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The Fischer-Marsden conjecture asserts that an n-dimensional compact manifold 
admitting a nontrivial solution of the so-called Fischer-Marsden differential equation 
is necessarily an Einstein space. If this were true, then a classical theorem of Obata 
would imply that the underlying manifold is either a standard sphere or a Ricci flat 
space. Although counterexamples to this conjecture have been found by Kobayashi 
and Lafontaine, it has recently been proved by Cernea and Guan that the Fischer-
Marsden conjecture holds, provided that the space of nonconstant solutions of the 
Fischer-Marsden equation is of dimension at least n, the authors actually proving 
that in this case (M, g) is nothing but a standard sphere. The main aim of this article 
is to show that any compact Riemannian manifold of positive Ricci curvature that 
admits a nontrivial concircular vector field with the potential function satisfying the 
Fischer-Marsden equation must be isometric to a standard sphere and the converse 
is also valid. Moreover, we prove that the existence of a nontrivial solution to another 
remarkable differential equation on Riemannian manifolds, namely the stationary 
Schrödinger equation, it also leads to a characterization of the sphere, provided that 
some pinching conditions are satisfied.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The influence of differential equations and remarkable vector fields in elucidating the geometry of Rie-
mannian manifolds is immense (see, e.g., [1,17,20,30] and the references therein). Some special vector fields 
such as geodesic, concircular, conformal and Killing vector fields play a key role in obtaining characteriza-
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tions of Euclidean spaces and spheres (cf. [7,13–15,22,39]). In the celebrated works of Obata [32,33], the 
effect of differential equations on Riemannian manifolds is exhibited, the authors showing that the existence 
of a nontrivial solution of the equation

Hess(f) = −cfg

on a complete and connected Riemannian manifold (M, g) of dimension n, where c is a positive constant 
and Hess(f) is the Hessian of the function f on M , guarantees that (M, g) is isometric to the Euclidean 
sphere Sn(c). Similarly, in [19], Fischer and Marsden considered a connected and complete Riemannian 
space (M, g) admitting a nontrivial solution of the equation

(Δρ) g + ρRic = Hess(ρ), (1)

where Δ denotes the Laplace operator that acts on smooth functions ρ on M and Ric stands for the Ricci 
tensor of g. The above differential equation is known as the Fischer-Marsden equation and ρ is said to be 
a Fischer-Marsden solution. It is worth noting that this equation naturally appears in general relativity as 
the static perfect fluid equation (see [28,35,36] and the references indicated therein), being related to the 
spacelike sections of static spacetimes (see also [16]). Actually, if we consider a Ricci-flat Lorentzian manifold 
of dimension 4 admitting a timelike Killing vector field and whose orthogonal distribution is integrable, then 
any integral submanifold of this distribution corresponds to a solution of the Fischer-Marsden equation (1), 
where g is the induced metric and ρ is the length of the Killing vector field. In [19], the authors demonstrate 
that if a connected Riemannian space admits a nontrivial solution of the Fischer-Marsden equation, then 
the scalar curvature τ is constant. This led Fischer and Marsden to conjecture in [19] that an n-dimensional 
compact Riemannian manifold admitting a nontrivial solution of (1) must be an Einstein space (for recent 
developments on this conjecture in contact geometry see [11,34]). If this conjecture were valid, then a result 
of Obata [31] would imply that the space is Ricci flat or it reduces to a standard n-sphere. However, as 
proved by Kobayashi [24] and Lafontaine [27], there are many other possibilities, and therefore Fischer 
and Marsden’s conjecture is false. It should be noted that all the counterexamples provided in [24,27] are 
product manifolds and warped products. It is worth mentioning that the Fischer-Marsden conjecture is 
closely related to another conjecture by Boucher, Gibbons and Horowitz [6], known as the cosmic no-hair 
conjecture (for details see [21]).

Afterwards, Cernea and Guan [8] investigated the space W of the Fischer-Marsden solutions, proving 
that dimW ≤ n + 1 and therefore recovering a result of Corvino [12]. They also showed that any product 
manifold of the form Sm×N , for N an Einstein space, provides a Fischer-Marsden solution and thus a new 
counterexample to the Fischer-Marsden conjecture. Further, Cernea and Guan [9] proved that the Fischer-
Marsden conjecture holds if dimW ≥ n, they showing that in this case (M, g) is a standard sphere. In this 
work we focus on a different setting. We first consider a compact Riemannian space (M, g) having positive 
Ricci curvature, that admits a nontrivial concircular vector field ξ with potential function ρ satisfying (1)
and show that (M, g) must be isometric to the n-dimensional sphere Sn(c), for a constant c > 0. Moreover, 
we prove that the converse also holds.

