The D.E can be written as: M(x, y)dx + N(x, y)dy = 0, y(0) = 3

With

$$M(x, y) = 2y \sin x \cos x + y^2 \sin x$$
 and  $N(x, y) = \sin^2 x - 2y \cos x$ 

Since 
$$M_y(x, y) = 2\sin x \cos x + 2y\sin x = N_x(x, y)$$
, the DE is exact.

So there exists a function F(x, y) such that

$$\begin{cases} F_x(x, y) = 2y \sin x \cos x + y^2 \sin x \\ F_y(x, y) = \sin^2 x - 2y \cos x \end{cases}$$

Integrating the second equation with respect to y, we obtain

$$F(x, y) = y \sin^2 x - y^2 \cos x + \phi(x)$$

Hence

$$F_x(x, y) = 2y\sin x \cos x + y^2 \sin x + \phi'(x) = 2y\sin x \cos x + y^2 \sin x$$

That is 
$$\phi'(x) = 0$$
. So  $\phi(x) = c_1$ .

The general solution is given by  $y \sin^2 x - y^2 \cos x = c$ 

From the Initial condition we obtain c = -9.

The required solution is given by  $y \sin^2 x - y^2 \cos x + 9 = 0$ .

**Exercise** Solve the initial value problem

$$(2xy^2 + 3x^2y + 1 + \frac{2}{y})dx + (3x^2y + 2x^3 + \frac{x+3}{y})dy = 0, \ y(0) = 1$$

## Solution

The D.E can be written as: M(x,y)dx + N(x,y)dy = 0, y(0) = 1

With

$$M(x, y) = 2xy^2 + 3x^2y + 1 + \frac{2}{y}$$
 and  $N(x, y) = 3x^2y + 2x^3 + \frac{x+3}{y}$ 

We have 
$$M_y(x, y) = 4xy + 3x^2 - \frac{2}{y^2}$$
 and  $N_x(x, y) = 6xy + 6x^2 + \frac{1}{y}$ 

Since  $M_y(x,y) \neq N_x(x,y)$  , the D.E is not exact.

Note that 
$$\frac{N_x(x,y) - M_y(x,y)}{M(x,y)} = \frac{1}{y}$$

So 
$$\mu(y) = e^{\int \frac{1}{y} dy} = e^{\ln y} = y$$
 is an integration factor

Hence we have the exact differential equation as

$$(2xy^3 + 3x^2y^2 + y + 2)dx + (3x^2y^2 + 2x^3y + x + 3)dy = 0, \ y(0) = 1$$

Therefore there exists a function F(x,y) such that

$$\begin{cases} F_x(x,y) = 2xy^3 + 3x^2y^2 + y + 2 \\ F_y(x,y) = 3x^2y^2 + 2x^3y + x + 3 \end{cases}$$

Integrating the first equation with respect to x, we obtain

$$F(x, y) = x^2 y^3 + x^3 y^2 + yx + 2x + \phi(y)$$

Hence

$$F_{y}(x, y) = 3x^{2}y^{2} + 2x^{3}y + x + \phi'(y) = 3x^{2}y^{2} + 2x^{3}y + x + 3$$

That is 
$$\phi'(y) = 3$$
. So  $\phi(y) = 3y + c_1$ .

The general solution is given by

$$F(x, y) = x^{2}y^{3} + x^{3}y^{2} + yx + 2x + 3y = c$$

From the Initial condition we obtain c = 3.

The required solution is given by

$$x^{2}y^{3} + x^{3}y^{2} + yx + 2x + 3y - 3 = 0.$$