#### EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 14, No. 3, 2021, 949-968 ISSN 1307-5543 — ejpam.com Published by New York Business Global



# On the aspects of enriched lattice-valued topological groups and closure of lattice-valued subgroups

T M G Ahsanullah<sup>1,\*</sup>, Fawzi Al-Thukair<sup>1</sup>

<sup>1</sup> Department of Mathematics, King Saud University, Riyadh, Saudi Arabia. Dedicated to Professor John N. Mordeson on the occasion of his 87th birthday

**Abstract.** Starting with  $\mathbb{L}$  as an enriched cl-premonoid, in this paper, we explore some categorical connections between  $\mathbb{L}$ -valued topological groups and Kent convergence groups, where it is shown that every  $\mathbb{L}$ -valued topological group determines a well-known Kent convergence group, and conversely, every Kent convergence group induces an  $\mathbb{L}$ -valued topological group. Considering an  $\mathbb{L}$ -valued subgroup of a group, we show that the category of  $\mathbb{L}$ -valued groups,  $\mathbb{L}$ -GRP has initial structure. Furthermore, we consider a category  $\mathbb{L}$ -CLS of  $\mathbb{L}$ -valued closure spaces, obtaining its relation with  $\mathbb{L}$ -valued Moore closure, and provide examples in relation to  $\mathbb{L}$ -valued subgroups that produce Moore collection. Here we look at a category of  $\mathbb{L}$ -valued closure groups,  $\mathbb{L}$ -CLGRP proving that it is a topological category. Finally, we obtain a relationship between  $\mathbb{L}$ -GRP and  $\mathbb{L}$ -TransTOLGRP, the category of  $\mathbb{L}$ -transitive tolerance groups besides adding some properties of  $\mathbb{L}$ -valued closures of  $\mathbb{L}$ -valued subgroups on  $\mathbb{L}$ -valued topological groups.

**2020** Mathematics Subject Classifications: 03E72, 20N25, 18B05, 54A05, 54A20

Key Words and Phrases: Enriched lattice,  $\mathbb{L}$ -valued topology,  $\mathbb{L}$ -valued subgroup,  $\mathbb{L}$ -valued topological group, Moore collection, Moore closure,  $\mathbb{L}$ -valued closure group, Kent convergence group, category theory

#### 1. Introduction

We have investigated a notion of L-valued topological groups in [3], where we considered L-valued subgroup of a group. Various aspects of L-valued subgroups of groups are studied over the years by various authors, cf. [11, 23, 25, 26, 29] but its categorical behaviors are explored in a certain extent in recent times [26], although the category of fuzzy sets being studied for quite a long time, cf. [14, 33]. In [3], we also considered L-valued closure of an L-valued subgroup of a group in the context of L-valued neighborhood groups, where the lattice under consideration was a complete MV-algebra with square roots.

Although our main objective of this paper is to explore further  $\mathbb{L}$ -valued subgroups from categorical view point and study category of  $\mathbb{L}$ -valued closure spaces vis- $\grave{a}$ -vis category of

DOI: https://doi.org/10.29020/nybg.ejpam.v14i3.4021

Email addresses: tmga1@ksu.edu.sa (T.M.G. Ahsanullah), thukair@ksu.edu.sa (Fawzi Al-Thukair)

<sup>\*</sup>Corresponding author.

L-valued closures groups in conjunction with L-valued topological groups, we add some results on the connection of L-valued topological groups and classical Kent convergence groups. However, we mainly focused on the impact of L-valued closure structures on Lvalued topological groups instead of convergence groups. We arrange our work as follows. In Section 2, we give a short survey on L-valued structures that we used in the text. The idea of convergence spaces and their connection to topological spaces is quite old, cf. [4-7, 10, 13, 20, 21, 27, 28]; following the concept of the compatibility of convergence structures with groups structures as proposed by D. C. Kent [20], for the first time, we explore a connection between the categories of L-valued topological groups and Kent convergence groups, this is done in Section 3. We introduce the concept of L-valued closure space, and L-closure of L-valued subgroup of a group in Section 4; we also introduce here a category of L-valued closure groups - a topological category. With the help of connections, as presented by L. N. Stout in [32] and C. L. Waker in [33] between the categories of L-SET and L-TOL, the category of L-valued tolerance spaces [32], we prove a connection between L-GRP, category of L-valued subgroups, and L-valued transitive tolerance spaces, L-TranTOL. Section 5 is devoted to study properties of L-valued closure of L-valued subgroups in the context of L-valued topological groups, where some properties from groups are taken into consideration.

## 2. Preliminaries

Throughout the text we consider  $\mathbb{L} = (\mathbb{L}, \leq)$  a complete lattice with  $\top$ , the top element and  $\bot$ , the bottom element of  $\mathbb{L}$ .

**Definition 1.** [16, 17] A triple  $(\mathbb{L}, \leq, *)$ , where  $*: \mathbb{L} \times \mathbb{L} \longrightarrow \mathbb{L}$  is a binary operation on  $\mathbb{L}$ , is called a  $G\mathbb{L}$ -monoid if and only if the following holds:

```
(GLM1) (L,*) is a commutative semigroup;
```

```
(GLM2) \ \forall \alpha \in \mathbb{L} : \alpha * \top = \alpha,
```

by

(GLM3) \* is distributive over arbitrary joins:

$$\gamma * (\bigvee_{k \in K} \alpha_k) = \bigvee_{k \in K} (\gamma * \alpha_k), \text{ for } k \in K, \alpha_k, \gamma \in \mathbb{L};$$

(GLM4) for every  $\gamma \leq \alpha$  there exists  $\beta \in \mathbb{L}$  such that  $\gamma = \alpha * \beta$  (divisibility).

The triple  $(\mathbb{L}, \leq, *)$  is called a *commutative quantale* if (GLM1)-(GLM3) are fulfilled. If  $* = \land$ , then the triple  $(\mathbb{L}, \leq, \land)$  is called a frame or a complete Heyting algebra. For a commutative quantale, the implication operator  $\rightarrow$ , also known as residuum, is given

$$\rightarrow$$
:  $\mathbb{L} \times \mathbb{L} \longrightarrow \mathbb{L}$ ,  $\alpha \to \beta = \bigvee \{ \gamma \in \mathbb{L} | \alpha * \gamma \leq \beta \}$ .