In the second part of the article, we deal with another remarkable differential equation on a Riemannian 
space (M, g) of dimension n, namely

Δf = −θf, (2)

where θ is a smooth function. The above equation is nothing but the famous stationary Schrödinger equation 
(see, e.g., the recent articles [18,25,29,37]), while the solutions of this equation are generalizations of harmonic 
functions, called L-harmonic functions [26]. We would like to highlight that the Schrödinger equation plays 
a significant role in quantum mechanics, as it can predict the behavior of dynamical systems, but also in 
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other domains of physics and chemistry, like nonlinear optics, nanomagnetic systems, plasma physics and 
atomic structure of matter (see, e.g., [2,5,10,23,37], and references therein). The Schrödinger equation on a 
compact Riemannian manifold (M, g) was investigated in [3,4], the authors emphasizing in particular the 
influence of the geometry of (M, g) on the behavior of solutions. We are going to show that the stationary 
Schrödinger equation (2) admits a nontrivial solution f on a compact Riemannian space (M, g), such that 
some pinching conditions regarding the function θ and Ricci curvature Ric(∇f, ∇f) are satisfied, if and 
only if the Riemannian space (M, g) is isometric to an n-dimensional sphere Sn(c).

2. Preliminaries

Let (M, g) be a compact Riemannian manifold of dimension n. Let us denote by ∇ the Riemannian 
connection and by X(M) the Lie algebra of smooth vector fields on M . Then the curvature tensor field R
of (M, g) is

R(U, V )W = [∇U ,∇V ]W −∇[U,V ]W , U, V,W ∈ X(M) (3)

and the Ricci curvature tensor is

Ric(U, V ) =
n∑

i=1
g (R(ei, U)V, ei) ,

where {e1, .., en} is a local orthonormal frame on M .
If h is a smooth function on M , then the Hessian operator Ah is a symmetric operator given by

AhU = ∇U∇h, U ∈ X(M)

and the Hessian of h, denoted by Hess(h), is defined as

Hess(h)(U, V ) = g(AhU, V ), U, V ∈ X(M).

Recall next that a vector field w ∈ X(M) is called concircular if

∇Uw = ρU , U ∈ X(M), (4)

where ρ is a smooth function on M called the potential function of w. Moreover, the concircular vector field 
w is said to be nontrivial if ρ is a non-constant function. Using equations (3) and (4), we derive

R(U, V )w = U(ρ)V − V (ρ)U , U, V ∈ X(M)

and we conclude

S (w) = −(n− 1)∇ρ, (5)

where S is the Ricci operator defined by

g(S(U), V ) = Ric(U, V ), U, V ∈ X(M).

Also, on a compact Riemannian space (M, g), the following integral formula holds true (cf. [38])
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∫
M

[
Ric (u,u) + 1

2 ‖£ug‖2 − ‖∇u‖2 − (div u)2
]

= 0, (6)

where £ug is the Lie derivative of g with respect to the smooth vector field u on M . For a smooth function 
h on M , it is easy to see that

£∇hg = 2Hess(h), ‖∇∇h‖2 = ‖Ah‖2

and replacing u by ∇h in (6), we obtain

∫
M

‖Ah‖2 =
∫
M

(
(Δh)2 −Ric (∇h,∇h)

)
. (7)

3. Characterizations of spheres

We first suppose in this section that the potential function ρ of a nontrivial concircular vector field w
on an n-dimensional Riemannian space (M, g) satisfies the Fischer-Marsden equation (1) and show that if 
(M, g) has positive Ricci curvature, then it is isometric to an n-dimensional sphere Sn(c) and the converse 
also holds. As Sn(c) is an Einstein space, it follows in particular that the Fischer-Marsden conjecture is true 
in the above setting. Indeed, we prove the following:

Theorem 3.1. Let (M, g) be an n-dimensional connected and compact Riemannian space of positive Ricci 
curvature. Then (M, g) admits a nontrivial concircular vector field w with potential function ρ satisfying the 
Fischer-Marsden equation (1) if and only if the Riemannian space (M, g) is isometric to the n-dimensional 
sphere Sn(c), for a constant c > 0.

