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Abstract. Starting with the category of probabilistic approach groups, we show that the category of
approach groups can be embedded into the category of probabilistic approach groups as a bicoreflective
subcategory; further, considering a category of probabilistic topological convergence groups, we show that
the category of probabilistic topological convergence groups is isomorphic to the category of probabilistic
approach groups under so-called triangle function τ : ∆+ × ∆+ −→ ∆+, where ∆+ is the set of all distance
distribution functions that plays a central role for probabilistic metric spaces. Moreover, if we allow this
triangle function τ to be sup-continuous, then we can show that the category of probabilistic metric groups
can be embedded into the category of probabilistic approach groups as a coreflective subcategory. Further-
more, we demonstrate that every T1 probabilistic topological convergence group satisfying so-called (PM)
axiom is probabilistic metrizable. Finally, among others, introducing a category of probabilistic approach
transformation groups, we show that the category of probabilistic topological convergence transformation
groups is isomorphic to the category of probabilistic approach transformation groups; this solves an open
problem that proposed in one of our earlier papers. Moreover, we prove that the category of probabilistic
metric transformation groups is isomorphic to the category of probabilistic metric probabilistic convergence
transformation groups.

1. Introduction

There are various types of generalization of classical metric spaces; herein this text, we are concerned
about two types of such generalizations: one, approach spaces, which is based on point-to-set distances, instead
of point-to-point distances. Given a metric space (S, d) or more generally an extended pseudometric space,
one can define an induced map d : S × P(S) −→ [0,∞] by d(x,A) = inf{d(x, a) : a ∈ A}. With the point of view
of this example, a pair (S, d), where d : S × P(S) −→ [0,∞] is a distance function, called an approach space if
the following axioms are satisfied:

(AP1) d(p, {p}) = 0, for all p ∈ S;
(AP2) d(p, ∅) = ∞, for all p ∈ S;
(AP3) d(p,A ∪ B) = d(p,A) ∧ d(p,B), for all p ∈ S and A,B ∈ P(S);
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(AP4) d(p,A) ≤ d(p,A(ϵ)) + ϵ, for all p ∈ S, A ⊆ S and ϵ ∈ [0,∞],
whence A(ϵ) = {p ∈ S : d(p,A) ≤ ϵ}.

A mapping f : (S, d) −→ (S′, d′) between approach spaces is called a contraction mapping if d′( f (p), f (A)) ≤
d(p,A), for all p ∈ S and A ∈ P(S). The category of all approach spaces and contraction mappings is denoted
by Ap, and this category is attributed to Lowen. [25]; this category is further studied by many authors from
various perspectives, cf. [10, 12, 13, 18, 20, 21, 24, 26]. The other one is, the generalization in which the
distances between points are specified by probability distributions rather than numbers. The general notion
for this type of generalization originated from the work of K. Menger, [28], and has since been developed
by a number of authors. A very useful book where a comprehensive treatment of the subject is given by B.
Schweizer and S. Sklar, [32] (see also, [11, 15, 16, 19, 31, 33]).

In 2017, Jäger [20], argued that it is reasonable to assign a point p ∈ S and a subset A ⊆ S a distance
distribution function δ(p,A), whose value at x, δ(p,A)(x) is then interpreted as the probability that the distance
between p and A is less than x. With this point of view, he generalized the concept of approach spaces by
introducing a category of probabilistic approach spaces, ProbAp, where the codomain ([0,∞],≥,+) so-called
Lawvere quantale, [14, 27], is replaced by (∆+,≤, τ), where ∆+ is the set of distance distribution functions.
In doing so, it is proved in [20] that the category of approach spaces is isomorphic to a simultaneously
bireflective and bicoreflective subcategory, and that the category of probabilistic quasi-metric spaces is
isomorphic to a bicoreflective subcategory of the category of probabilistic approach spaces. In this respect,
it is paramount important to note that the most significant result that he obtained is the isomorphism between
the category ProbAp and probTConv, the category of probabilistic topological convergence spaces.

We introduced in [2], the concept of probabilistic convergence groups and studied its two important
aspects, one is uniformization and the other is, metrization, of probabilistic convergence groups. We also
introduced a category of probabilistic convergence transformation groups, ProbConvTrGrpτ under the
triangle function τ in [3]. In this present paper, starting with the notions of probabilistic approach group,
and probabilistic topological convergence group, we show, among others, that the category ApGrp can
be embedded into ProbApGrpτ∗ under the triangle function τ∗ : ∆+ × ∆+ −→ ∆+ where ∗ is a continuous
t-norm. Also, we show that the category of probabilistic topological convergence groups, PobTopConvGrp
is isomorphic to the category of probabilistic approach groups, ProbApGrp. Needless to mention that
this is possible due to the isomorphism between ProbAp and ProbTopConv initiated in [20]. It is worth
mentioning that in [5], considering arbitrary quantale, we introduced and studied quantale-valued ap-
proach spaces, where we were unable to produce an isomorphism between the category of quantale-valued
approach groups and the category of quantale-valued topological convergence groups, proving just only
one part of it. In studying all these structures we are able to produce natural examples such as probabilistic
metric spaces and probabilistic metric groups; it goes without saying that the probabilistic metric spaces
is of paramount importance in random functional analysis, especially, due to its extensive applications in
random differential as well as random integral equations, by saying this, we mean the study of the category
of probabilistic metric spaces and its subcategories deserve specials attention.

Finally, introducing a category of probabilistic approach transformation groups, ProbApTrGrpτ, a
subcategory of ProbApτ, and extending the existing category of probabilistic convergence transformation
groups into the category of probabilistic topological transformation groups, ProbTopConvTrGrpτ, we show
that these two categories are isomorphic, that is, ProbApTrGrpτ is isomorphic to ProbTopConvTrGrpτ. In
[3], we could only prove that every probabilistic metric transformation group is probabilistic convergence
group, we extend these results to prove that the category of probabilistic metric transformation groups is
in fact isomorphic to the category of probabilistic metric probabilistic convergence transformation groups.

2. Preliminaries

We recall some notions from [32] that are used in the sequel.
A function φ : [0,∞] −→ [0, 1], which is non-decreasing, left-continuous on (0,∞) and satisfies φ(0) = 0

and φ(∞) = 1 is called a distance distribution function(ddf). The set of all ddf is denoted by ∆+. For example,
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for each 0 ≤ a < ∞ the functions

ϵa(x) =
{

0 if 0 ≤ x ≤ a
1 if a < x ≤ ∞

ϵ∞(x) =
{

0 if 0 ≤ x < ∞
1 if x = ∞

are in ∆+. The set ∆+ is ordered point-wise, i.e., for φ,ψ ∈ ∆+ we define φ ≤ ψ if for all x ≥ 0 we have
φ(x) ≤ ψ(x). The smallest element of ∆+ is then ϵ∞ and the largest element is ϵ0. Observe that (∆+,≤) is
a complete lattice with ϵ0 as the top element and ϵ∞ as the bottom element. It follows from [17] that φ is
called well-below ψ written as φ ◁ ψ if ∀D ⊆ ∆+ such that ψ ≤ ∨D, there exists ϱ ∈ D such that φ ≤ ϱ.

