Chemical Engineering Department
 College of Engineering
 King Saud University

Chemical Engineering Principles (II) - ChE 202
Time : $\mathbf{2}$ hours
Final Examination
Date: 6/7/1430
Answer ALL questions.
ASSUME any missing data.
TAKE Cp=a + b.T
Specify clearly, your REFERENCE state for all problems .
Construct ENTHALPY TABLES for all problems.

Question \# 1 (12 points).

(a, $\mathbf{6}$ points) Find the amount of heat needed to raise the temperature of $100 \mathrm{~mol} / \mathrm{s}$ of steam from $290^{\circ} \mathrm{C}$ to $600^{\circ} \mathrm{C}$ at 60 bar.
(b, 6 points) Calculate the heat of reaction using the heat of combustion for the following gas phase reaction: $\mathrm{C}_{3} \mathrm{H}_{8} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{CH}_{4}$

Question \# 24 (12 points).

$100 \mathrm{~mol} / \mathrm{s}$ of a vapor mixture containing $60 \mathrm{~mol} \%$ benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ and $40 \mathrm{~mol} \%$ Toluene $\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)$ at $120^{\circ} \mathrm{C}$ is fed continuously to a condenser in which the mixture is cooled to $80^{\circ} \mathrm{C}$ and is separated into two streams: a liquid and a vapor streams. The liquid product contains $10 \mathrm{~mol} \%$ benzene and the vapor product is $90 \mathrm{~mol} \%$ benzene. How much heat must be transferred to/from the mixture. Assume the operation to be at 1 atm . Use feed conditions as your reference for enthalpy calculations.

Question \# 3 (13 points).

Consider the following gaseous system.

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{8}+0.5 \mathrm{O}_{2} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

The feed to the reactor contains $50 \mathrm{~mol} / \mathrm{s}$ propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ and $100 \mathrm{~mol} / \mathrm{s}$ oxygen $\left(\mathrm{O}_{2}\right)$ at $100^{\circ} \mathrm{C}$ and 1 atm . In the reactor's outlet stream, the molar flow rate of the product stream is composed of $\mathrm{C}_{3} \mathrm{H}_{6}=40 \mathrm{~mol} / \mathrm{s} ; \mathrm{CO}_{2}=30 \mathrm{~mol} / \mathrm{s} ; \mathrm{H}_{2} \mathrm{O}=80 \mathrm{~mol} / \mathrm{s}$; and $\mathrm{O}_{2}=30 \mathrm{~mol} / \mathrm{s}$. The temperature of the reactor's product stream is $500^{\circ} \mathrm{C}$.

Using the heat of reaction method, Calculate the amount of heat that must added to or removed from the system.

Question \# 4 (13 points).

Calculate the amount of heat that must transeferred if $200 \mathrm{~mol} / \mathrm{s}$ of methane $\left(\mathrm{CH}_{4}\right)$ entering at $25^{\circ} \mathrm{C}$ is burnt with air (21% oxygen and 79% nitrogen) flowing at $1000 \mathrm{~mol} / \mathrm{s}$ at $200{ }^{\circ} \mathrm{C}$ according to the following reaction.

$$
\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

The conversion of methane is 40%. The products exit the reactor at $400^{\circ} \mathrm{C}$.

