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Abstract: We aim to examine the influence of the existence of a nonzero eigenvector ζ of the de-Rham
operator Γ on a k-dimensional Riemannian manifold (Nk, g). If the vector ζ annihilates the de-Rham
operator, such a vector field is called a de-Rham harmonic vector field. It is shown that for each
nonzero vector field ζ on (Nk, g), there are two operators Tζ and Ψζ associated with ζ, called the
basic operator and the associated operator of ζ, respectively. We show that the existence of an
eigenvector ζ of Γ on a compact manifold (Nk, g), such that the integral of Ric(ζ, ζ) admits a certain
lower bound, forces (Nk, g) to be isometric to a k-dimensional sphere. Moreover, we prove that the
existence of a de-Rham harmonic vector field ζ on a connected and complete Riemannian space
(Nk, g), having div(ζ) 6= 0 and annihilating the associated operator Ψζ , forces (Nk, g) to be isometric
to the k-dimensional Euclidean space, provided that the squared length of the covariant derivative of
ζ possesses a certain lower bound.

Keywords: de-Rham operator; eigenvector; k-sphere Sk
c ; Ricci curvature; manifold; harmonic
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1. Introduction

We abbreviate a k-dimensional Riemannian manifold
(

Nk, g
)

by k-RM
(

Nk, g
)

. There

are several operators acting on smooth vector fields on a k-RM
(

Nk, g
)

, k ≥ 2, these being

associated with the geometry of k-RM
(

Nk, g
)

, and among them, some are naturally
associated with the metric g, namely the Ricci operator and the shape operator (in the
case where k-RM,

(
Nk, g

)
is treated as hypersurface of an ambient Riemannian manifold).

An interesting observation made by Gray cf. [1]) is that the Ricci operator is of central
importance when defining various classes of remarkable manifolds, the most natural being
Einstein spaces. Similarly, the hypersurfaces in a Riemannian manifold are classified
according to the behavior of the shape operator.

Given a smooth vector field ζ on a k-RM
(

Nk, g
)

, there is a symmetric operator Tζ

defined by (
£ζ g
)
(X1, X2) = 2g

(
Tζ(X1), X2

)
, (1)

for X1, X2 ∈ Ω
(

Nk
)

. Here, Ω
(

Nk
)

denotes the set of all smooth vector fields on Nk. We

call this operator Tζ : Ω
(

Nk
)
→ Ω

(
Nk
)

, the basic operator of ζ. Obviously, the operator
Tζ is symmetric and it plays a key role in characterizing the geometry of ζ. We recall
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that ζ is Killing if Tζ is the null operator, and it is well-known that Killing fields have a

fundamental role in modeling the geometry of k-RM
(

Nk, g
)

on which they live (cf. [2–10]).

Also, we say that ζ is a conformal vector on an k-RM
(

Nk, g
)

if the basic operator Tζ is a

scalar, namely Tζ = σI for smooth functions σ on Nk is called the conformal factor, and it is
known that conformal vector fields play very important roles in investigating the geometry
of k-RM

(
Nk, g

)
on which they exist (cf. [7,11–22]).

Given a smooth vector ζ on an k-RM
(

Nk, g
)

, there is a second-order differential

operator ∇2ζ : Ω
(

Nk
)
×Ω

(
Nk
)
→ Ω

(
Nk
)

defined by (cf. [23–25])(
∇2ζ

)
(X1, X2) = ∇X1∇X2 ζ −∇∇X1 X2 ζ, X1, X2 ∈ Ω

(
Nk
)

,

where ∇ stands for the Riemannian connection on the k-RM
(

Nk, g
)

. Similar to Obata’s
differential equation (cf. [21,22,26,27]), the authors of [25] considered the differential
equation (

∇2ζ
)
(X1, X2) + λg(ζ, X1)X2 = 0, X1, X2 ∈ Ω

(
Nk
)

, (2)

showing that, for ζ 6= 0 on Nk, and for the positive constant λ, the above differential
equation provides a necessary and sufficient condition for a complete and connected k-RM(

Nk, g
)

to be isometric to the k-dimensional sphere with a constant curvature λ. The rough

Laplace operator ∆ : Ω
(

Nk
)
→ Ω

(
Nk
)

is defined to be the trace of the operator ∇2, that
is,

∆Z =
k

∑
j=1

(
∇2Z

)(
Fj, Fj

)
, (3)

where {F1, .., Fk} is a local orthonormal frame on
(

Nk, g
)

. Note that, in [25], a significant

relationship was stated between ∆ζ and ∇2ζ.
Recall that on a k-RM

(
Nk, g

)
, the Ricci operator Q : Ω

(
Nk
)
→ Ω

(
Nk
)

is defined
using the Ricci tensor Ric by

g(QX1, X2) = Ric(X1, X2), X1, X2 ∈ Ω
(

Nk
)

.

Clearly, Q is a symmetric operator (cf. [11,28,29]). In this work, we are interested in
investigating the properties of the de-Rham operator Γ on an k-RM

(
Nk, g

)
. Recall that we

have Γ : Ω
(

Nk
)
→ Ω

(
Nk
)

, defined by (cf. [7])

Γ = Q + ∆, (4)

where ∆ is the rough Laplace operator on k-RM
(

Nk, g
)

. The de-Rham operator is used to
characterize vector fields with an associated tensor Tζ that is null; that is, it characterizes

Killing vector fields. A vector field ζ on k-RM
(

Nk, g
)

is said to be an eigenvector of Γ if

Γ(ζ) = aζ,

for some constant a.
Next, we show that on the k-dimensional sphere Sk

c with a constant curvature c, there
are nonzero vector fields, which are eigenvectors of the de-Rham operator Γ. Considering
Sk

c as a hypersurface of the Euclidean space Ek+1 with the unit normal ξ and the Weingarten
map −

√
cI, a nonzero constant vector field u on the Euclidean space Ek+1 makes it possible
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to write u = ζ + σξ, where σ = 〈u, ξ〉 and ζ is the tangential projection of u to the sphere Sk
c .