A  $\mathbf{GL}$ -monoid ( $\mathbb{L}, \leq, *$ ) is called a complete  $\mathbf{MV}$ -algebra if

$$\forall \alpha \in \mathbb{L}, (\alpha \to \bot) \to \bot = \alpha \text{ (double negation)}.$$

This means, in particular, that the unary operation  $\neg: \mathbb{L} \longrightarrow \mathbb{L}, \alpha \mapsto \neg \alpha = \alpha \to \bot$  is an order-reversing involution.

**Definition 2.** [16, 17] A triple  $(\mathbb{L}, \leq, \otimes)$ , where  $\otimes : \mathbb{L} \times \mathbb{L} \longrightarrow \mathbb{L}$  is a binary operation on  $\mathbb{L}$ , is called a co-premonoid if and only if the following conditions are fulfilled:  $(CP1) \ \forall \alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{L} : \alpha_1 \leq \beta_1 \ and \ \alpha_2 \leq \beta_2 \ implies \ \alpha_1 \otimes \alpha_2 \leq \beta_1 \otimes \beta_2;$   $(CP2) \ \forall \alpha \in \mathbb{L} : \alpha \leq \alpha \otimes \top \ and \ \alpha \leq \top \otimes \alpha.$ 

The category **COPML** consists of all co-premonoids as objects and morphisms as the mappings  $\iota \colon (\mathbb{L}_1, \leq_1, \otimes_1) \longrightarrow (\mathbb{L}_2, \leq_2, \otimes_2)$  satisfying the following conditions:

(CPM1)  $\iota$  preserves arbitrary joins;

(CPM2)  $\iota(\alpha \otimes_1 \alpha') = \iota(\alpha) \otimes_2 \iota(\alpha'), \forall \alpha, \alpha' \in \mathbb{L}_1;$ 

(CPM3)  $\iota$  preserves universal upper bounds; i.e.,  $\iota(\top) = \top$ .

**Definition 3.** [16, 17] A co-premonoid ( $\mathbb{L}, \leq, \otimes$ ) is called a cl-premonoid if and only if (CP3)  $\gamma \otimes (\bigvee_{k \in K} \alpha_k) = \bigvee_{k \in K} (\gamma \otimes \alpha_k)$ , and  $(\bigvee_{k \in K} \alpha_k) \otimes \gamma = \bigvee_{k \in K} (\alpha_k \otimes \gamma)$  for  $K \neq \emptyset$ ,  $k \in K$ ,  $\alpha_k, \gamma \in \mathbb{L}$ , is satisfied.

**Definition 4.** [16, 17] The quadruple  $(\mathbb{L}, \leq, *, \otimes)$  is called an enriched cl-premonoid if and only if the following are fulfilled: (CLP1)  $(\mathbb{L}, \leq, *)$  is a  $G\mathbb{L}$ -monoid; (CLP2)  $(\mathbb{L}, \leq, \otimes)$  is a cl-premonoid; (CLP3) \* is dominated by  $\otimes$ :  $\forall \alpha, \beta, \gamma, \delta \in \mathbb{L}$ ,

$$(\alpha \otimes \beta) * (\gamma \otimes \delta) < (\alpha * \gamma) \otimes (\beta * \delta).$$

**Definition 5.** [16, 17] A  $G\mathbb{L}$ -monoid ( $\mathbb{L}, \leq, *$ ) is said to have square roots if and only if there exists a unary operator  $S: \mathbb{L} \longrightarrow \mathbb{L}$  such that the conditions below are satisfied: (S1)  $S(\alpha) * S(\alpha) = \alpha$ ,  $\forall \alpha \in \mathbb{L}$ ; (S2)  $\beta * \beta \leq \alpha$  implies  $\beta \leq S(\alpha)$ .

Since the formation of square roots is uniquely determined by (S1) and (S2),  $S(\alpha)$  is also written as  $\alpha^{\frac{1}{2}}$ .

A **G**L-monoid with square roots satisfies (S3) if it fulfills the following axiom: (S3)  $(\alpha * \beta)^{\frac{1}{2}} = (\alpha^{\frac{1}{2}} * \beta^{\frac{1}{2}}) \vee \perp^{\frac{1}{2}}, \forall \alpha, \beta \in \mathbb{L}.$ 

If  $\mathbb{L} = (\mathbb{L}, \leq, *)$  is a  $\mathbf{G}\mathbb{L}$ -monoid with square roots, then the monoidal mean operator  $\circledast \colon \mathbb{L} \times \mathbb{L} \longrightarrow \mathbb{L}$  is given by

$$\alpha \,\circledast\, \beta = \alpha^{\frac{1}{2}} * \beta^{\frac{1}{2}}, \, \forall \alpha, \beta \in \mathbb{L}.$$

An enriched *cl*-premonoid  $\mathbb{L} = (\mathbb{L}, \leq, *, \otimes)$  is said to be *pseudo-bisymmetric* if it satisfies the following axiom:

$$(\alpha * \beta) \otimes (\gamma * \delta) = ((\alpha \otimes \gamma) * (\beta \otimes \delta)) \bigvee ((\alpha \otimes \bot) * (\beta \otimes \top)) \bigvee ((\bot \otimes \gamma) * (\top \otimes \delta)), \forall \alpha, \beta, \gamma, \delta \in \mathbb{L}.$$

**Remark 1.** [16, 17] (1) If  $(L, \leq, *)$  is a **G**L-monoid with square roots, satisfying (S3), and  $\otimes$  is the monoidal mean operator  $\otimes$ , then the quadruple  $(\mathbb{L}, \leq, *, \otimes)$  is pseudo-bisymmetric. (2) If the cl-premonoid operation  $\otimes$  is identical to the quantal operation \*, that is,  $\otimes = *$ , then the triple  $(\mathbb{L}, \leq, *, \otimes)$  is pseudo-bisymmetric.