On ∆+, we consider the modified Lévy metric, [32] which is defined below.
Let φ,ψ ∈ ∆+ and ϵ > 0. Consider the following properties:

A(φ,ψ, ϵ)⇔ φ(x − ϵ) − ϵ ≤ ψ(x), if x ∈ [0, 1
ϵ );

and B(φ,ψ, ϵ)⇔ φ(x + ϵ) + ϵ ≥ ψ(x), if x ∈ [0, 1
ϵ ).

Then the modified Lévy metric DL on ∆+ is given by

DL(φ,ψ) =
∧
{ϵ > 0: A(φ,ψ, ϵ) and B(φ,ψ, ϵ) holds }.

A binary operation τ : ∆+ ×∆+ −→ ∆+, which is commutative, associative, non-decreasing in each place
and satisfies the boundary condition τ(φ, ϵ0) = φ for all φ ∈ ∆+, is called a triangle function. The largest
triangle function is the point-wise minimum µ(φ,ψ) = φ ∧ ψ. A triangle function τ is called sup-continuous
if τ
(∨

j φ j, ψ
)
=
∨

j∈J τ
(
φ j, ψ

)
.

A triangle function τ is continuous if it is continuous with respect to the topology and product topology
induced by the Lévy metric. In view of [32] (see also, [23]) for a continuous t-norm, the mapping τ∗ is
defined by τ∗(φ,ψ)(x) =

∨
u+v=x φ(u) ∗ψ(v) for any φ,ψ ∈ ∆+. Among the important examples of continuous

t-norms, we recall the minimum t-norm, α ∗ β = α ∧ β, the product α ∗ β = αβ and Lukasiewich t-norm
α ∗ β = (α + β − 1) ∨ 0.

For a set S, we denote by P(S) the power set. The set of all filters on a set S is denoted by F(S) while the
set of all ultrafilters on S is denoted by U(S). We order this set by set inclusion. If F ∈ F(S) and G ∈ F(T),
then the filters on S × T is generated by the sets of the form {F × G : F ∈ F,G ∈ G} is denoted by F × G. If
(S, ·) is a group and F,G ∈ F(S), we define F ⊙G as the filter generated by the sets F · G = {pq : p ∈ F, q ∈ G},
where F ∈ F and G ∈ G. The filter F−1 is generated by the sets F−1 = {p−1 : p ∈ F}, where F ∈ F.

Definition 2.1. ([32]) A probabilistic metric space under a triangle function τ is a pair (S,F) ,where F : S×S −→ ∆+

such that for all p, q, r ∈ S the following properties hold:
(PM1) F(p, p) = ϵ0;
(PM2) F(p, q) = F(q, p);
(PM3) τ(F(p, q),F(q, r)) ≤ F(p, r).
The function F(p, q) is usually denoted by Fpq or Fp,q, and F(p, q)(x), its value at x, is interpreted as the

probability that the distance between p and q is less than x.
A mapping f : (S,F) −→ (S′,F′) is called non-expansive if Fp,q ≤ F′f (p), f (q) for all p, q ∈ S.
The category of all probabilistic metric spaces and non-expansive maps is denoted by ProbMetτ.

On the space S× S, we consider the product probabilistic metric F⊗τ F
(
(p1, p2), (q1, q2)

)
= τ
(
Fp1,q1 ,Fp2,q2

)
in the sense of Tardiff, [33].

Definition 2.2. ([2]) A triple (S, ·,F) is called a probabilistic metric group under a triangle function τ provided
(S, ·) is a group and (S,F) is a probabilistic metric space under the triangle function τ with F is an invariant
probabilistic metric, that is, F(p, q) = F(pr, qr) = F(rp, rq) for all p, q, r ∈ S.

The category of probabilistic metric groups consists of all probabilistic metric groups as objects and
all mappings which a contractive group homomorphisms as morphisms, this category is denoted by
ProbMetGrpτ.
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For the notions of category theory, we refer to Adámek et al., [1]. However, for the convenience of the
reader we quote those notions that are used frequently in the sequel.

A functor F : C −→ D is a morphism between categories, consists of mappings between objects of C and
objects of D (sometimes we write as |C| to denote the objects of C) and the mapping between morphisms
of C and morphisms of D such that (i) if f : S −→ T, then F ( f ) : C(S) −→ D(T); (ii) F ( f ◦ 1) = F ( f ) ◦ F (1),
whenever f ◦ 1 is defined; (iii) F (idS) = idF (S). The functor F is called an embedding if it is injective on
objects. If E is a category, then by a concrete category over E, we understand a pair (G,F ), where C is a
category and F : G −→ E is a faithful functor.

A construct is a concrete category over Set, the category of sets and mappings, and we consider the objects
of a construct as structured set (S, ξ), and morphisms are suitable mappings between the underlying sets.
A construct is called topological if it allows initial constructions, that is, for any source

(
f j : S −→ (S j, ς j)

)
j∈J

,

there is a unique structure ς on S such that a mapping 1 : (T, β) −→ (S, ς) is a morphism if and only if for
each j ∈ J the composition f j ◦ 1 : (T, β) −→ (S j, ς j) is a morphism, where (T, β) is a structured set.

A functorF : C −→ Dbetween categoriesC andD is called an isomorphism if there is a functorH : D −→ C
such that H ◦ F = idC and F ◦ H = idD. Two categories C and D are said to be isomorphic if there is an
isomorphism.

Let C be a subcategory of a category A. Then C is said to be reflective in A (or C is a reflective subcategory
of A) if for each X ∈ |A| there exists a C-object XC and an A-morphism rX : X −→ XC such that for each
C-object C and each A-morphism f : X −→ C there is a unique morphism f ′ : XC −→ C such that f ′ ◦ rX = f .
The notion of coreflective subcategory is defined dually. The category of groups and group homomorphisms
is denoted by Grp.

3. Category of approach groups, ApGrp

Definition 3.1. ([25]) A pair (S, d), where d : S × P(S) −→ [0,∞], a distance function, is called an approach
space if the following axioms are satisfied:

(AP1) d(p, {p}) = 0, for all p ∈ S;
(AP2) d(p, ∅) = ∞, for all p ∈ S;
(AP3) d(p,A ∪ B) = d(p,A) ∧ d(p,B), for all p ∈ S and A,B ∈ P(S);
(AP4) d(p,A) ≤ d(p,A(ϵ)) + ϵ, for all p ∈ S, A ⊆ S and ϵ ∈ [0,∞],

where A(ϵ) = {p ∈ S : d(p,A) ≤ ϵ}. A mapping f : (S, d) −→ (S′, d′) between approach spaces is called a
contraction if d′( f (p), f (A)) ≤ d(p,A), for all p ∈ S and A ∈ P(S). The category of all approach spaces and
contraction mappings is denoted by Ap.