Then, we let g be the induced metric on the sphere Sk
c and∇ be the Riemannian connection

on Sk
c . By differentiating equation u = ζ + σξ with respect to a vector field X on Sk

c , we
obtain

∇Xζ = −
√

cσX, ∇σ =
√

cζ, (5)

where ∇σ stands for the gradient of σ. The last equation easily implies that(
∇2ζ

)
(X1, X2) = −

√
cX1(σ)X2, X1, X2 ∈ Ω

(
Sk

c

)
and taking the trace of the preceding equation, we derive

∆ζ = −
√

c∇σ,

and in view of (5), we obtain
∆ζ = −cζ. (6)

But, the Ricci tensor of the k-dimensional sphere Sk
c is expressed as Ric = (k− 1)cg,

and consequently, the Ricci operator Q of Sk
c satisfies the identity

Qζ = (k− 1)cζ. (7)

Thus, Equations (4), (6) and (7) imply that

Γ(ζ) = (k− 2)cζ, (8)

that is, ζ is an eigenvector of Γ on Sk
c . Further, as ζ is induced by a nonzero constant vector

u of the Euclidean space Ek+1 on the k-dimensional sphere Sk
c , it is easy to deduce that

ζ 6= 0.
The above remarks on the k-sphere Sk

c raise a natural question: Under what conditions
is a compact and connected k-RM

(
Nk, g

)
admitting a nonzero vector field ζ satisfying

Γ(ζ) = (k− 2)cζ

for some constant c > 0 isometric to Sk
c?

A vector field ξ on an k-RM
(

Nk, g
)

with Γ(ξ) = 0 is called a de-Rham harmonic.

There are many k-RM
(

Nk, g
)

which admit de-Rham harmonic vector fields. For example,

on the k-dimensional Euclidean space Ek, the vector field ξ is defined as

ξ =
k

∑
j=1

yj ∂

∂yj , (9)

where y1, .., yk are Euclidean coordinates on Ek satisfying Γ(ξ) = 0, that is, ξ is a de-Rham
harmonic. Similarly, a k-dimensional Ricci soliton (N, g, ξ, λ) with the potential field ξ is
also a de-Rham harmonic (cf. [11,14]). Also, a vector field ζ on an k-RM

(
Nk, g

)
that has

the basic operator Tζ = 0 is a de-Rham harmonic vector field, as the Killing vector field is a
Jacobi-type vector field (cf. [14], p. 45). These considerations raise yet another question:
Under what conditions is a connected and complete k-RM

(
Nk, g

)
admitting a nonzero

de-Rham harmonic vector field isometric to the Euclidean space Ek?
We answer these questions in Sections 3 and 4 of this paper. Concerning the first

question, we state that any connected and compact k-RM
(

Nk, g
)

, k > 2 admitting a
nonzero eigenvector ζ of Γ with Γ(ζ) = (k− 2)cζ for some constant c > 0 and the integral
of Ric(ζ, ζ) having a certain lower bound provides a characterization of the k-dimensional
sphere Sk

c (cf. Theorem 1). Also, concerning second question, we prove that if there is
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a de-Rham harmonic vector field ζ on a connected and complete k-RM
(

Nk, g
)

, k > 2,
with div(ζ) 6= 0 and such that the squared length of ∇ζ has a certain lower bound, then(

Nk, g
)

is isometric to Ek, and the converse statement also holds (cf. Theorem 2). We
would like to emphasize that many geometric characterizations of spheres and Euclidean
spaces have been obtained in previous decades, the most recent being obtained through
some remarkable differential equations developed by Al-Sodais and the authors of the
present paper (cf. [30,31]).

2. Preliminaries

Let ζ be a smooth vector field on an k-RM
(

Nk, g
)

. Then, we can see, through
Equation (1), that there is the basic operator Tζ of the vector field ζ. We denote by α the
1-form dual, which is dual to ζ, i.e., α(X) = g(X, ζ), and define a skew symmetric operator
Ψζ : Ω

(
Nk
)
→ Ω

(
Nk
)

, called the associated operator of ζ by

dα(X1, X2) = 2g
(
Ψζ(X1), X2

)
, X1, X2 ∈ Ω

(
Nk
)

. (10)

Then, using the Riemannian connection ∇ on k-RM
(

Nk, g
)

, we obtain that, for any

X1, X2 ∈ Ω
(

Nk
)

, we have

2g
(
∇X1 ζ, X2

)
= g

(
∇X1 ζ, X2

)
+ g
(
∇X2 ζ, X1

)
+ g
(
∇X1 ζ, X2

)
− g
(
∇X2 ζ, X1

)
= g([X1, ζ] +∇ζ X1, X2) + g([X2, ζ] +∇ζ X2, X1)

+X1(g(ζ, X2))− g(ζ,∇X1 X2)− X2(g(ζ, X1)) + g(ζ,∇X2 X1)