**Proposition 1.** [18] Let  $(\mathbb{L}, \leq, *)$  be a GL-monoid. Then the following are fulfilled  $\forall \alpha, \beta, \gamma, \delta, \alpha_i, \beta_i, \gamma_i \in \mathbb{L}$ :

- (1)  $\alpha \leq \beta \rightarrow \gamma \Leftrightarrow \alpha * \beta \leq \gamma$ ;
- (2)  $\alpha * (\alpha \to \beta) \le \beta$ ;
- (3)  $\alpha \leq \beta \Rightarrow \alpha \rightarrow \gamma \leq \beta \rightarrow \gamma$ ;
- (4)  $\alpha \leq \beta \Rightarrow \gamma \rightarrow \alpha \geq \gamma \rightarrow \beta$ ;
- (5)  $(\alpha \to \beta) \to \beta \ge \alpha$ ;
- (6)  $\alpha * (\beta \to \gamma) \le \beta \to (\alpha * \gamma);$

- (12)  $\alpha * (\beta \gamma) \le \beta \to (\alpha * \gamma),$ (7)  $\alpha \to (\bigwedge_{j \in J} \beta_j) = \bigwedge_{j \in J} (\alpha \to \beta_j);$ (8)  $(\bigvee_{j \in J} \alpha_j) \to \beta = \bigwedge_{j \in J} (\alpha_j \to \beta);$ (9) if  $\alpha, \beta \in \mathbb{L}$  with  $\alpha \le \beta$ , then for any  $\gamma \in \mathbb{L}$ ,  $\gamma * \alpha \le \gamma * \beta;$ (10)  $\bigwedge_{j \in J} (\alpha_j * \gamma_j) \ge (\bigwedge_{j \in J} \alpha_j) * (\bigwedge_{j \in J} \gamma_j);$ (11)  $(\alpha \to \gamma) * (\beta \to \delta) \le \alpha * \beta \to \gamma * \delta;$
- (12)  $\alpha \leq \beta \Leftrightarrow \alpha \to \beta = \top$ ;
- (13)  $\alpha \to \top = \top$ ,  $\top \to \alpha = \alpha$ , and  $\bot \to \alpha = \top$ .

In what follows, the quadruple  $\mathbb{L} = (\mathbb{L}, \leq, *, \otimes)$  (or simply  $\mathbb{L}$ ) is assumed to be an enriched *cl*-premonoid, where \* is reserved for the **G***L*-monoid operation,  $\otimes$  is for *cl*-premonoid, unless otherwise specified. The set of all  $\mathbb{L}$ -sets or  $\mathbb{L}$ -valued sets and is denoted by  $\mathbb{L}^X$  $\{\nu\colon X\longrightarrow \mathbb{L}\}$ ). If  $f\colon X\to Y$  is a function, then  $f^\leftarrow\colon \mathbb{L}^Y\longrightarrow \mathbb{L}^X$  is defined for any  $\mu\in \overset{\circ}{\mathbb{L}}^Y$ by  $f^{\leftarrow}(\mu) = \mu \circ f$ ; and  $f^{\rightarrow} : \mathbb{L}^X \longrightarrow \mathbb{L}^Y$  is defined by

$$f^{\to}(\nu)(y) = \bigvee \{\nu(x) | f(x) = y\},\,$$

for all  $\nu \in \mathbb{L}^X, y \in Y$ .

If  $\cdot$  is a binary operation on a set X, then we define the binary operation  $\odot$  on  $\mathbb{L}^X$  as follows. For  $\nu_1, \nu_2 \in \mathbb{L}^X$  and  $z \in X$ 

$$\nu_1 \odot \nu_2(z) = \bigvee \{ \nu_1(x) * \nu_2(y) | x, y \in X, x \cdot y = z \};$$

usually, we write xy instead of  $x \cdot y$ . If  $\nu_1, \nu_2 \in \mathbb{L}^X$ , and  $\rightarrow$ , \*,  $\otimes$  are operations on  $\mathbb{L}$  as explained before, then these operations are carried over to  $\mathbb{L}^X$  point-wise:

- (i)  $(\nu_1 \to \nu_2)(x) = \nu_1(x) \to \nu_2(x)$ ;
- (ii)  $(\nu_1 * \nu_2)(x) = \nu_1(x) * \nu_2(x);$
- (iii)  $(\nu_1 \otimes \nu_2)(x) = \nu_1(x) \otimes \nu_2(x), \forall x \in X.$

**Definition 6.** [17, 18] A map  $\mathcal{F}: \mathbb{L}^X \longrightarrow \mathbb{L}$  is called an  $\mathbb{L}$ -valued filter on X if and only if the conditions below are satisfied:

- (LF1)  $\mathcal{F}(\top_X) = \top$ ,  $\mathcal{F}(\bot_X) = \bot$ ;
- (LF2) if  $\nu_1, \nu_2 \in \mathbb{L}^X$  with  $\nu_1 \leq \nu_2$ , then  $\mathcal{F}(\nu_1) \leq \mathcal{F}(\nu_2)$ ;
- (LF3)  $\mathcal{F}(\nu_1) \otimes \mathcal{F}(\nu_2) \leq \mathcal{F}(\nu_1 \otimes \nu_2), \forall \nu_1, \nu_2 \in \mathbb{L}^X$ .
- (SL) An L-valued filter  $\mathcal{F}$  is called a stratified L-valued filter if  $\forall \alpha \in L, \forall \mu \in L^X, \alpha *$  $\mathcal{F}(\mu) \leq \mathcal{F}(\alpha * \mu).$

The set of all stratified  $\mathbb{L}$ -valued filters on X is denoted by  $\mathcal{F}^s_{\mathbb{L}}(X)$ . On  $\mathcal{F}^s_{\mathbb{L}}(X)$ , partial ordering  $\leq$  is defined by: if  $\mathcal{F}, \mathcal{G} \in \mathcal{F}^s_{\mathbb{L}}(X)$ , then  $\mathcal{F} \leq \mathcal{G} \Leftrightarrow \overline{\mathcal{F}}(\nu) \leq \mathcal{G}(\nu), \forall \nu \in \mathbb{L}^X$ . If  $x \in X$ , then  $[x] \in \mathcal{F}^s_{\mathbb{L}}(X)$ , called point stratified  $\mathbb{L}$ -valued filter on X, and is defined as  $[x](\nu) = \nu(x)$ , for all  $\nu \in \mathbb{L}^X$ .