Example 3.2. ([25]) Let (S,T) be a topological space and define the function dT : S × P(S) −→ [0,∞] by

dT(p,A) =
{

0 if p ∈ clT(A)
∞ if p < clT(A)

Then (S, dT) is an approach space.

Definition 3.3. ([26]) A triple (S, ·, d) is called an approach group if (S, ·) is a group and (S, d) is an approach
space such that the following conditions are fulfilled:

(APGM) d(pq,AB) ≤ d(p,A) + d(q,B) for all p, q ∈ S and A,B ⊆ S;
(APGI) d(p−1,A−1) ≤ d(p,A), for all p ∈ S and A ⊆ S.

The category of all approach groups and contractive group homomorphisms is denoted by ApGrp.

Example 3.4. Let (S, ·,T) be a topological group and A be a subgroup of S. Then (S, ·, dT) ∈ |ApGrp|, where
the function dT : S × P(S) −→ [0,∞] by

dT(p,A) =
{

0 if p ∈ clT(A)
∞ if p < clT(A)



T.M.G. Ahsanullah et al. / Filomat 37:16 (2023), 5413–5426 5417

where clT(A) is the closure of A.

Remark 3.5. In view of the Theorem 2.2.6[25], one can show that the category of topological groups, TopGrp
can be embedded as concretely bireflective subcategory of APGrp (see also, [26]). Note that every invariant
metric group is an approach group. There are various stimulating examples on approach groups and
semigroups that can be seen in [26]. Since approach spaces and approach systems are equivalent concept,
we can quote here another example on approach system group based on τm-Menger space (S,F, τm), τm being
is a Lukasiewich t-norm, where for any s ∈ S and ϵ > 0 if one defines dϵs : S −→ [0,∞], t 7−→ 1−F(s, t)(ϵ). Then
one can obtain an approach system (R(s))s∈S =

(
{dϵs : ϵ ∈ (0,∞)}

)
s∈S compatible with additive group structure.

The interesting point here is to observe that this approach system in question has a close connection with
so-called strong topology widely used in application relating to probabilistic metric spaces that deals with
problems in functional analysis, cf. [7, 29, 32]. This demands special attention to look into the connection
between this strong topology and the Tardiffneighborhood systems that we considered in [2], and elsewhere
in recent years.

4. Category of probabilistic approach groups, ProbApGrpτ

Definition 4.1. ([20]) A pair (S, δ) where S ∈ |Set| and δ : S × P(S) −→ ∆+, ((p,A) 7−→ δ(p,A) : [0,∞] −→
[0, 1], x 7→ δ(p,A)(x) ∈ [0, 1]) is called a probabilistic approach space (under triangle function τ) if for all p ∈ S,
A,B ∈ S the following are fulfilled:

(PA1) δ(p, {p}) = ϵ0;
(PA2) δ(p, ∅) = ϵ∞;
(PA3) δ(p,A) ∨ δ(p,B) = δ(p,A ∪ B);
(PA4) τ

(
δ(p,A

φ
), φ
)
≤ δ(p,A), for all φ ∈ ∆+, where A

φ
= {p ∈ S : δ(p,A) ≥ φ}.

A mapping f : (S, δ) −→ (S′, δ′) between probabilistic approach spaces (S, δ), (S′, δ′) is called a contraction if
δ(p,A) ≤ δ′

(
f (p), f (A)

)
, for all p ∈ S and A ⊆ S.

The category of all probabilistic approach spaces under triangle function τ and all contracting mappings
is denoted by ProbApτ.

The value δ(p,A)(x) can be interpreted as the probability that the distance between p and A is less than x.

Definition 4.2. Let (S, ·) ∈ |Grp| and (S, δ) ∈ |ProbApτ|. Then the triple (S, ·, δ) is called a probabilistic approach
group under triangle function τ if the following conditions are fulfilled:

(PAGM) τ
(
δ(p,A), δ(q,B)

)
≤ δ(pq,AB), for all p, q ∈ S and A,B ⊆ S;

(PAGI) δ(p,A) ≤ δ(p−1,A−1).
The category of all probabilistic approach groups and all contractive group homomorphisms, is denoted
by ProbAPGrpτ.

Example 4.3. Every probabilistic approach system group in the sense of [5] is a probabilistic approach
group under sup-continuous triangle function τ. The transition goes as follows. If (R(s))s∈S is a probabilistic
approach system on S, then the probabilistic approach structure for any A ⊆ S and s ∈ S is given by:
δR(s,A) =

∧
ν∈R(s)

∨
a∈A ν(a), cf. [21].

Example 4.4. Every probabilistic metric group is a probabilistic approach group under the triangle function
τ. In fact, if (S, ·,F) is a probabilistic metric group, then in view of the Lemma 3.2[5],

(
S, ·, δF

)
is a probabilistic

approach group, where for any A ⊆ S and s ∈ S, δF(s,A) =
∨

a∈A d(s, a).

There are some other interesting examples of probabilistic approach groups; one of those examples
is, probabilistic gauge group. Every probabilistic gauge group is a probabilistic approach group. We
refer to [5] for the notion of probabilistic gauge group, and some other categorical connections. In view
of the Theorem 3.3[5], it follows that given a probabilistic gauge group (S, ·,G)), we can obtain

(
S, ·, δG

)
probabilistic approach group, where the probabilistic approach structure is given for any A ⊆ S and s ∈ S
by δG(s,A) =

∧
d∈G
∨

a∈A d(s, a).
Let (S, d) be an approach space, then in view of [20] δd(p,A) = ϵd(p,A). Upon using this definition, we

obtain the following.
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Lemma 4.5. The category ApGrp is embedded into the category ProbApGrpτ∗ .

Proof. Define the functor F as follows:

F :


ApGrp −→ ProbApGrpτ∗
(S, ·, d) 7−→

(
S, ·, δd

)
f 7−→ f

Let (S, ·, d) ∈ |ApGrp|. Upon using a property of triangular norm, cf. [23], pp.4, we have
τ∗
(
δd(p,A), δd(q,B)

)
(z) = τ∗

(
ϵd(p,A), ϵd(q,B)

)
(z) =

∨
x+y=z ϵd(p,A)(x)∗ϵd(q,B)(y) = ϵd(p,A)+d(q,B)(x+y) = ϵd(p,A)+d(q,B)(z) ≤

ϵd(pq,AB)(z) = δd(pq,AB)(z), i.e., τ∗
(
δd(p,A), δd(q,B)

)
≤ δd(pq,AB). In view of Proposition 6.2 [20], one obtains:

f : (X, ·, d) −→ (S′, ·, d′) is contractive group homomorphism if and only if f : (S, ·, δd) −→ (S, ·, δd′ ) is contrac-
tive group homomorphism. It also follows from the same proposition that this functor F is injective on
objects and hence it is an embedding. Thus, following Proposition 6.1 in conjunction with the Proposition
6.2 we conclude that ApGrp is embedded into ProbApGrpτ∗ .

If (S, δ) is a probabilistic approach space, and α > 0, then for p ∈ S and A ⊆ S, it is defined in [20] that
dδα(p,A) =

∧
{x : δ(p,A)(x) ≥ α}. Then one obtains the following

Lemma 4.6. The category ApGrp is embedded into ProbApGrpτ∧ .