= ζ(g(X1, X2)) + g([X1, ζ], X2) + g([X2, ζ], X1)

+X1(α(X2))− X2(α(X1))− α([X1, X2])

=
(
£ζ g
)
(X1, X2) + dα(X1, X2)

= 2g
(
Tζ(X1), X2

)
+ 2g

(
Ψζ(X1), X2

)
and we conclude that

∇Xζ = Tζ(X) + Ψζ(X), X ∈ Ω
(

Nk
)

. (11)

We define a function σ : Nk → R by

σ =
k

∑
j=1

g
(
Tζ

(
Fj
)
, Fj
)
, (12)

where {F1, .., Fk} is the local orthonormal frame on k-RM
(

Nk, g
)

. Then, as the associated
operator Ψζ of ζ is a skew symmetric operator, using Equation (11), it follows that

divζ = σ. (13)

Also, we define

∥∥Tζ

∥∥2
=

k

∑
j=1

g
(
Tζ

(
Fj
)
, Tζ

(
Fj
))

,
∥∥Ψζ

∥∥2
=

k

∑
j=1

g
(
Ψζ

(
Fj
)
, Ψζ

(
Fj
))

and

‖∇ζ‖2 =
k

∑
j=1

g
(
∇Fj ζ,∇Fj ζ

)
.



Mathematics 2023, 11, 4942 5 of 15

Lemma 1. For a smooth vector field ζ on a k-RM
(

Nk, g
)

,

∥∥∥Tζ −
σ

k
I
∥∥∥2

= ‖∇ζ‖2 −
∥∥Ψζ

∥∥2 − 1
k

σ2.

Proof. Using Equation (11), we derive

Tζ(X)− σ

k
X = ∇Xζ −Ψζ(X)− σ

k
X, X ∈ Ω

(
Nk
)

and by choosing a local frame {F1, .., Fk} on Nk, we conclude that

∥∥∥Tζ −
σ

k
I
∥∥∥2

=
k

∑
j=1

g
(

Tζ

(
Fj
)
− σ

k
Fj, Tζ

(
Fj
)
− σ

k
Fj

)
=

k

∑
j=1

g
(
∇Fj ζ −Ψζ

(
Fj
)
− σ

k
Fj,∇Fj ζ −Ψζ

(
Fj
)
− σ

k
Fj

)
(14)

= ‖∇ζ‖2 +
∥∥Ψζ

∥∥2
+

1
k

σ2 − 2
σ

k
divζ − 2

k

∑
j=1

g
(
∇Fj ζ, Ψζ

(
Fj
))

,

where we have used the skew symmetry of Ψζ . Note that as Tζ is symmetric, while Ψζ is
skew symmetric, it follows that

k

∑
j=1

g
(
Tζ

(
Fj
)
, Ψζ

(
Fj
))

= 0

and by employing this information in Equation (14), while using Equations (11) and (13),
we obtain ∥∥∥Tζ −

σ

k
I
∥∥∥2

= ‖∇ζ‖2 +
∥∥Ψζ

∥∥2 − 1
k

σ2 − 2
∥∥Ψζ

∥∥2

which proves the Lemma.

Next, by making use of the expression of the curvature tensor field on Nk

R(X1, X2)X3 = ∇X1∇X2 X3 −∇X2∇X1 X3 −∇[X1,X2]X3, X1, X2, X3 ∈ Ω
(

Nk
)

and Equation (11), we compute

R(X1, X2)ζ =
(
∇X1 Tζ

)
(X2)−

(
∇X2 Tζ

)
(X1)

+
(
∇X1 Ψζ

)
(X2)−

(
∇X2 Ψζ

)
(X1), (15)

where, for an operator S, we have(
∇X1 S

)
(X2) = ∇X1 S(X2)− S

(
∇X1 X2

)
.

The Ricci tensor of k-RM
(

Nk, g
)

, denoted by Ric, is given as

Ric(X1, X2) =
k

∑
j=1

g
(

R
(

Fj, X1
)
X2, Fj

)
,

and due to (15), we find that

Ric(X, ζ) =
k

∑
j=1

g
((
∇Fj Tζ

)
(X)−

(
∇XTζ

)(
Fj
)
+
(
∇Fj Ψζ

)
(X)−

(
∇XΨζ

)(
Fj
)
, Fj

)
.
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Using the symmetry of Tζ and the skew symmetric of Ψζ in the above equation, as
well as (12), we deduce that

Ric(X, ζ) = g

(
X,

k

∑
j=1

(
∇Fj Tζ

)(
Fj
))
− X(σ)− g

(
X,

k

∑
j=1

(
∇Fj Ψζ

)(
Fj
))

. (16)

Thus, we derive

Q(ζ) = −∇σ +
k

∑
j=1

(
∇Fj Tζ

)(
Fj
)
−

k

∑
j=1

(
∇Fj Ψζ

)(
Fj
)
, (17)

where {F1, .., Fk} is a local frame on k-RM
(

Nk, g
)

.
Also, using Equation (11) in the second-order differential operator(

∇2ζ
)
(X1, X2) = ∇X1∇X2 ζ −∇∇X1 X2 ζ,

we obtain (
∇2ζ

)
(X1, X2) =

(
∇X1 Tζ

)
(X2) +

(
∇X1 Ψζ

)
(X2), X1, X2 ∈ Ω

(
Nk
)

and consequently

∆ζ =
k

∑
j=1

(
∇FJ Tζ

)(
Fj
)
+

k

∑
j=1

(
∇FJ Ψζ

)(
Fj
)
. (18)