If  $\mathcal{F} \in \mathcal{F}^s_{\mathbb{L}}(X)$ , then the stratified  $\mathbb{L}$ -valued filter  $f^{\Rightarrow}(\mathcal{F}) \colon \mathbb{L}^Y \to \mathbb{L}$  on Y is defined for any  $\mu \in \mathbb{L}^Y$  by

$$[f^{\Rightarrow}(\mathcal{F})](\mu) = \mathcal{F}(f^{\leftarrow}(\mu)) = \mathcal{F}(\mu \circ f).$$

If  $\mathcal{F} \in \mathcal{F}^s_{\mathbb{L}}(Y)$ , then  $f^{\Leftarrow}(\mathcal{F}) \colon \mathbb{L}^X \to \mathbb{L}$  is defined by

$$[f^{\leftarrow}(\mathcal{F})](\nu) = \bigvee \{\mathcal{F}(\mu) | \mu \in \mathbb{L}^Y, f^{\leftarrow}(\mu) \le \nu\},\$$

for all  $\nu \in \mathbb{L}^X$ , is a stratified  $\mathbb{L}$ -filter on X if and only if for all  $\mu \in \mathbb{L}^Y$ ,  $f^{\leftarrow}(\mu) = \bot_X \Rightarrow \mathcal{F}(\mu) = \bot$ .

If  $\nu \in \mathbb{L}^X$  and  $\mu \in \mathbb{L}^Y$ , then the product  $\nu \times \mu \colon X \times Y \longrightarrow \mathbb{L}$  is defined by:

$$\nu \times \mu = \nu \circ pr_1 * \mu \circ pr_2$$

where  $pr_1: X \times Y \to X$ ,  $(x,y) \mapsto x$  and  $pr_2: X \times Y \to Y$ ,  $(x,y) \mapsto y$  are usual projections. Note that in the preceding definition of product  $\mathbb{L}$ -set the operation \* holds only for finite case; otherwise, we need to take  $* = \land$ .

**Proposition 2.** [16] If  $(L, \leq, *)$  is a GL-monoid, then for stratified L-valued filters  $\mathcal{F}_1$  and  $\mathcal{F}_2$ , the supremum  $\mathcal{F}_1 \vee \mathcal{F}_2$  exists if and only if  $\mathcal{F}_1(\nu_1) * \mathcal{F}_2(\nu_2) = \bot \forall \nu_1, \nu_2 \in L^X$  such that  $\nu_1 * \nu_2 = \bot_X$ . In particular, the supremum is the stratified L-valued filter defined for all  $\nu \in L^X$  by

$$\mathcal{F}_1 \vee \mathcal{F}_2(\nu) = \bigvee \{\mathcal{F}_1(\nu_1) * \mathcal{F}_2(\nu_2) | \nu_1, \nu_2 \in L^X, \nu_1 * \nu_2 \leq \nu \}.$$

Let  $(G,\cdot)$  be a group. If  $\mathcal{F} \in \mathbb{L}^s(G)$ , then  $\mathcal{F}^{-1}$  is defined by  $\mathcal{F}^{-1}(\nu) = \mathcal{F}(\nu^{-1})$ , where  $\nu^{-1} \colon G \longrightarrow \mathbb{L}, x \longmapsto \nu(x^{-1})$ . Clearly,  $\mathcal{F}^{-1} \in \mathcal{F}^s_{\mathbb{L}}(G)$ , since for any  $\nu \in L^X$ ,  $\jmath^{\Rightarrow}(\mathcal{F})(\nu) = \mathcal{F}(\jmath^{\leftarrow}(\nu)) = \mathcal{F}(\nu^{-1}) = \mathcal{F}^{-1}(\nu)$ , where  $\jmath \colon G \longrightarrow G, x \mapsto x^{-1}$ . Also, if  $m \colon G \times G \to G$ ,  $(g,h) \mapsto gh$ , then for any  $\nu_1, \nu_2 \in \mathbb{L}^G$  and  $z \in G$ ,  $m^{\rightarrow}(\nu_1 \times \nu_2)(z) = \bigvee_{m(g,h)=z} (\nu_1 \times \nu_2)(g,h) = \bigvee_{gh=z} (\nu_1 \circ pr_1 * \nu_2 \circ pr_2)(g,h) = \bigvee_{gh=z} \nu_1 \circ pr_1(g,h) * \nu_2 \circ pr_2(g,h) = \bigvee_{gh=z} \nu_1(g) * \nu_2(h) = \nu_1 \odot \nu_2(z)$ .

**Lemma 1.** [3] Let  $\mathbb{L} = (\mathbb{L}, \leq, *)$  be a GL-monoid and  $(G, \cdot) \in |GRP|$ . Then for any  $\mathcal{F}, \mathcal{G} \in \mathcal{F}^s_{\mathbb{L}}(X), \ m^{\Rightarrow}(\mathcal{F} \times \mathcal{G}) = \mathcal{F} \odot \mathcal{G}$ .

**Definition 7.** [17] Consider a mapping  $\mathfrak{N}: X \longrightarrow \mathbb{L}^{\mathbb{L}^X}$  such that the following conditions are fulfilled:

- $(LN1) \mathfrak{N}^x(\top_X) = \top;$
- (LN2)  $\mathfrak{N}^x(\nu_1) \leq \mathfrak{N}^x(\nu_2)$  for all  $\nu_1, \nu_2 \in \mathbb{L}^X$  with  $\nu_1 \leq \nu_2$ ;
- (LN3)  $\mathfrak{N}^x(\nu_1) \otimes \mathfrak{N}^x(\nu_2) \leq \mathfrak{N}^x(\nu_1 \otimes \nu_2)$ , for all  $\nu_1, \nu_2 \in \mathbb{L}^X$ ;
- (LN4)  $\mathfrak{N}^x(\nu) \leq \nu(x)$ , for all  $\nu \in \mathbb{L}^X$ ;
- $(LN5) \ \forall x \in X \ and \ \nu \in \mathbb{L}^X, \ \mathfrak{N}^x(\nu) \leq \bigvee \{\mathfrak{N}^x(\mu) \colon \ \mu \in \mathbb{L}^X, \mu(y) \leq [\mathfrak{N}^y](\nu), \forall y \in X\}$
- $(SLN) \alpha * \mathfrak{N}^x(\nu) \leq \mathfrak{N}^x(\alpha * \nu).$

Then  $\mathfrak{N}=(\mathfrak{N}^x)_{x\in X}$  is called a stratified L-valued neighborhood system on X, and the

 $pair(X, \mathfrak{N} = (\mathfrak{N}^x)_{x \in X})$  is called a stratified  $\mathbb{L}$ -valued neighborhood space.