Proof. Define the functor G as follows:

G :


ProbApGrpτ∧ −→ ApGrp

(S, ·, δ) 7−→

(
S, ·, dδα

)
f 7−→ f

Let p, q ∈ S and A,B ⊆ S. Then upon using (PAGM), we have for any α > 0:

dδα(p,A) + dδα(q,B) =
∧
{x : δ(p,A)(x) ≥ α} +

∧
{y : δ(q,B)(y) ≥ α}

=
∧
{x + y : δ(p, q)(x) ≥ α, δ(q,B)(y) ≥ α}

≥

∧
{x + y : δ(p,A)(x) ∧ δ(q,B)(y) ≥ α}

=
∧
{x + y : α ≤

∨
u+v=x+y

δ(p,A)(u) ∧ δ(q,B)(v)} =
∧
{x + y : τ∧

(
δ(p,A), δ(q,B)

)
(x + y) ≥ α}

≥

∧
{w : δ(pq,AB)(w) ≥ α} = dδα(pq,AB)

In view of Proposition 6.4 [20], one obtains: f : (S, ·, d) −→ (S′, ·, d) is continuous group homomorphism,
then f : (S, ·, dδα) −→ (S′, ·, d′δα ) is contractive group homomorphism. This together with the fact that this
functor is injective on objects yields that it is an embedding functor. In view of the Theorem 6.11, one can
show that ApGrp can be embedded into ProbApGrpτ∧ .

5. Category of probabilistic topological convergence groups, ProbTopConvGrpτ

Definition 5.1. ([19, 20]) Let S ∈ |Set|. A family of mappings
(
cφ : F(S) −→ P(S)

)
φ∈∆+

which satisfies the

following axioms:
(PC1) p ∈ cφ([p]), p ∈ S, φ ∈ ∆+;
(PC2) if F ≤ G, then cφ(F) ⊆ cφ(G), ∀F,G ∈ F(S) and ∀φ ∈ ∆+;
(PC3) φ ≤ ψ, cψ(F) ⊆ cφ(F), ∀F ∈ F(S), ∀φ,ψ ∈ ∆+;
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(PC4) p ∈ cϵ∞ (F), ∀p ∈ S, ∀F ∈ F(S),
is called a probabilistic convergence structure on S. The pair

(
S, c = (cφ)φ∈∆+

)
is called a probabilistic convergence

space.
A mapping f : (S, c) −→

(
S′, c′
)

between probabilistic convergence spaces, is called continuous if ∀p ∈ S,
∀F ∈ F(S), p ∈ cφ(F)⇒ f (p) ∈ c′φ( f (F)).

PCONV denotes the category of probabilistic convergence spaces and continuous mappings.

Definition 5.2. A probabilistic convergence space (S, c) is called probabilistic pretopological if:
(PPT)

⋂
j∈J cφ(F j) ⊆ cφ(

∧
j∈J F j) whenever φ ∈ ∆+ and F j ∈ F(S).

It is called left-continuous provided it satisfies:
(PLC) p ∈ c∨A(F) whenever p ∈ cφ(F) ∀φ ∈ A ⊆ ∆+.
A left-continuous and pretopological probabilistic convergence space is called probabilistic topological

convergence space if it satisfies Kowlasky diagonal axom (τ-PK):
∀G,Fq ∈ F(S), q ∈ S, one obtains p ∈ cτ(φ,ψ)

(
κ(G, (Fq)q∈S)

)
whenever p ∈ cφ(G) and q ∈ cφ(Fq), for all q ∈ S.

The category of probabilistic topological convergence spaces under triangle function τ and continuous
mappings between them is denoted by ProbTopConvτ. This category ProbTopConvτ is a full subcategory
ProbConv, of probabilistic convergence spaces.

Definition 5.3. A triple
(
S, ·, c = (cφ)φ∈∆+

)
is called a probabilistic topological convergence group under a triangle

function τ if
(PTCG1) (S, ·) ∈ |Grp|;
(PTCG2) (S, c) ∈ |ProbTopConvτ|;
(PTCGM) pq ∈ cτ(φ,ψ) (F ⊙G), ∀F,G ∈ U(S), that is, for all ultrafilters F and G on S, whenever p ∈ cφ(F),

and q ∈ cψ(G);
(PTCGI) p−1

∈ cφ(F−1) whenever p ∈ cφ(F), ∀G ∈ U(S), that is, for all ultrafilters G, on S, and p ∈ S.
The category of probabilistic topological convergence groups and continuous group homomorphisms

is denoted by PobTopConvGrpτ.

Example 5.4. ([2]) Let (S, ·,F) ∈ |ProbMetGrpτ|. Then
(
S, ·, c = (cφ)φ∈∆+

)
∈ |ProbTopConvGrpτ|.

Let
(
S, c = (cφ)φ∈∆+

)
∈ |ProbTopConvτ|. We define approach distance function δc(p,A) =

∨
U∈U(S),A∈U

∨
φ:p∈cφ(U) φ.

Note that the proof of the following result is given for an arbitrary quantal in [5], we deduce it for the
convenience of the reader, while for further details one can consult the quoted paper.

Lemma 5.5. Let
(
S, ·, c = (cφ)φ∈∆+

)
∈ |ProbTopConvGrpτ|. Then (S, ·, δc) ∈ |ProbApGrpτ|.

Proof. Let
(
S, ·, c = (cφ)φ∈∆+

)
∈ |ProbTopConvGrpτ|. Assume that p, q ∈ S, A,B ∈ P(S). We need to show

(PAGM), that is, τ
(
δc(p,A), δc(q,B)

)
≤ δc (pq,AB

)
. Let us assume that ε ◁ τ

(
δc(p,A), δc(q,B)

)
. Then there are

U,V ∈ U(S) and φ,ψ ∈ ∆+ such that A ∈ U,B ∈ V and that p ∈ cφ(U) and q ∈ cψ(V) with ε ≤ τ(φ,ψ). Then
AB ∈ U ⊙V and pq ∈ cτ(φ,ψ)(U ⊙V). ForM ∈ U(S),M ≥ U ⊙V, we have AB ∈ M with pq ∈ cτ(φ,ψ)(M).
Hence δc (pq,AB

)
=
∨

AB∈M,M∈U(S)
∨

pq∈cγ(M) γ ≥ τ(φ,ψ) ≥ ε, and applying complete distributivity of ∆+, we
have τ

(
δc(p,A), δc(q,B)

)
≤ δc(pq,AB). Similarly, (PAGI) can be obtained.

Lemma 5.6. If f : (S, ·, c) −→ (S, ·, c′) is a continuous group homomorphism between probabilistic topological
convergence groups under triangle function τ, then f : (S, ·, δc) −→ (S′, ·, δc′ ) is a contractive group homomorphism
between probabilistic approach groups under triangle function τ.