3. Characterizing Spheres

In this section, we use an eigenvector ζ 6= 0 of the de-Rham operator Γ on a compact
k-RM

(
Nk, g

)
with the corresponding eigenvalue nonzero, namely Γ(ζ) = (k− 2)cζ for

some constant c > 0 with a suitable lower bound for the integral of Ric(ζ, ζ) in order to
discover a new characterization of the k-dimensional sphere Sk

c . It is worth noting that,
usually, the spheres are characterized by making use of Killing vector fields and conformal
vector fields due to the fact that the defining equations for these remarkable vector fields
ease the study, enabling us to reach the goal. However, demanding solely that a vector field
be an eigenvector of a basic operator is geometrically less convenient than the geometric
conditions involved in the definition of Killing or conformal vector fields. Our following
result is unique in this direction.

Theorem 1. A vector field ζ 6= 0 with the associated operator Ψζ on a connected and compact k-RM(
Nk, g

)
, k > 2 satisfies Γ(ζ) = (k− 2)cζ for some constant c > 0, and the Ricci curvature satisfies

∫
Nk

Ric(ζ, ζ) ≥
∫

Nk

[
k− 1

k
(divζ)2 +

∥∥Ψζ

∥∥2
]

if and only if (Nk, g) is isometric to Sk
c .

Proof. Suppose that ζ is a nonzero vector field with the associated operator Ψζ on a

compact and connected k-RM
(

Nk, g
)

, k > 2 that satisfies Γ(ζ) = (k− 2)cζ and that

∫
Nk

Ric(ζ, ζ) ≥
∫

Nk

[
k− 1

k
(divζ)2 +

∥∥Ψζ

∥∥2
]

. (19)
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By integrating the equation in Lemma 1, we have∫
Nk

∥∥∥Tζ −
σ

k
I
∥∥∥2

=
∫

Nk

(
‖∇ζ‖2 −

∥∥Ψζ

∥∥2 − 1
k

σ2
)

. (20)

Now, using a well-known integral formula (see [32])∫
Nk

(
Ric(ζ, ζ) +

1
2

∣∣£ζ g
∣∣2 − ‖∇ζ‖2 − (divζ)2

)
= 0

in Equation (20), we obtain∫
Nk

∥∥∥Tζ −
σ

k
I
∥∥∥2

=
∫

Nk

(
Ric(ζ, ζ) +

1
2

∣∣£ζ g
∣∣2 − (divζ)2 −

∥∥Ψζ

∥∥2 − 1
k

σ2
)

,

which, after employing Equation (13), yields∫
Nk

∥∥∥Tζ −
σ

k
I
∥∥∥2

=
∫

Nk

(
Ric(ζ, ζ) +

1
2

∣∣£ζ g
∣∣2 − ∥∥Ψζ

∥∥2 −
(

k + 1
k

)
σ2
)

. (21)

Also, by Equation (1), we derive

1
2

∣∣£ζ g
∣∣2 = 2

∥∥Tζ

∥∥2

and (21) reduces to∫
Nk

∥∥∥Tζ −
σ

k
I
∥∥∥2

=
∫

Nk

(
Ric(ζ, ζ) + 2

∥∥Tζ

∥∥2 −
∥∥Ψζ

∥∥2 −
(

k + 1
k

)
σ2
)

. (22)

Note that ∥∥∥Tζ −
σ

k
I
∥∥∥2

=
k

∑
j=1

g
(

Tζ

(
Fj
)
− σ

k
Fj, Tζ

(
Fj
)
− σ

k
Fj

)
=

∥∥Tζ

∥∥2
+

1
k

σ2 − 2
σ

k

k

∑
j=1

g
(
Tζ

(
Fj
)
, Fj
)
,

and using (12), we derive ∥∥∥Tζ −
σ

k
I
∥∥∥2

=
∥∥Tζ

∥∥2 − 1
k

σ2.

Combining the preceding equation with (22) yields∫
Nk

∥∥∥Tζ −
σ

k
I
∥∥∥2

=
∫

Nk

(
Ric(ζ, ζ) + 2

∥∥∥Tζ −
σ

k
I
∥∥∥2

+
2
k

σ2 −
∥∥Ψζ

∥∥2 −
(

k + 1
k

)
σ2
)

,

or, equivalently,∫
Nk

∥∥∥Tζ −
σ

k
I
∥∥∥2

=
∫

Nk

((
k− 1

k

)
σ2 +

∥∥Ψζ

∥∥2
)
−
∫

Nk

Ric(ζ, ζ). (23)
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By using Equation (13) in the inequality (19) and by using it in Equation (23), we
conclude that ∫

Nk

∥∥∥Tζ −
σ

k
I
∥∥∥2
≤ 0

which yields

Tζ =
σ

k
I. (24)

Thus, by using a local frame {F1, .., Fk} on k-RM
(

Nk, g
)

in the preceding equation,
we deduce that (

∇FJ Tζ

)(
Fj
)
=

1
k

Fj(σ)Fj.

Hence,
k

∑
j=1

(
∇FJ Tζ

)(
Fj
)
=

1
k
∇σ.

By inserting the above equation into Equations (17) and (18), we conclude that

Q(ζ) = − k− 1
k
∇σ−

k

∑
j=1

(
∇FJ Ψζ

)(
Fj
)

and

∆ζ =
1
k
∇σ +

k

∑
j=1

(
∇FJ Ψζ

)(
Fj
)
.