If  $(X,\mathfrak{N})$  and  $(Y,\mathfrak{M})$  stratified  $\mathbb{L}$ -valued neighborhood spaces, then a map  $f \colon (X,\mathfrak{N}) \to (Y,\mathfrak{M})$  is said to be continuous at a point  $x \in X$  if and only if  $\mathfrak{M}^{f(x)}(\nu) \leq \mathfrak{N}^x (f^{\leftarrow}(\nu))$ , for all  $\nu \in \mathbb{L}^Y$ .

SL-NS denotes the category of all stratified L-valued neighborhood spaces as objects and all continuous maps as morphisms.

**Definition 8.** [17, 22] Let  $\Delta \subseteq \mathbb{L}^X$  such that the following are fulfilled:

(LT1)  $\top_X, \bot_X \in \Delta$ ;

(LT2)  $\nu_1, \nu_2 \in \Delta \Rightarrow \nu_1 \otimes \nu_2 \in \Delta$ ;

(LT3)  $\{\nu_j\}_{j\in J}$   $\subseteq \Delta \Rightarrow \bigvee_{j\in J} \nu_j \in \Delta;$ 

 $(SLT) \ \nu \in \Delta, \ \alpha \in \mathbb{L} \Rightarrow \overset{\circ}{\alpha_X} * \nu \in \Delta.$ 

We call  $\Delta$  an  $\mathbb{L}$ -valued topology on X if it satisfies (LT1)-(LT3), and the pair  $(X, \Delta)$  is called an  $\mathbb{L}$ -valued topological space. If  $\Delta$  satisfies (LT1)-(SLT) then we call it a stratified  $\mathbb{L}$ -valued topology on X and the pair  $(X, \Delta)$  or X in short, if there is no confusion, is called a stratified  $\mathbb{L}$ -valued topological space; members of  $\Delta$  are called open  $\mathbb{L}$ -valued sets or  $\mathbb{L}$ -valued subsets; the members of  $\Theta(X) = \{\xi \in \mathbb{L}^X : \xi^c \text{ is open}\}$  are called closed  $\mathbb{L}$ -valued sets or  $\mathbb{L}$ -valued subsets, where  $\xi^c$  is the so-called qusi-complementation of  $\xi$ . Note that  $\Theta(X)$  is closed under formation of arbitrary infs and finite sups. Furthermore, recall that the closure of  $\nu \in \mathbb{L}^X$ , denoted by  $\overline{\nu}^X$  is defined as:  $\overline{\nu}^X = \bigwedge \{\theta \in \Theta(X) : \nu \leq \theta\}$ . If  $(X, \Delta)$  and  $(Y, \Gamma)$  are stratified  $\mathbb{L}$ -valued topological spaces, then a function  $f : (X, \Delta) \to (Y, \Gamma)$  is said to be continuous if and only if for any  $\sigma \in \Gamma$ ,  $f^{\leftarrow}(\sigma) \in \Delta$ . The category  $\mathbb{SL}$ -TOP consists of all stratified  $\mathbb{L}$ -valued topological spaces as objects and all continuous maps between them as morphisms, while the category  $\mathbb{L}$ -TOP consisting of all  $\mathbb{L}$ -valued topological spaces as objects and all continuous maps between them as morphisms.

Every stratified  $\mathbb{L}$ -valued topology  $\Delta$  on X induces a stratified  $\mathbb{L}$ -valued neighborhood system  $\mathfrak{N}_{\Delta} = (\mathfrak{N}_{\Delta}^{x})$  as follows:

$$\mathfrak{N}^x_{\Delta}(\mu) = \bigvee \{\nu(x) \colon \nu \in \Delta, \ \nu \leq \mu\}, \ \text{for all } \mu \in \mathbb{L}^X \text{ and } x \in X.$$

Conversely, every stratified  $\mathbb{L}$ -valued neighborhood system  $\mathfrak{N} = (\mathfrak{N}^x)_{x \in X}$  on X induces a stratified  $\mathbb{L}$ -valued topology  $\Delta_{\mathfrak{N}}$  on X:

$$\Delta_{\mathfrak{N}} = \{ \nu \in \mathbb{L}^X : \nu(x) \le \mathfrak{N}^x(\nu), \ \forall x \in X \}.$$

It follows that the interrelationship between  $\mathbb{L}$ -valued neighborhood system and  $\mathbb{L}$ -valued topologies can be viewed as:

$$\nu \in \Delta \Leftrightarrow \nu(x) \le \mathfrak{N}^x(\nu), \ \forall x \in X$$
 (†).

As a consequence of (†) it follows that the continuity between the objects in SL-TOP, and the continuity between objects in SL-NS are equivalent concept, cf. [18].

#### 3. L-valued topological groups and Kent convergence groups

We consider  $\mathbb{L} = (\mathbb{L}, \leq, *, \otimes = *)$  an enriched *cl*-premonoid, where \* is a GL-monoid operation. Let the category of groups and group homomorphisms be denoted by **GRP**.

**Definition 9.** Let  $(X, \cdot) \in |GRP|$  and  $(X, \Delta) \in |S\mathbb{L}\text{-}TOP|$ . Then the triple  $(X, \cdot, \Delta)$  is called a stratified  $\mathbb{L}$ -valued topological group if and only if the conditions below are fulfilled:

(LTGM) the mapping  $m: (X \times X, \Delta \times \Delta) \longrightarrow (X, \Delta), (x, y) \longmapsto xy$  is continuous; (LTGI) the mapping  $j: (X, \Delta) \longrightarrow (X, \Delta), x \longmapsto x^{-1}$  is continuous.

The category of all stratified  $\mathbb{L}$ -valued topological groups and continuous group homomorphisms is denoted by  $S\mathbb{L}$ -TOPGRP.

**Definition 10.** [3] Let  $(X, \cdot) \in |GRP|$  and  $(X, \mathfrak{N} = (\mathfrak{N}^x)_{x \in X}) \in |S\mathbb{L} - NS|$ .