Hence there is a functor

H :


ProbTopConvGrpτ −→ ProbApGrpτ(

S, ·, c = (cφ)φ∈∆+
)
7−→ (S, ·, δc)

f 7−→ f

Let (S, δ) ∈ |ProbApτ|. Define for φ ∈ ∆+, p ∈ S andU ∈ U(S), p ∈ cδφ(U)⇔
∧

A∈U δ(p,A) ≥ φ.
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Remark 5.7. While we prepared the article [5], the following result was an open question as mentioned in
the conclusion section of [5]. Following the paper of Jäger [20] , we learned that the category of probabilistic
approach spaces is isomorphic to the category of probabilistic topological convergence spaces, upon using
the isomorphism theorem we are in a position to answer the aforementioned open question.

Lemma 5.8. Let (S, ·, δ) ∈ |ProbApGrpτ|. Then
(
S, ·, cδ = (cδφ)φ∈∆+

)
∈ |ProbTopConvGrpτ|

Proof. We only prove (PTCGM). Let p, q ∈ S,U,V ∈ U(S) be ultrafilters on S. Further, assume that for any
φ,ψ ∈ ∆+, p ∈ cδφ(U) and q ∈ cδψ(V). Then in view of the Lemma 5.1(4)[20], we get that

∧
U∈U δ(p,U) ≥ φ,

and
∧

V∈V δ(q,V) ≥ ψ. Upon using the properties of τ, and (PAGM), we have
∧

UV∈U⊙V δ(pq,UV) ≥
τ
(∧

U∈U δ(p,U),
∧

V∈V δ(q,V)
)
≥ τ(φ,ψ) implying that

∧
UV∈U⊙V δ(pq,UV) ≥ τ(φ,ψ) which gives that pq ∈

cδ
τ(φ,ψ)(U ⊙V). The missing part follows at ease.

Lemma 5.9. If f : (S, ·, δ) −→ (S, ·, δ)) is a contractive group homomorphism between probabilistic approach groups,
then f :

(
S, ·, cδ

)
−→

(
S′, ·, cδ′

)
is a continuous group homomorphism.

Proof. Since group homomorphism remains as it is, the result follows from Lemma 5.3[20] in conjunction
with Lemma 5.1[20].

Hence there is a functor

I :


ProbApGrpτ −→ ProbTopConvGrpτ

(S, ·, δ) 7−→

(
S, ·, cδ = (cδφ)φ∈∆+

)
f 7−→ f

Theorem 5.10. If (S, ·, δ) ∈ |ProbApGrpτ|, then
(
S, ·, cδ

)
∈ |ProbTopConvGrpτ|. Conversely, if (S, ·, c) ∈

|ProbTopConvGrpτ|, then (S, ·, δc) ∈ |ProApGrpτ|. Furthermore, there are functors

 ProbApGrpτ
I
−→ ProbTopConvGrpτ

ProbApGrpτ
H
←− ProbTopConvGrpτ

such that I ◦ H = idProbTopConvGrpτ and H ◦ I = idProbApGrpτ . That is, the categories ProbApGrpτ and
ProbTopConvGrpτ are isomorphic.

Proof. Consider the following arrows

ProbTopConvGrpτ
H
−→ProbApGrpτ

I
−→ProbTopConvGrpτ.

Then I ◦ H = idProbTopConvGrp, i.e., if (S, ·, c) ∈ |ProbTopConvGrpτ|, then by applying proposition 5.8[20]
coupled with the Lemma 5.5, we get

I (H(S, ·, c)) = I (S, ·, δc) =
(
S, ·, cδc

)
= (S, ·, c) = idProbTopConvτ (S, ·, c) .

On the other hand, we consider the arrows below

ProbApGrpτ
I
−→ProbTopConvGrpτ

H
−→ProbApGrpτ.

ThenH ◦I = idProbApGrp, i.e., if (S, ·, δ) ∈ |ProbApGrpτ|, then by applying Proposition 5.8[20] in conjunction
with the Lemma 5.6, we get

I (H(S, ·, δ)) = I
(
S, ·, cδ

)
=
(
S, ·, δcδ

)
= idProbApGrpτ (S, ·, δ).

Hence the result follows from the preceding lemmas.
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6. Category of probabilistic metric groups, ProbMetGrpτ

Upon using the Definitions 2.2, we have the following.

Proposition 6.1. Let (S, ·,F) ∈ |ProbMetGrpτ|, and let τ be sup-continuous triangle function. Then
(
S, ·, δF

)
∈

|ProbApGrpτ|, where δF : S × P(S) −→ ∆+ is defined by δF(p,A) =
∨

q∈A Fpq.

Proof. Due to the Proposition 7.1[20], we only need to proof the conditions (PAGM) and (PAGI).τ
(
δF(p,A), δF(q,B)

)
=

τ
(∨

a∈A F(p, a),
∨

b∈B F(q, b)
)
=
∨

a∈A,b∈B τ
(
F(p, a),F(q, b)

)
≤
∨

a∈A,b∈B τ
(
F(pq, ar),F(ar, ab)

)
≤
∨

a∈A,b∈B τ(pq, ab) ≤
∨

c∈AB τ(pq, c) = δF(pq,AB). Similarly, one can prove
that δF(p,A) ≤ δF(p−1,A−1).

Lemma 6.2. Let f : (S, ·,F) −→ (S′, ·,F′) be a non-expansive group homomorphism between probabilistic metric
groups. Then f :

(
S, ·, δF

)
−→

(
S′, ·, δF′

)
is a contractive group homomorphism between probabilistic approach spaces.

Proof. This follows at once from the Proposition 7.2[20].

Lemma 6.3. Let τ be a sup-continuous triangle function, then there is an embedding functor:

J :


ProbMetGrpτ −→ ProbApGrpτ

(S, ·,F) 7−→

(
S, ·, δF

)
f 7−→ f

In fact, ProbMetGrpτ is isomorphic to a coreflective subcategory of the category ProbApGrpτ.

Proof. This follows from proposition 6.1 and Lemma 6.3 in conjunction with the Corollary 7.3[20].

Let (S, ·, δ) ∈ |ProbApGrpτ|. Define Fδpq = δ(p, {q}).

Lemma 6.4. Let (S, ·, δ) ∈ |ProbApGrpτ|. Then
(
S, ·,Fδ

)
∈ |ProbMetGrpτ|.

Proof. Let (S, ·, δ) ∈ |ProbApGrpτ|. In view of the Proposition 7.5[20], we just check (PMGM). In fact,
τ
(
Fδ(p1, p2),Fδ(q1, q2)

)
= τ
(
δ(p1, {p2}), δ(q1, {q2})

)
≤ δ(p1q1, {p2q2}) = Fδ(p1q1, p2q2)

Lemma 6.5. If f : (S, ·, δ) −→ (S′, ·, δ′) is a contractive group homomorphism between probabilistic approach groups,
then f : (S, ·,Fδ) −→ (S′, ·,Fδ′ ) is a non-expansive group homomorphism between probabilistic metric groups.

Proof. This is immediate from the Proposition 7.6[20] since group homomorphism remains unchanged.