Thus, we find that

Γ(ζ) = − k− 2
k
∇σ.

But, from the hypothesis, we have Γ(ζ) = (k− 2)cζ and by virtue of the fact that k > 2,
we conclude that

∇σ = −ckζ. (25)

Note that c > 0 and ζ is a nonzero vector, so the above equation implies that σ is a
non-constant function, Now, by differentiating Equation (25) while using Equations (11)
and (24), we arrive at

∇X∇σ = −ck
(σ

k
X + Ψζ(X)

)
, X ∈ Ω

(
Nk
)

.

Taking the inner product from the preceding equation with X and by using the skew
symmetry of Ψζ , we derive that

g(∇X∇σ, X) = −cσg(X, X).

After polarization, the above equation yields

g
(
∇X1∇σ, X2

)
= −cσg(X1, X2), (26)

where c > 0 is a real constant, while σ is a non-constant function. Hence, by using the
result of Obata (cf. [21,22,27]), from Equation (26), we see that

(
Nk, g

)
is isometric to Sk

c .

Conversely, suppose that
(

Nk, g
)

is isometric to Sk
c . Then, we can see that there exists

a nonzero eigenvector ζ of the de-Rham operator on Sk
c with the required eigenvalue. Now,

we need to show that (19) holds on Sk
c for the vector field ζ. Using Equation (5), we derive

that
∆σ = div(∇σ) = −

√
cdivζ = −kcσ.
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Hence,
σ∆σ = −kcσ2,

and this implies that ∫
Sk

c

‖∇σ‖2 = kc
∫
Sk

c

σ2. (27)

Moreover, by Equation (5), we see that

div(ζ) = −k
√

cσ (28)

and with the vector field ζ being closed on Sk
c , we have

Ψζ = 0. (29)

Using the expression for the Ricci tensor of the sphere Sk
c , we have

Ric(ζ, ζ) = (k− 1)c‖ζ‖2

and after inserting Equation (5), we obtain

Ric(ζ, ζ) = (k− 1)‖∇σ‖2.

By integrating this equation and using Equations (27)–(29), we reach∫
Sk

c

Ric(ζ, ζ) =
∫
Sk

c

[
k− 1

k
(divζ)2 +

∥∥Ψζ

∥∥2
]

and this finishes the proof.

4. Characterizing Euclidean Spaces

In this section, we use a de-Rham harmonic vector ζ 6= 0 on a connected and complete
k-RM

(
Nk, g

)
that annihilates Ψζ as well as a suitable lower bound for the squared length

of ∇ζ to find a new characterization of the k-dimensional Euclidean space Ek. Indeed, we
prove the following:

Theorem 2. A connected and complete k-RM
(

Nk, g
)

, k > 2 is isometric to the Euclidean

space Ek, if and only if (Nk, g) admits a de-Rham harmonic vector field ζ 6= 0 with div(ζ) 6= 0,
annihilating the associated operator Ψζ , and the length of ∇ζ satisfies

‖∇ζ‖2 ≥
∥∥Ψζ

∥∥2
+

1
k

σ2.

Proof. Suppose that ζ is a nonzero de-Rham harmonic vector field with div(ζ) 6= 0 and the
associated operator Ψζ on a complete and connected k-RM

(
Nk, g

)
, k > 2 that annihilates

Ψζ , that is,
Ψζ(ζ) = 0 (30)

and the length of ∇ζ satisfies

‖∇ζ‖2 ≥
∥∥Ψζ

∥∥2
+

1
k

σ2. (31)

Using the inequality (31) in Lemma 1, we conclude that

Tζ =
σ

k
I. (32)
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Hence,
k

∑
j=1

(
∇FJ Tζ

)(
Fj
)
=

1
k
∇σ

for a local frame {F1, .., Fk} on the k-RM
(

Nk, g
)

. Thus, Equations (17) and (18) take the
forms

Q(ζ) = − k− 1
k
∇σ−

k

∑
j=1

(
∇Fj Ψζ

)(
Fj
)

and

∆ζ =
1
k
∇σ +

k

∑
j=1

(
∇FJ Ψζ

)(
Fj
)
.

But, by using Γ(ζ) = 0 and the last two equations, we derive that

k− 2
k
∇σ = 0.

As k > 2, the preceding equation implies that σ is nothing but a real constant, say c.
Now, by combining Equations (11) and (31), we have

∇Xζ =
c
k

X + Ψζ(X), X ∈ Ω
(

Nk
)

. (33)

Define a function ρ : Nk → R by

ρ =
1
2
‖ζ‖2,

which, after differentiation and with the use of Equation (33), leads to

X(ρ) = g
( c

k
X + Ψζ(X), ζ

)
, X ∈ Ω

(
Nk
)

.

Using Equation (30), we conclude that

∇ρ =
c
k

ζ. (34)

But, div(ζ) = c 6= 0 and ζ 6= 0 imply that the function ρ is non-constant. By differenti-
ating Equation (34), and using (33), we obtain

∇X∇ρ =
c
k

( c
k

X + Ψζ(X)
)

, X ∈ Ω
(

Nk
)

.