Proof. Suppose first w is a nontrivial concircular vector field such that the potential function ρ of w
satisfies the Fischer-Marsden equation. Then the scalar curvature τ is a constant (cf. [19]) and taking trace 
in equation (1) we obtain

Δρ = − τ

n− 1ρ. (8)

Multiplying the above equation by ρ and integrating by parts, we derive
∫
M

‖∇ρ‖2 = τ

n− 1

∫
M

ρ2. (9)

As w is a nontrivial concircular vector field, the potential function ρ is a non-constant function and thus 
the above equation implies that the constant τ > 0. We put τ = n(n − 1)c and we have a constant c > 0. 
Now, using equation (4), we have div w = nρ and the equation (5) gives

Ric(w,w) = −(n− 1)w (ρ)

= −(n− 1)
(
div (ρw) − nρ2) .

Integrating the last equation, we obtain
∫

Ric(w,w) = n(n− 1)
∫

ρ2. (10)

M M
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Also, equation (5) implies

Ric(∇ρ,w) = −(n− 1) ‖∇ρ‖2 . (11)

Next, we have

Ric (∇ρ + cw,∇ρ + cw) = Ric (∇ρ,∇ρ) + 2cRic(∇ρ,w) + c2Ric(w,w)

and integrating the previous equation, while using (10) and (11), we infer
∫
M

Ric (∇ρ + cw,∇ρ + cw) =
∫
M

Ric (∇ρ,∇ρ)

−
∫
M

(
2(n− 1)c ‖∇ρ‖2 − n(n− 1)c2ρ2

)
.

Using (7) and (9) in the last expression, we derive
∫
M

Ric (∇ρ + cw,∇ρ + cw) =
∫
M

(
(Δρ)2 − ‖Aρ‖2 − 2τ cρ2 + n(n− 1)c2ρ2

)
.

Now, using τ = n(n − 1)c and equation (8) in the preceding equation, we obtain
∫
M

Ric (∇ρ + cw,∇ρ + cw) =
∫
M

(
nc2ρ2 − ‖Aρ‖2

)
. (12)

Also, as ρ is a solution of the Fischer-Marsden equation (1), using equation (8) we derive

Aρ = ρ (S − ncI) ,

which gives

‖Aρ‖2 = ρ2
(
‖S‖2 + n3c2 − 2ncτ

)

= ρ2
[
‖S‖2 − τ 2

n
+ n(n− 1)2c2 + n3c2 − 2ncτ

]
.

Inserting τ = n(n − 1)c in the last term, we get

‖Aρ‖2 = ρ2
(
‖S‖2 − τ 2

n
+ nc2

)
.

Using now the last equation in (12), we arrive at
∫
M

Ric (∇ρ + cw,∇ρ + cw) =
∫
M

ρ2
(
τ 2

n
− ‖S‖2

)

and applying the Schwarz’s inequality ‖S‖2 ≥ τ2

n , we derive
∫

Ric (∇ρ + cw,∇ρ + cw) ≤ 0.

M
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But the Ricci curvature is positive and thus we get

∇ρ + cw = 0.

Taking the covariant derivative in the last expression and making use of equation (4), we get

∇U∇ρ = −cρU , U ∈ X(M)

and as the function ρ is non-constant, we conclude that (M, g) is isometric to the n-dimensional sphere 
Sn(c).

Conversely, let us suppose that (M, g) is isometric to Sn(c). Then treating Sn(c) as a hypersurface of the 
Euclidean space En, we have the concircular vector field w on Sn(c) given by the tangential projection of 
a nonzero constant vector field −→a on the Euclidean space En. It satisfies

∇Uw = −
√
cρU , ∇ρ =

√
cw, U ∈ X (Sn(c)) , (13)

where ρ = 〈−→a , N〉, N being the unit normal to the sphere Sn(c) in the Euclidean space En and 〈 , 〉 is the 
Euclidean metric. The equations in (13) imply that the vector field w on Sn(c) is concircular with potential 
function −√

cρ and

Δρ = −ncρ.

Also, using (13) it follows

Aρ = −cρI,

that is

Hess(ρ) = −cρg.

But as the Ricci tensor on the sphere Sn(c) is given by

Ric = (n− 1)cg,

we derive

(Δρ) g + ρRic = −ncρg + (n− 1)cρg = −cρg = Hess(ρ).

Hence the function ρ satisfies the Fischer-Marsden equation (1) and consequently the potential function 
−√

cρ also satisfies equation (1). �
In the next part of this section, we are interested in showing that the existence of a nontrivial solution of 

the stationary Schrödinger equation (2) also leads to a characterization of the n-dimensional sphere Sn(c), 
provided that some pinching conditions are satisfied. Indeed, we prove the following.