Then the triple  $(X, \cdot, \mathfrak{N} = (\mathfrak{N}^x)_{x \in X})$  is called a stratified  $\mathbb{L}$ -valued neighborhood group if and only if

(LNGM)  $\mathfrak{N}^{xy} \leq \mathfrak{N}^x \odot \mathfrak{N}^y$ , and (LNGI)  $\mathfrak{N}^{x^{-1}} \leq (\mathfrak{N}^x)^{-1}$  are satisfied, where for any  $\xi \in \mathbb{L}^G$ :  $\mathfrak{N}^x \odot \mathfrak{N}^y(\xi) = m^{\Rightarrow} (\mathfrak{N}^x \times \mathfrak{N}^y)(\xi) = \bigvee \{\mathfrak{N}^x(\xi_1) \wedge \mathfrak{N}^y(\xi_2) \colon \xi_1, \xi_2 \in \mathbb{L}^X, \xi_1 \times \xi_2 \leq m^{\leftarrow}(\xi) \}.$ 

A stratified  $\mathbb{L}$ -valued neighborhood system on a group X is said to be compatible with the group structure of X if and only if the group operations are continuous; i.e., conditions (LNGM) and (LNTGI) are fulfilled.

The category SL-NS consists of all stratified L-valued neighborhood groups as objects and continuous group homomorphisms as morphisms.

**Example 1.** Let  $(G, \cdot) \in |GRP|$ , and  $\mathfrak{R}^i \colon \mathbb{L}^X \longrightarrow \mathbb{L}$  defined by  $\mathfrak{R}^i = \bigwedge_{x \in G}[x]$ . Then the triple  $(G, \cdot, \mathfrak{R}^i)$  is a stratified  $\mathbb{L}$ -valued neighborhood group, called indiscrete stratified  $\mathbb{L}$ -valued neighborhood group.

**Example 2.** Let  $(G, \cdot) \in |GRP|$ , and  $\mathfrak{R}^d \colon \mathbb{L}^X \longrightarrow \mathbb{L}$  defined by  $\mathfrak{N}^{xd}(\nu) = \nu(x)$ . Then the triple  $(G, \cdot, \mathfrak{N}^d)$  is a stratified  $\mathbb{L}$ -valued neighborhood group, called discrete stratified  $\mathbb{L}$ -valued neighborhood group.

**Lemma 2.** [3] Let  $(G, \cdot, \Delta) \in |S\mathbb{L}\text{-}TOPGRP|$ , and  $a \in G$ . Then the translations (left and right)  $\mathcal{L}_a \colon (G, \cdot, \Delta) \longrightarrow (G, \cdot, \Delta)$ ,  $g \longmapsto ag$ , and  $\mathcal{L}_x \colon (G, \cdot, \Delta) \longrightarrow (G, \cdot, \Delta)$ ,  $g \longmapsto ga$  are homeomorphisms. Also the mapping  $\mathcal{C}_a \colon (G, \cdot, \Delta) \longrightarrow (G, \cdot, \Delta)$ ,  $g \longmapsto gag^{-1}$  the inner automorphism is an isomorphism.

**Definition 11.** [20, 27] A Kent convergence structure q on X is a subset  $q \subseteq \mathbb{F}(X) \times X$  such that the following conditions are satisfied:

(C1)  $x \in q(\dot{x}), \forall x \in X$ , where  $\dot{x}$  denotes the ordinary principal filter on X generated by the singleton  $\{x\}$ ;

(C2)  $\mathbb{F}, \mathbb{G} \in \mathbb{F}(X), \mathbb{F} \subseteq \mathbb{G}, x \in q(\mathbb{F}) \text{ implies } x \in q(\mathbb{G});$ 

(C3)  $x \in q(\mathbb{F})$  implies  $x \in q(\mathbb{F} \cap \dot{x})$ .

Note that in [4], [6] and [7] the above notion is called a local filter convergence structure q on X, however.

A mapping  $f:(X,q) \longrightarrow (X',q')$  is called continuous if for all  $\mathbb{F} \in \mathbb{F}(X)$  and  $x \in X$ ,  $x \in X$ 

 $q(\mathbb{F})$  implies  $f(x) \in q(f(\mathbb{F}))$ . The category of all Kent convergence spaces and continuous mapping is denoted by **KCONV**. The category **KCONV** is a strong topological universe, cf. [10, 28].

The pair (X,q) is called a limit space if conditions (C1), (C2) and (C4):  $\forall \mathbb{F}, \mathbb{G} \in \mathbb{F}(X)$ ,  $x \in q(\mathbb{F})$  and  $x \in q(\mathbb{G})$  implies  $x \in q(\mathbb{F} \cap \mathbb{G})$ .

The category of limit spaces is denoted by **LIM**. A limit structure q on X is called a principal limit structure on X if and only if for every  $x \in X$  there exists a unique filter  $\mathbb{U}_x \in \mathbb{F}(X)$  such that the following relation holds:

$$q = \{ (\mathbb{F}, x) \in \mathbb{F}(X) \times X \colon \mathbb{U}_x \subseteq \mathbb{F} \}.$$

The category of all principal limit spaces and continuous mappings is denoted by **pLIM**.

Remark 2. It is important to mention here that the categories of closure spaces, CLS, and LIM with principal limit structures are isomorphic, cf. [28], we are not interested at this stage to carry out research in this direction, and postpone it for further investigation.

**Definition 12.** [27] Let  $(G, \cdot) \in |GRP|$  and  $(G, q) \in |KCONV|$  (resp.  $(G, q) \in |LIM|$ ). Then the triple  $(G, \cdot, q) \in |KCONVGRP|$  (resp.  $(G, \cdot, q) \in |LIMGRP|$ ) if the following are fulfilled:

(CGM)  $x \in q(\mathbb{F})$  and  $y \in q(\mathbb{G})$  implies  $xy \in q(\mathbb{F} \odot \mathbb{G})$ ;

(CGI)  $x \in q(\mathbb{F})$  implies  $x^{-1} \in q(\mathbb{F}^{-1})$ .

The category of all Kent convergence groups and group homomorphisms is denoted by **KCONVGRP** (resp. the category of all limit groups and group homomorphisms is denoted by **LIMGRP**).