Hence there is a functor

K :


ProbApGrpτ −→ ProbMetGrpτ

(S, ·, δ) 7−→

(
S, ·,Fδ

)
f 7−→ f

Theorem 6.6. If the triangle function τ is sup-continuous, then the category of probabilistic metric groups
ProbMetGrpτ can be embedded into the category ProbApGrpτ as a coreflective subcategory.

Proof. In view of the preceding results, we only need to show two items:

ProbMetGrpτ
J
−→ ProApGrpτ

idProbMetGrpτ↘ K↓

ProbMetGrpτ

whenceK ◦J = idProbMetGrpτ and J ◦K ≤ idProbApGrpτ , where
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ProbApGrpτ
K
−→ProbMetGrpτ

J
−→ProbApGrpτ.

In fact, in view of the Proposition 7.7[20], if (S, ·,F) ∈ |ProbMetGrpτ|, then

K ◦J (S, ·,F) = K (J (S, ·,F)) = K
(
S, ·,FδF

)
= (S, ·,F) = idProbMetGrpτ (S, ·,F) .

In a similar fashion, one can show the other part upon using Proposition 7.8[20]. Hence the result follows.

We recall the following notions from [19] (see also, [2], pp.998). A probabilistic convergence space(
S, c = (cφ)φ∈∆+

)
is called τ-transitive [19], if for all p, q, r ∈ S and all φ,ψ ∈ ∆+, p ∈ cφ([q]) and q ∈ cψ([r])

implies p ∈ cτ(φ,ψ)([r]). It is called symmetric [19], if p ∈ cφ([q]) implies q ∈ cφ([p]) for all p, q ∈ S and φ ∈ ∆+.

Lemma 6.7. ([2]) Every probabilistic convergence group under triangle function τ is symmetric and τ-transitive.

We also recall from [19] that a probabilistic convergence space (S, c) is called T1 if
∨

p∈cφ([q]) φ = ϵ0 implies
p = q. Furthermore, we need from [2], pp. 998 (see also, [19]) the following axiom stating that a probabilistic
convergence space (S, c) satisfies (PM) axiom if :

∀p ∈ S,∀φ ∈ ∆+, ∀U ∈ U(S), p ∈ cφ(U)⇔ ∀U ∈ U,∀ϵ > 0,∃q ∈ U s.t.
∨
ψ:p∈cψ([q]) ψ(x + ϵ) + ϵ ≥ φ(x),

∀x ∈ [0, 1
ϵ ).

Definition 6.8. A probabilistic topological convergence space (S, c) is called probabilistic metrizable if there
exists a probabilistic metric F on S such that cF = c.

Now combining the Definition 5.1 and Definition 5.2, one obtains the following metrization theorem,
for the proof we refer to the Theorem 8.2[2].

Theorem 6.9. Every T1 probabilistic topological convergence group under sup-continuous and continuous triangle
function τ satisfying (PM) axiom is probabilistic metrizable.

Let us denote T1-PMTopConvGrpτ, the category of all T1 probabilistic topological convergence groups
under sup-continuous and continuous triangle functionτ as objects, and all continuous group-homomorphisms
as morphisms. Let PMConvGrpτ denote the category of all probabilistic convergence groups under sup-
continuous and continuous triangle function τ and continuous group-homomorphisms such that the un-
derlying probabilistic convergence space is pretopological, T1 and satisfying (PM) axiom.

Remark 6.10. In view of the preceding statements we can clearly see that the category T1-PMTopConvGrpτ
is a full subcategory of the category PMConvGrpτ developed in [2], and furthermore, it is shown in [4] that
the category PMConvGrpτ is isomorphic to the category PMetGrpτ. At this stage, it is evident that neither
T1-PMTopConvGrpτ nor ProbMetGrpτ is isomorphic to the category ProbApGrpτ. It may be noted here
that there is another way of defining T1 in a topological category in [9, 10]. It is shown in [10], that T1 in
[10] and T1 in [25] are not the same in the category AP. It would be interesting to characterize T1 separation
axiom in [9, 10], in topological categories that we studied herein this text.

7. Action of probabilistic approach groups on probabilistic approach spaces

In 2016, Colebunders et. al. first introduced the concept of action of convergence approach spaces
[13]; following this idea, in 2020, we introduced the concept of convergence approach transformation
groups [6]. In this section, firstly, we formulate a category of probabilistic approach transformation groups,
and a category of probabilistic topological convergence approach transformation groups in an attempt to
show isomorphism between these two; secondly, we show that he category of probabilistic metric group
under sup-continuous and continuous triangle function is isomorphic to the category of probabilistic metric
probabilistic convergence transformation group. Finally, we derive the relationship between some other
categories.
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Definition 7.1. Let (T, ·, δ) ∈ |ProbApGrpτ|, (S, δ) ∈ |ProbApτ|, and ξ : T × S −→ S,(t, s) 7−→ ts. Then the
triple((T, ·, δ) , (S, δ), ξ) is called a probabilistic approach transformation group under triangle function τ if the
following conditions are fulfilled:

(PATG1) ξ(t · u, s) = ξ(t, ξ(u, s)), for all t,u ∈ T and s ∈ S;
(PATG2) ξ(e, s) = s, for all s ∈ S;
(PATG3) For all A ⊆ T, B ⊆ S, and for all t ∈ T, s ∈ S, τ (δ, (t,A), δ(s,B)) ≤ δ(ts,AB),

where ξ is called an action of T on S.

Denote by ProbApTrGrpτ, the category of probabilistic approach transformation groups having objects
consisting of all triples ((T, ·, δ), (S, δ), ξ) or (T, δ, ξ) (satisfying (PATG1)-(PATG3)), and morphisms are all
pairs of mappings ( f , h) : (T,S, ξ) −→ (T′,S′, ξ′) such that

(PATG4) f : T −→ T′ a morphism in ProbApGrpτ;
(PATG5) h : S −→ S′ a morphism in ProbApτ;
(PATG6) ξ′ ◦ ( f × h) = h ◦ ξ.

Example 7.2. Any probabilistic approach group (T, ·, δ) can be made into a probabilistic approach transfor-
mation group ((T, ·, δ) , (T, δ), ξ) on itself, where condition (PATG3) stands as follows:

τ (δ(t,A), δ(s,B)) ≤ δ (ts,AB), for all A,B ⊆ T and t, s ∈ T.

Definition 7.3. ([3]) Let
(
S, c = (cφ)φ∈∆+

)
∈ |ProbTopConvτ| and

(
T, ·, c = (cφ)φ∈∆+

)
∈ |ProbTopConvGrpτ|.

Then the triple
((

T, ·, c = (cφ)φ∈∆+
)
,
(
S, c = (cφ)φ∈∆+

)
, ξ
)

or in short, (T,S, ξ), where ξ : T × S −→ S, (t, s) 7−→ ts,
is called a probabilistic topological convergence transformation group, under the triangle function τ if the following
properties are fulfilled:

(PTTG1) ξ(t · v, s) = ξ(t, ξ(v, s)) for all t, v ∈ T and s ∈ S.;
(PTTG2) ξ(e, s) = s for all s ∈ S;
(PTTG3) For allU ∈ U(T),V ∈ U(S), ultrafilters on T and S, t ∈ T and s ∈ S, ts ∈ cτ(φ,ψ) (U ⊙V) provided

t ∈ cφ(U) and s ∈ cψ(V).