Taking the inner product in the preceding equation with X, since Ψζ is skew symmetric,
we deduce that

g(∇X∇ρ, X) = ag(X, X), X ∈ Ω
(

Nk
)

,

where the constant a is given by ak2 = c2. Therefore, a is a nonzero constant. By polarizing
the last equation, we deduce that

Hess(ρ) = ag,

where ρ is a non-constant function, and a is a nonzero constant. Hence,
(

Nk, g
)

isometric

to the k-dimensional Euclidean space Ek (cf. [33]).
Conversely, suppose that

(
Nk, g

)
is isometric to the Euclidean space Ek. Then, ξ

defined by (9) satisfies (
∇2ξ

)
(X1, X2) = 0, X1, X2 ∈ Ω

(
Ek
)

,
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and thus we have
∆ξ = 0.

Also, as the Euclidean connection is flat, we have Q(ξ) = 0. Thus, Γ(ξ) = 0, that is, ξ
is a nonzero vector field on Ek that annihilates the de-Rham operator. Moreover, by using
Equation (9) with respect to the Euclidean connection ∇ on Ek, we have

∇Xξ = X, X ∈ Ω
(

Ek
)

, (35)

which gives div(ξ) = k 6= 0. Also, Equation (35) expresses that the vector field ξ is closed.
Thus, we have

Ψξ = 0. (36)

Moreover, from (35), we see that the basic operator Tξ associated with ξ, as suggested
by Equation (1), satisfies

g(X1, X2) = g
(
Tξ(X1), X2

)
, X1, X2 ∈ Ω

(
Ek
)

,

where g stands for the Euclidean metric on Ek. Thus, the basic operator is given by

Tξ = I

and consequently,

σ =
k

∑
j=1

g
(
Tξ

(
Fj
)
, Fj
)
= k. (37)

Finally, the Equation (35), gives

‖∇ξ‖2 = k. (38)

By combining Equations (36)–(38), we obtain that ξ satisfies

‖∇ξ‖2 =
∥∥Ψζ

∥∥2
+

1
k

σ2

and this ends the proof.

5. Examples

Example 1. Suppose that ζ is a Killing vector field on a Riemannian manifold
(

Nk, g
)

. Then,
according to Equation (12), as Tζ = 0, we have

∇Xζ = Ψζ(X)

and σ = 0. Then, Equations (17) and (18) imply that

Q(ζ) = −
k

∑
j=1

(
∇Fj Ψζ

)(
Fj
)

and

∆ζ =
k

∑
j=1

(
∇Fj Ψζ

)(
Fj
)
.

By combining these two equations, we realize that

Γ(ζ) = 0,
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that is, a Killing vector is an eigenvector of the de-Rham operator corresponding to an eigenvalue
of 0.

Example 2. Consider a k-dimensional Ricci soliton
(

Nk, g, ζ, λ
)

(cf. [11]). Then, for the potential
field ζ, Tζ = λI −Q, and the Equation (12) takes the form

∇Xζ = λX−Q(X) + Ψζ(X)

and σ = nλ− τ, where τ is the trace of Q. Thus, ∇σ = −∇τ and by using

k

∑
j=1

(
∇Fj Q

)(
Fj
)
=

1
2
∇τ,

we see that Equations (17) and (18) imply that

Q(ζ) =
1
2
∇τ −

k

∑
j=1

(
∇Fj Ψζ

)(
Fj
)

and

∆ζ = −1
2
∇τ +

k

∑
j=1

(
∇Fj Ψζ

)(
Fj
)
.

Thus, Γ(ζ) = 0, and thus, the potential field ζ is an eigenvector of the de-Rham operator correspond-
ing to an eigenvalue of 0.

Example 3. Consider a k-dimensional connected Riemannian manifold (Nk, g), k > 2, that admits
a nonzero concircular vector field ζ and that the Ricci curvature of (Nk, g) in the direction of ζ is a
constant c, that is,

Ric(ζ, ζ) = c‖ζ‖2. (39)

Then, it follows that
∇Xζ = ρX, (40)

where ρ is a smooth function. Then, it follows that Tζ = ρI, Ψζ = 0 and σ = kρ, ∇σ = n∇ρ.
Then, Equations (17) and (18) imply that

Q(ζ) = −(k− 1)∇ρ

and
∆ζ = ∇ρ.

Thus,
Γ(ζ) = −(k− 2)∇ρ. (41)

Now, using Tζ = ρI, Ψζ = 0 and Equation (15), we arrive at

R(X1, X2)ζ = X1(ρ)X2 − X2(ρ)X1,

that is,
R(X1, ζ)ζ = X1(ρ)ζ − ζ(ρ)X1 (42)

and as R(X1, ζ)ζ is a symmetric operator, it follows that

X1(ρ)g(ζ, X2) = X2(ρ)g(ζ, X1), X1, X2 ∈ Ω
(

Nk
)

.
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The above equation implies that

X(ρ)ζ = g(ζ, X)∇ρ, X ∈ Ω
(

Nk
)

,

that is,
ζ(ρ)ζ = ‖ζ‖2∇ρ.

Thus, the vector fields ζ and ∇ρ are parallel, and therefore, there is a function f such that

∇ρ = f ζ. (43)

Inserting this information in Equation (42) leads to

R(X1, ζ)ζ = f
{

g(ζ, X1)ζ − ‖ζ‖2X1

}
and this equation implies that

Ric(ζ, ζ) = −(k− 1) f ‖ζ‖2.

Combining it with Equation (39) and as Nk is connected and ζ 6= 0, we derive −(k− 1) f = c.
Hence, from Equations (41) and (42), we have

Γ(ζ) =
(k− 2)
k− 1

cζ.

Hence, ζ is an eigenvector of the de-Rham operator with the eigenvalue (k−2)
k−1 c. Note that such

concircular vector fields exist on the warped product S1 ×θ Sk−1, where θ is a positive function on
the unit circle S1.