Theorem 3.2. Let (M, g) be a compact Riemannian space of dimension n. Then (M, g) admits a nontrivial 
solution of the equation Δh = −θh such that the smooth function θ satisfies c < θ ≤ nc, for a constant 
c > 0, and the Ricci curvature Ric(∇h, ∇h) in the direction of ∇h is bounded below by (n − 1)c, if and only 
if the Riemannian space (M, g) is isometric to the n-dimensional sphere Sn(c).
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Proof. Suppose h is a non-constant function on M that satisfies

Δh = −θh (14)

and c < θ ≤ nc holds for a constant c > 0. Multiplying equation (14) by h and integrating by parts, we 
obtain ∫

M

‖∇h‖2 =
∫
M

θh2. (15)

Now, choosing a local orthonormal frame {e1, ..., en}, we have

‖Ah + chI‖2 =
n∑

i=1
g (Ahei + chei, Ahei + chei)

= ‖Ah‖2 + nc2h2 + 2chΔh.

Integrating the above expression and making use of (14), we derive
∫
M

‖Ah + chI‖2 =
∫
M

[
‖Ah‖2 + c (nc− 2θ)h2

]

and taking account of (7), the last equation implies
∫
M

‖Ah + chI‖2 =
∫
M

[
(Δh)2 + c (nc− 2θ)h2 −Ric (∇h,∇h)

]
. (16)

Now, using the bound for Ric(∇h, ∇h), namely

Ric (∇h,∇h) ≥ (n− 1)c ‖∇h‖2
,

and equation (14) in (16), we arrive at
∫
M

‖Ah + chI‖2 ≤
∫
M

[(
θ2 + c (nc− 2θ)

)
h2 − (n− 1)c ‖∇h‖2

]
.

Using equation (15) in the above inequality, we conclude
∫
M

‖Ah + chI‖2 ≤
∫
M

(θ − nc) (θ − c)h2.

Note that the pinching condition c < θ ≤ nc implies that the integrand on the right hand side of the 
inequality is non-positive and thus we conclude

∫
M

‖Ah + chI‖2 ≤ 0.

Therefore we derive that

Ah + chI = 0
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and we have

∇U∇h = −chU , U ∈ X(M).

But the above equation is nothing but Obata’s differential equation for the non-constant function h and 
real constant c > 0 (cf. [32,33]). Therefore, we deduce that (M, g) is isometric to the n-dimensional sphere 
Sn(c).

The converse statement is trivial due to the fact that on Sn(c) we have the eigenfunction h corresponding 
to first nonzero eigenvalue nc, i.e. Δh = −nch. �
Remark 3.3. It is worth mentioning that there are several examples of noncompact Riemannian manifolds 
admitting nontrivial solutions of the stationary Schrödinger equation (2). Let us illustrate two such examples 
in the following.

(i) Consider the open subset M of the Euclidean space En given by

M =
{
u ∈ En : n

√
c− 1 < ‖u‖ < n

√
nc− 1

}
,

where c > 1 is a real constant. Let g be the Euclidean metric on the Euclidean space En. Now, on the 
n-dimensional Riemannian manifold (M, g), we consider the smooth function f defined by

f = e−
1
2n‖u‖2

.

Then it follows that the gradient ∇f of f is

∇f = − 1
n
f

(
u1

∂

∂u1
+ ... + un

∂

∂un

)
,

where u1, ..., un are the Euclidean coordinates and the Laplace operator Δ acting on f satisfies

Δf = −θf,

where the smooth function θ is given by

θ = 1
n2 ‖u‖2 + 1.

Thus, f is a nontrivial solution of the stationary Schrödinger equation (2) on the Riemannian manifold 
(M, g) and it satisfies c < θ < nc.

(ii) Consider the open subset M ⊂ En, n > 3, defined by

M =
{
u ∈ En :

√
n− 3
nc

< ‖u‖ <

√
n− 3
c

}
,

where c > 0 is a real constant. Define the smooth function f on M by

f = − 1
n− 3 ‖u‖3−n

.

Then we get

∇f = ‖u‖−(n−1)
(
u1

∂ + ... + un
∂

)

∂u1 ∂un
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and

Δf = 3 − n

‖u‖2 f .

Thus, f is a nontrivial solution of the stationary Schrödinger equation Δf = −θf , where the smooth 
function θ is given by

θ = n− 3
‖u‖2

and it satisfies c < θ < nc.
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