Given a stratified L-topological space  $(X, \Delta_{\mathfrak{N}})$  with the corresponding L-neighborhood system  $\mathfrak{N}$ . Then a filter  $\mathbb{F}$  is said to be *convergent to a point*  $x \in X$  (we denoted it as  $x \in q_{\Delta_{\mathfrak{N}}}(\mathbb{F})$ ) with respect to  $\Delta_{\mathfrak{N}}$  if and only if for all  $\nu \in \mathbb{L}^X$  the following holds:

$$\mathfrak{N}_x(\nu) \le \bigvee_{F \in \mathbb{F}} \left( \bigwedge_{y \in F} \nu(y) \right).$$

**Lemma 3.** Let  $(G, \cdot, \Delta_{\mathfrak{N}}) \in |S\mathbb{L}\text{-}TOPGRP|$ , where  $\Delta$  is a stratified L-valued topology on G and  $\mathfrak{N}$  is a corresponding  $\mathbb{L}$ -valued neighborhood system. Then  $(G, \cdot, q_{\Delta_{\mathfrak{N}}}) \in |KCONVGRP|$ .

*Proof.* Let  $(G, \cdot, \Delta_{\mathfrak{N}}) \in |\mathbf{SL}\text{-}\mathbf{TOPGRP}|$ . Then in view of the Lemma 5.4.1[18], we only need to Check the conditions (CGM) and (CGI).

(CGM) Let for  $\mathbb{F}, \mathbb{G} \in \mathbb{F}(G)$  and  $x, y \in G$ ,  $x \in q_{\Delta_{\mathfrak{R}}}(\mathbb{F})$  and  $y \in q_{\Delta_{\mathfrak{R}}}(\mathbb{G})$ . Then for any  $\nu, \mu \in \mathbb{L}^G$ :  $\mathfrak{N}_x(\nu) \leq \bigvee_{F \in \mathbb{F}} \bigwedge_{y_1 \in F} \nu(y_1)$ , and  $\mathfrak{N}_y(\mu) \leq \bigvee_{G \in \mathbb{G}} \bigwedge_{y_2 \in G} \mu(y_2)$ . Thus, for any  $\sigma \in \mathbb{L}^G$ ,

$$\mathfrak{N}_{xy}(\sigma) \leq \bigvee \{\mathfrak{N}_x(\nu) * \mathfrak{N}_y(\mu) \colon \nu(x) * \mu(y) \leq \sigma(xy)\} \leq \bigvee_{\nu(x) * \mu(y) \leq \sigma(xy)} \bigvee_{F \cdot G \in \mathbb{F} \odot \mathbb{G}} \bigwedge_{y_1 \in F, y_2 \in G} \nu(x) * \mu(y) \leq \bigvee_{F \cdot G \in \mathbb{F} \odot \mathbb{G}} \bigwedge_{xy \in F \cdot G} \sigma(xy)$$

This implies that  $\mathfrak{N}_{xy}(\sigma) \leq \bigvee_{F \cdot G \in \mathbb{F} \odot \mathbb{G}} \bigwedge_{z \in F \cdot G} \sigma(xy)$ , i.e.,  $xy \in q_{\Delta_{\mathfrak{N}}} (\mathbb{F} \odot \mathbb{G})$ . (CGI) Let  $\mathbb{F} \in \mathbb{F}(G)$ , and  $x \in X$ . Then by invoking (†) in conjunction with the Lemma 5.4.1[18], if we consider  $x \in q_{\Delta_{\mathfrak{N}}}(\mathbb{F})$ , then for any  $\nu \in \mathbb{L}^G$ , we have  $\mathfrak{N}_x(\nu) \leq \bigvee_{F \in \mathbb{F}} \left( \bigwedge_{v \in F} \nu(v) \right)$ . Now due to the continuity of  $\jmath$ , we have

$$\mathfrak{N}_{x^{-1}}(\nu) \leq \mathfrak{N}_{x}(\nu^{-1}) \leq \bigvee_{F \in \mathbb{F}} \left( \bigwedge_{y \in F} \nu^{-1}(y) \right) = \bigvee_{F^{-1} \in \mathbb{F}^{-1}} \left( \bigwedge_{y^{-1} \in F^{-1}} \nu(y^{-1}) \right).$$
That is,  $\mathfrak{N}_{x^{-1}}(\nu) \leq \bigvee_{F^{-1} \in \mathbb{F}^{-1}} \left( \bigwedge_{y^{-1} \in F^{-1}} \nu(y^{-1}) \right) \text{ implying } x^{-1} \in q_{\Delta_{\mathfrak{N}}}(\mathbb{F}^{-1}).$ 

Remark 3. Referring to the pp. 175 [18], one can observe that given a Kent convergence structure q on X, then q induces a stratified  $\mathbb{L}$ -valued topology  $\widehat{\Delta}_q$  in the following way:

$$\widehat{\Delta}_q = \left\{ \sigma \in \mathbb{L}^X \colon \sigma(x) \le \bigvee_{A \in \mathbb{F}} \left( \bigwedge_{z \in A} \sigma(z) \right), \ \forall \mathbb{F} \in \mathbb{F}(X), \ x \in q(\mathbb{F}) \right\}$$

From Lemma 5.4.2[18], it follows that there is a functor  $\mathfrak{G} \colon KCONV \longrightarrow S\mathbb{L}\text{-}TOP$ , where  $\mathfrak{G}(X,q) = (X,\widehat{\Delta}_q)$  and  $\mathfrak{G}(f) = f$ .

Lemma 4. Let  $(G, \cdot, q) \in |KCONVGRP|$ . Then  $(G, \cdot, \widehat{\Delta}_q) \in |SL-TOPGRP|$ .