6. Conclusions

In this work, we observed that a nonzero eigenvector of the de-Rham operator Γ on a
k-RM

(
Nk, g

)
could be used to obtain characterizations of a sphere as well as a Euclidean

space. The scope of study initiated in this paper extends two of our recent works [30,31]
on the characterizations of spheres and Euclidean spaces using a remarkable differential
equation called the Fischer–Marsden equation, which is given by

(∆σ)g + σRic = Hess(σ) (44)

on a k-RM
(

Nk, g
)

(cf. [34]). Recall that, as shown in [30], a compact k-RM
(

Nk, g
)

admitting a non-trivial solution to (44) necessarily has a constant scalar curvature. In this
article, we worked in a more general context, focusing not on the rough Laplace operator ∆
that appears in Equation (44), but on the de-Rham operator Γ defined in Equation (4) as
the sum of the Laplace operator ∆ and the Ricci operator Q. Consequently, we abandoned
the investigation of the Fischer–Marsden equation in this work, concentrating on the
eigenvectors of the de-Rham operator, i.e., the vector fields on a k-RM

(
Nk, g

)
satisfying

the equation Γ(ζ) = aζ for a constant a. But, it is known that, on a k-RM
(

Nk, g
)

, each
nonzero vector field ζ has the basic operator Tζ and the associated operator Ψζ and the
smooth function σ : Nk → R defined by Equation (12). Using this, we proved that a
compact manifold (Nk, g), k > 2 with a nonzero eigenvector ζ of the de-Rham operator
Γ and the integral of the Ricci curvature Ric(ζ, ζ) with a suitable lower bound provide
necessary and sufficient conditions for (Nk, g) to be isometric to the sphere Sk

c . We also
demonstrated that a complete and connected Riemannian manifold (Nk, g) with a nonzero
de-Rham harmonic vector field ζ with div(ζ) 6= 0 that annihilates the associated operator
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Ψζ and the squared length of the covariant derivative of ζ possessing a suitable lower
bound give a characterization of the Euclidean space Ek.

For further investigations, it will be interesting to see whether the smooth function
σ corresponding to the vector field ζ yields interesting information on the geometry of(

Nk, g
)

. We could simultaneously impose some suitable restrictions on the operators Tζ

and Ψζ , respectively, to facilitate this study.

Author Contributions: Conceptualization, N.B.T., S.D. and G.-E.V.; methodology, N.B.T., S.D. and G.-
E.V.; software, N.B.T., S.D. and G.-E.V.; validation, N.B.T., S.D. and G.-E.V.; formal analysis, N.B.T., S.D.
and G.-E.V.; investigation, N.B.T., S.D. and G.-E.V.; resources, N.B.T., S.D. and G.-E.V.; data curation,
N.B.T., S.D. and G.-E.V.; writing—original draft preparation, N.B.T., S.D. and G.-E.V.; writing—review
and editing, N.B.T., S.D. and G.-E.V.; visualization, N.B.T., S.D. and G.-E.V.; supervision, N.B.T., S.D.
and G.-E.V.; project administration, N.B.T., S.D. and G.-E.V.; funding acquisition, N.B.T. All authors
have read and agreed to the published version of the manuscript.

Funding: The authors would like to extend their sincere appreciations to the supporting project,
number (RSP2023R413), King Saud University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gray, A. Einstein-like manifolds which are not Einstein. Geom. Dedicata 1978, 7, 259–280. [CrossRef]
2. Berger, M. Trois remarques sur les varíetés Riemanniennes ‘a courbure positive. C. R. Acad. Sci. Paris Sér. A–B 1966, 263, 76–78.
3. Berestovskii, V.; Nikonorov, Y. Killing vector fields of constant length on Riemannian manifolds. Sib. Math. J. 2008, 49, 395–407.

[CrossRef]
4. Deshmukh, S.; Belova, O. On Killing Vector Fields on Riemannian Manifolds. Mathematics 2021, 9, 259. [CrossRef]
5. DoCarmo, M.P.; Flaherty Francis, J. Riemannian Geometry; Brikhäuser: Boston, MA, USA, 1992.
6. Dodson, C.T.J.; Perez, M.T.; Vazquez-Abal, M.E. Harmonic-Killing vector fields. Bull. Belg. Math. Soc. 2002, 9, 481–490. [CrossRef]
7. Duggal, K.L.; Sharma, R. Symmetries of Spacetimes and Riemannian Manifolds; Springer Science + Busisness Media B. V.:

Berlin/Heidelberg, Germany, 1999.
8. Lynge, W.C. Sufficient conditions for periodicity of a Killing vector field. Proc. Am. Math. Soc. 1973, 38, 614–616. [CrossRef]
9. Rong, X. Positive curvature local and global symmetry and fundamental groups. Am. J. Math. 1999, 121, 931–943. [CrossRef]
10. Yorozu, S. Killing vector fields on complete Riemannian manifolds. Proc. Am. Math. Soc. 1982, 84, 115–120. [CrossRef]
11. Chow, B.; Lu, P.; Ni, L. Hamilton’s Ricci Flow; Graduate Studies in Mathematics; American Mathematical Society, RIScience Press:

New York, NY, USA, 2006; Volume 77.
12. Chen, B.-Y. Some results on concircular vector fields and their applications to Ricci solitons. Bull. Korean Math. Soc. 2015, 52,

1535–1547. [CrossRef]
13. Cernea, P.; Guan, D. Killing fields generated by multiple solutions to Fischer–Marsden equation. Int. J. Math. 2015, 26, 1540006.