We denote ProbTopConvTrGrpτ, as the category of probabilistic topological convergence transforma-
tion groups having objects consisting of all triples ((T, ·, c) , (S, c), ξ) (or in short (T,S, ξ)), where (T, ·, c) ∈
|ProbTopConvGrpτ|, (S, c) ∈ |ProbTopConv| with ξ a continuous action of probabilistic topological con-
vergence group on probabilistic topological convergence space, and morphisms are all pairs of mappings
( f , h) : (T,S, ξ) −→ (T′,S′, ξ′) such that

(PATTG4) f : T −→ T′ a morphism in ProbtopConvGrpτ;
(PATTG5) h : S −→ S′ a morphism in ProbTopConvτ;
(PATTG6) ξ′ ◦ ( f × h) = h ◦ ξ.

Lemma 7.4. Let ((T, ·, δ) , (S, δ), ξ) ∈ |ProbApTrGrpτ|. Then
((

T, ·, cδ
)
, (S, cδ), ξ

)
∈ |ProbTopConvTrGrpτ|, where

τ(φ,φ) = φ, for all φ ∈ ∆+, the largest triangle function τ, and ξ(t, s) = ts.

Proof. Assume that ((T, ·, δ) , (S, δ), ξ) ∈ |ProbApTrGrpτ|. Since every probabilistic approach group is a
probabilistic topological convergence group, we only need to check (PTTG3). For, letU ∈ U(T),V ∈ U(S),
t ∈ T and s ∈ S. Furthermore, let t ∈ cδφ(U) and s ∈ cδψ(V), for any φ,ψ ∈ ∆+. Then using the Definition
5.1(PGA1)[3], and the given assumption, in view of [20], we have

∧
U∈U δ(t,U) ≥ φ and

∧
V∈V δ(s,V) ≥ ψ.

Then following the same route as in the proof of Lemma 5.8, we arrive at ts ∈ cτ(φ,ψ) (U ⊙V).

Then in view of the Lemma 5.8, Lemma 7.4 and the Lemma 5.3[20], there is a functor

L :


ProbApTrGrpτ −→ ProbTopConvTrGrpτ

((T, ·, δ), (S, δ)), ξ) 7−→

(
T, ·, cδ, (S, cδ), ξ

)
( f , 1) 7−→ ( f , 1)

Lemma 7.5. Let
((

T, ·, c = cφ)φ∈∆+
)
, (S, c = (cφ)φ∈∆+ ), ξ

)
∈ |ProbTopConvTrGrpτ|, under the largest triangle func-

tion τ. Then ((T, ·, δc) , (S, δc), ξ) ∈ |ProbApTrGrpτ|.
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Proof. It follows from the Lemma 5.5 that every probabilistic topological convergence group under τ is a
probabilistic approach group, we only need check the item (PATGM).
Let us assume that

((
T, ·, c = cφ)φ∈∆+

)
, (S, c = (cφ)φ∈∆+ ), ξ

)
∈ |ProbTopConvTGrpτ|, under the largest triangle

function τ. Let A ⊆ T, B ⊆ S, t ∈ T and s ∈ S. Then following the similar route as in the proof of the Lemma
5.5, we deduce that τ (δc(t,A), δc(s,B)) ≤ δ(ts,AB).

In view of the Lemma 5.5, Lemma 5.9 and Lemma 5.7[20], we obtain the following functor

M :


ProbTopConvTrGrpτ −→ ProbApTrGrpτ

((T, ·, c) , (S, c), ξ) 7−→ ((T, ·, δc) , (S, δc), ξ)
( f , 1) 7−→ ( f , 1)

Theorem 7.6. ProbTopConvTrGrpτ � ProbApTrGrpτ.

Proof. This follows from the preceding results in conjunction with the Theorem 5.10.

Definition 7.7. Let (T, ·, d) ∈ |ApGrp|, (S, d) ∈ |Ap|, and ξ : T × S −→ S, (t, s) 7−→ ts. Then the triple
((T, ·, d) , (S, d), ξ) is called an approach transformation group if the following conditions are fulfilled:

(APTG1) ξ(t · u, s) = ξ(t, ξ(u, s)), for all t,u ∈ T and s ∈ S;
(APTG2) ξ(e, s) = s, for all s ∈ S;
(APTG3) For all A ⊆ T, B ⊆ S, and for all t ∈ T, s ∈ S, d(ts,AB) ≤ d(t,A) + d(s,B),

where ξ is called an action of T on S.

Denote by ApTrGrp, the category of approach transformation groups having objects consisting of all
triples ((T, ·, δ), (S, δ), ξ) (or in short, (T,S, ξ), where (T, ·, d) ∈ |ApGrp|, (S, d) ∈ |Ap|with ξ : T×S −→, (t, s) 7−→
ts, satisfying the conditions (APTG1)-(APTG3), and morphisms are all pairs of mappings ( f , h) : (T,S, ξ) −→
(T′,S′, ξ′) such that

(APTG4) f : T −→ T′ a morphism in ApGrp;
(APTG5) h : S −→ S′ a morphism in Ap;
(APTG6) ξ′ ◦ ( f × h) = h ◦ ξ.

Theorem 7.8. Let ((T, ·, d) , (S, d), ξ) ∈ |ApTrGrp|. Then
((

T, ·, δd
)
, (S, δd), ξ

)
∈ |ProbApTrGrpτ∗ |.

Proof. It follows from Section 4 that every approach group is a probabilistic approach group under triangle
function τ∗. we need to check the condition (APTG3). For, let A ⊆ T, B ⊆ S, and t ∈ T, s ∈ S. But then upon
using the same technique used in the proof of the Lemma 4.5, we deduce that τ∗

(
δd(t,A), δd(s,B)

)
≤ δd(ts,AB),

where δd(t,A) = ϵd(t,A) and δd(s,B) = ϵd(s,B) .

Hence there is a functor

N :


APTrGrpτ −→ ProbApTrGrpτ

((T, ·, d) , (S, d), ξ) 7−→

((
T, ·, δd

)
, (S, δd), ξ

)
( f , 1) 7−→ ( f , 1)

Definition 7.9. ([3]) Let
(
T, ·,FT

)
∈ |ProbMetGrpτ|, (S,FS) ∈ |ProbMetτ| and ξ : T × S −→ S, (t, s) 7−→ ts be

a non-expansive mapping such that ξ(t · v, s) = ξ(t, ξ(v, s)) for all t, v ∈ T and s ∈ S and ξ(e, s) = s for all
s ∈ S, where T × S is equipped with min-product probabilistic metric structure FT

⊗∧ FS. Then the triple((
T, ·,FT

)
, (S,FS), ξ

)
is called a probabilistic metric transformation group on the probabilistic metric space (S,FS)

with respect to ξ.