[CrossRef]
14. Deshmukh, S. Jacobi-type vector fields on Ricci solitons. Bull. Math. Soc. Sci. Math. Roum. Tome 2012, 55, 41–50.
15. Deshmukh, S. Conformal Vector Fields and Eigenvectors of Laplacian Operator. Math. Phys. Anal. Geom. 2012, 15, 163–172.

[CrossRef]
16. Deshmukh, S.; Turki, N. A note on ϕ-analytic conformal vector fields. Anal. Math. Phys. 2019, 9, 181–195. [CrossRef]
17. Deshmukh, S. Characterizing spheres and Euclidean spaces by conformal vector field. Ann. Mat. Pura. Appl. 2017, 196, 2135–2145.

[CrossRef]
18. Deshmukh, S.; Khan, V.A. Geodesic vector fields and Eikonal equation on a Riemannian manifold. Indag. Math. 2019, 30, 542–552.

[CrossRef]
19. Fialkow, A. Conformal geodesics. Trans. Am. Math. Soc. 1939, 45, 443–473. [CrossRef]
20. Ishihara, S. On infinitesimal concircular transformations. Kodai Math. Sem. Rep. 1960, 12, 45–56. [CrossRef]
21. Obata, M. Conformal transformations of Riemannian manifolds. J. Diff. Geom. 1970, 4, 311–333. [CrossRef]
22. Obata, M. The conjectures about conformal transformations. J. Diff. Geom. 1971, 6, 247–258.
23. Erkekoglu, F.; Garcıa-Rıo, E.; Kupeli, D.N.; Unal, B. Characterizing specific Riemannian manifolds by differential equations. Acta

Appl. Math. 2003, 76, 195–219. [CrossRef]

http://doi.org/10.1007/BF00151525
http://dx.doi.org/10.1007/s11202-008-0039-3
http://dx.doi.org/10.3390/math9030259
http://dx.doi.org/10.36045/bbms/1102714982
http://dx.doi.org/10.1090/S0002-9939-1973-0317230-3
http://dx.doi.org/10.1353/ajm.1999.0036
http://dx.doi.org/10.1090/S0002-9939-1982-0633291-1
http://dx.doi.org/10.4134/BKMS.2015.52.5.1535
http://dx.doi.org/10.1142/S0129167X15400066
http://dx.doi.org/10.1007/s11040-012-9106-x
http://dx.doi.org/10.1007/s13324-017-0190-8
http://dx.doi.org/10.1007/s10231-017-0657-0
http://dx.doi.org/10.1016/j.indag.2019.02.001
http://dx.doi.org/10.1090/S0002-9947-1939-1501998-9
http://dx.doi.org/10.2996/kmj/1138844260
http://dx.doi.org/10.4310/jdg/1214429505
http://dx.doi.org/10.1023/A:1022987819448


Mathematics 2023, 11, 4942 15 of 15

24. Erkekoglu, F.; Kupeli, D.N.; Unal, B. Some results related to the Laplacian on vector fields. Publ. Math. Debr. 2006, 69, 137–154.
[CrossRef]

25. Garcıa-Rıo, E.; Kupeli, D.N.; Unal, B. some conditions for Riemannian manifolds to be isometric with Euclidean spheres. J. Differ.
Equ. 2003, 194, 287–299.

26. Tanno, S. Some differential equations on Riemannian manifolds. J. Math. Soc. Jpn. 1978, 30, 509–531. [CrossRef]
27. Obata, M. Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Jpn. 1962, 14, 333–340.

[CrossRef]
28. Besse, A.L. Einstein Manifolds; Springer: Berlin/Heidelberg, Germany, 1987.
29. Chen, B.-Y. Pseudo-Riemannian Geometry, δ-Invariants and Applications; World Scientific: Hackensack, NJ, USA, 2011.
30. Bin Turki, N.; Deshmukh, S.; Vîlcu, G.E. Characterizing small spheres in a unit sphere by Fischer–Marsden equation. J. Inequal.

Appl. 2022, 2022, 118. [CrossRef]
31. Deshmukh, S.; Al-Sodais, H.; Vîlcu, G.E. A note on some remarkable differential equations on a Riemannian manifold. J. Math.

Anal. Appl. 2023, 519, 126778. [CrossRef]
32. Yano, K. Integral Formulas in Riemannian Geometry; Marcel Dekker Inc.: New York, NY, USA, 1970.
33. Pigola, S.; Rimoldi, M.; Setti, A.G. Remarks on non-compact gradient Ricci solitons. Math. Z. 2011, 268, 777–790. [CrossRef]
34. Fischer, A.E.; Marsden, J.E. Manifolds of Riemannian metrics with prescribed scalar curvature. Bull. Am. Math. Soc. 1974, 80,

479–484. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.5486/PMD.2006.3297
http://dx.doi.org/10.2969/jmsj/03030509
http://dx.doi.org/10.2969/jmsj/01430333
http://dx.doi.org/10.1186/s13660-022-02855-4
http://dx.doi.org/10.1016/j.jmaa.2022.126778
http://dx.doi.org/10.1007/s00209-010-0695-4
http://dx.doi.org/10.1090/S0002-9904-1974-13457-9

	Introduction
	Preliminaries
	Characterizing Spheres
	Characterizing Euclidean Spaces
	Examples
	Conclusions
	References