Theorem 7.10. Let ((T, ·,F) , (S,F), ξ) ∈ |ProbMetTrGrpτ|. Then
((

T, ·, δF
)
, (S, δF), ξ

)
∈ |ProbApTrGrpτ|.

Proof. In view of the Proposition 6.1, we only need to check (PATG3) but that too follows from the same
proof of the Proposition 6.1 upon using the definition δF(p,A) =

∨
q∈A Fpq.
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Corollary 7.11. ([3]) Let
((

T, ·,FT
)
, (S,FS), ξ

)
be a probabilistic metric transformation group under a continuous

triangle function τ, on the probabilistic metric group (S,FS) with respect to ξ : T × S −→ S, (t, s) 7−→ ts. Then((
T, ·, cFT

)
, (S, cFS , ξ

)
is a probabilistic topological convergence transformation group with respect ξ, if T × S is

equipped with min-product FT
⊗∧ FS .

Proof. This follows from the Theorem 5.18[3] in conjunction with the Lemma 6.2 and Corollary 5.3 [19].

Lemma 7.12. Let ((T, ·, δ) , (S, δ), ξ) ∈ |ProbApTrGrpτ|. Then
((

T, ·,FTδ
)
, (S,FSδ )

)
∈ |ProbMetTrGrpτ| with min-

product structure.

Proof. This follows at once upon using the Lemma 6.4. In fact, for any (t, s), (t′, s′) ∈ T × S, upon using
(PAGM), we have

FTδ
⊗∧ FSδ ((t, s), (t′, s′)) = τ

(
FTδ (t, t′),FSδ (s, s′)

)
= τ (δ(t, {t′}), δ(s, {s′})) ≤ δ(ts, {t′s′}) = Fδ(ts, t′s′).

Theorem 7.13. If the triangle function τ is sup-continuous, then the category of probabilistic metric transformation
groups ProbMetTrGrpτ can be embedded into the category ProbApTrGrpτ as a coreflective subcategory.

Proof. In view of the Lemma 6.3 (see also, Theorem 4.2[5]), The category ProbMetGrpτ is isomorphic to a
coreflective subcategory of the category ProbApGrpτ. For the embedding part, we refer to the Theorem
3.8[22]. However, one can check that if ((T, ·,F) , (S,F), ξ) , ((T, ·,F′) , (S,F′), ξ), then

((
T, ·, δF

)
, (S, δF), ξ

)
,((

T, ·, δF′
)
, (S, δF′ ), ξ

)
by using Theorem 3.8[22].

Theorem 7.14. The category ProbMetTrGrpτ under sup-continuous and continuous triangle function τ is isomor-
phic to the category ProbMetConvTrGrpτ
Proof. It follows from the Theorem 4.2[4] that ProbMetGrpτ � ProbMetConvGrpτ under sup-continuous
triangle function τ. In view of the Theorem 5.18[3], we know that every probabilistic metric transformation
group is a probabilistic convergence transformation group. We only provide the proof for the missing part,
that is, show that the mapping ξ : T×S −→ S, (t, s) 7−→ ts is non-expansive. For, let (t, s), (t′, s′) ∈ T×S. Then
applying Lemma 6.7 and the continuity ξ, we have

FT
⊗∧ FS ((t, s), (t′, s′)) = τ

(
FT(t, t′),FS(s, s′)

)
= τ
(∨

φ:t∈cT
φ([t′]) φ,

∨
φ:s∈cS

φ([s′]) φ
)

=
∨
φ:(t,s)∈cFT

φ ×cFS
φ ([t′],[s′]) φ ≤

∨
φ:ts∈cS

φ([t′s′]) φ = FS(ts, t′s′), i.e., FT
⊗ FS ((t, s), (t′, s′)) ≤ FS(ts, t′s′).

8. Conclusion

In this paper, starting with the category of approach group, ApGrp, we showed that this category can
be embedded into the category of probabilistic approach groups; also, we showed that the category ApGrp,
of probabilistic approach groups is isomorphic to ProbApGrpτ, the category of probabilistic topological
convergence groups, ProbTopConvGrpτ. Furthermore, it is proved that the category of probabilistic metric
groups, ProbMetGrpτ can be embedded into the category ProbApGrpτ of the category of probabilistic
approach groups as a bicoreflective subcategory. Finally, we showed that the category of probabilistic
approach transformation groups is isomorphic to the category of probabilistic topological convergence
transformation groups. However, it would be interesting to show under what condition a probabilistic
approach transformation group is a probabilistic metric transformation group, in this respect. It would be
interesting to provide with the metrization theorem for probabilistic approach group by a direct approach,
it would also be interesting to construct function space structure for probabilistic approach spaces, we take
this issue including the one raised in Remark 3.5, and Remark 6.10 in a separate paper. Furthermore, we
intend to look in a separate paper into the relationships among T1 separation property in our sense, T1
separation property defined in [8] and T1 separation property used in [11] for the categories of probabilistic
convergence spaces.



T.M.G. Ahsanullah et al. / Filomat 37:16 (2023), 5413–5426 5426

Acknowledgement

We are sincerely grateful to the area editor for his kind support, and to the referee for painstaking
checking our earlier version of the manuscript, and provided various suggestions for improving the article.

References
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[2] T.M.G. Ahsanullah, G. Jäger, Probabilistic uniformization and probabilistic metrization of probabilistic convergence groups,

Math. Slovaca 67(2017) 1447–1464.
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[22] G. Jäger, W. Yao, Quantale-valued gauge spaces, Iranian J. Fuzzy Syst. 15 (2018) 103–122.
[23] E.P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer Academic Publishers, 2000.
[24] W. Li, D. Zhang, Scott approach distance on metric spaces, Appl. Categor. Struct. 26 (2015) 1067–1093.
[25] R. Lowen, Approach spaces : The Missing Link in the Topology-Uniformity-Metric Triade, Clarendon Press, Oxford, London,

1997.
[26] R. Lowen, B. Windels, Approach groups, Rocky Mountain. J. Math. 30(3) (2000) 1057–1073.
[27] F.W. Lawvere, Metric spaces, generalized logic, and closed categories, Theory and Applications of categories 1 (2002) 1–37.
[28] K. Menger, Statistical metrices, Proc. Natl. Acad. Sci. 28 (1942) 535–537.
[29] K. Nourouzi, A.R. Pourmoslemi, Probabilistic normed groups, Iranian J. Fuzzy Syst. 14 (2017) 90–113.
[30] G. Preuss, Foundations of Topology: An Approach to Convenient Topology. Kluwer Academic Publishers, Dordrecht, 2002
[31] G.D. Richardson, D.C. Kent, Probabilistic convergence spaces, J. Austral. Math. Soc. 61 (1996) 400–420.
[32] B. Schweizer, A. Sklar, Probabilistic Metric Spaces, North Holland, New York, 1983.
[33] R.M. Tardiff, Topologies for probabilistic metric spaces, Pacific. J. Math. 65 (1976) 233–251.