*Proof.* Let  $(G,\cdot,q) \in |\mathbf{KCONVGRP}|$ . Note that the product  $\mathbb{L}$ -valued topology on  $\Delta_q \times \Delta_q$  is the initial L-valued topology with respect to the projects  $pr_1: X \times X \longrightarrow$  $X,(x,y) \longmapsto x$ , and  $pr_2: X \times X \longrightarrow X,(x,y) \longmapsto y$ . Further note that  $\widehat{\Delta}_q \times \widehat{\Delta}_q =$  $\{(\nu^1 \cdot pr_1) * (\nu^2 \cdot pr_2) : \nu^1, \nu^2 \in \widehat{\Delta}_q\}$  is a base for the product  $\mathbb{L}$ -topology on  $X \times X$ , where the L-set can be given by:  $\mu_0 := \bigvee_{i \in I} \left( \nu_i^1 \cdot pr_1 \right) * \left( \mu_i^2 \cdot pr_2 \right) \right)$ , and  $\nu_i^1, \mu_i^2 \in \widehat{\Delta}_q$ . Thus, we have for any  $\nu \in \widehat{\Delta}_q$  and  $(x,y) \in X \times X$ , and due to the property of \* in  $\mathbb{L}$ :

 $\nu(xy) = m^{\leftarrow}(\nu)(x,y) = \bigvee_{i \in I} \left[ \left( pr_1^{\leftarrow}(\nu_i^1)(x,y)) * \left( pr_2^{\leftarrow}(\mu_i^2)(x,y) \right) \right) \right] \, (\nu_i^1,\mu_i^2 \in \widehat{\Delta}_q).$ 

$$\begin{split} &= \bigvee_{i \in I} \left[ \nu_i^1(x) * \mu_i^2(y) \right], \ (\nu_i^1, \mu_i^2 \in \widehat{\Delta}_q). \\ &\leq \bigvee_{i \in I} \left[ \bigvee_{A \in \mathbb{F}} \left( \bigwedge_{z_1 \in A} \nu_i^1(z_1) \right) * \bigvee_{B \in \mathbb{G}} \left( \bigwedge_{z_2 \in B} \nu_i^2(z_2) \right) \right] \\ &\leq \bigvee_{i \in I} \left[ \bigvee_{A \cdot B \in \mathbb{F} \odot \mathbb{G}} \bigwedge_{z_1 z_2 \in A \cdot B} \left( \nu_i^1(z_1) * \nu_i^2(z_2) \right) \right] \end{split}$$

 $= \left[ \bigvee_{A \cdot B \in \mathbb{F} \odot \mathbb{G}} \bigwedge_{z_1 z_2 \in A \cdot B} \nu(z_1 z_2) \right]$ 

That is,  $\nu(xy) \leq \left[\bigvee_{H \in \mathbb{F} \odot \mathbb{G}} \bigwedge_{z_1 z_2 \in H} \nu(z_1 z_2)\right]$  and  $xy \in q(\mathbb{F} \odot \mathbb{G})$  due to the condition (CGM) implying  $m^{\leftarrow}(\nu) \in \widehat{\Delta}_q \times \widehat{\Delta}_q$ . This proves condition (LTGM).

Now let  $x \in q(\mathbb{F})$  for any  $\mathbb{F} \in \mathbb{F}(G)$  and let  $\nu \in \widehat{\Delta}_q$ . Then we have

$$j^{\leftarrow}(\nu)(x) = \nu(\jmath(x)) \leq \bigvee_{A \in \mathbb{F}} \left( \bigwedge_{z_2 \in \jmath(A)} \nu(z_2) \right) = \bigvee_{A^{-1} \in \mathbb{F}^{-1}} \left( \bigwedge_{z_1 \in A^{-1}} \jmath^{\leftarrow}(\nu)(z_1) \right),$$
 that is,  $j^{\leftarrow}(\nu)(x) \leq \bigvee_{A^{-1} \in \mathbb{F}^{-1}} \left( \bigwedge_{z_1 \in A^{-1}} \jmath^{\leftarrow}(\nu)(z_1) \right);$  and  $x^{-1} \in q(\mathbb{F}^{-1})$  because of the

condition (CGI). These together imply that  $j^{\leftarrow}(\nu) \in \widehat{\Delta}_q$ , this proves (LTGI).

**Theorem 1.** The functor  $\mathfrak{F}: S\mathbb{L}\text{-}TOPGRP \longrightarrow KCONVGRP$  as defined below

$$\mathfrak{F}: \left\{ \begin{array}{ccc} \mathbf{S}\mathbb{L}\text{-}\mathbf{TOPGRP} & \longrightarrow & \mathbf{KCONVGRP} \\ (G,\cdot,\Delta_{\mathfrak{N}}) & \longmapsto & (G,\cdot,q_{\Delta_{\mathfrak{N}}}) \\ f & \longmapsto & f \end{array} \right.$$

has a left adjoint.

*Proof.* In view of Lemma 3 in conjunction with Lemma 5.4.1 [18],  $\mathfrak{F}: \mathbf{SL}\text{-}\mathbf{TOPGRP} \longrightarrow$ KCONVGRP is a functor. Define  $\mathfrak{G} \colon KCONVGRP \longrightarrow S\mathbb{L}\text{-}TOPGRP$  by

$$\mathfrak{G} \,:\, \left\{ \begin{array}{ccc} \mathbf{KCONVGRP} & \longrightarrow & \mathbf{S}\mathbb{L}\text{-}\mathbf{TOPGRP} \\ (G,\cdot,q) & \longmapsto & \left(G,\cdot,\widehat{\Delta}_q\right) \\ f & \longmapsto & f \end{array} \right.$$

Then from Lemma 4 in conjunction with Lemma 5.4.2 [18] that  $\mathfrak{G}$  is a functor since in both the cases the group homomorphism structures remain unchanged. That the functor  $\mathfrak{G}$  is a left adjoint since in both the cases group homomorphism structures remain unchanged. That the functor  $\mathfrak{G}$  is a left adjoint to  $\mathfrak{F}$  is an immediate consequence of the Proposition 5.4.3 [18].

# 4. Enriched lattice-valued subgroup of a group and enriched lattice-valued neighborhood groups

**Definition 13.** Let  $\mathbb{L} = (\mathbb{L}, \leq, \wedge, *)$  be an enriched cl-premonoid,  $(G, \cdot) \in |GRP|$ . Then an  $\mathbb{L}$ -set  $\mu \colon G \longrightarrow \mathbb{L}$  is called an  $\mathbb{L}$ -valued subgroup of a group G if and only if the following conditions are fulfilled:

(LG1)  $\mu(e) = \top$ ;

 $(LG2) \mu(g) * \mu(h) \le \mu(gh), \forall g, h \in G;$   $(LG3) \mu(g) \le \mu(g^{-1}).$ 

Then the pair  $(G,\cdot,\mu)$  is called an  $\mathbb{L}$ -valued subgroup space. Let  $(H,\cdot,\xi)$  be another  $\mathbb{L}$ -valued subgroup of a group H. Define a mapping between  $\mathbb{L}$ -valued subgroup spaces,  $f: (G, \cdot, \mu) \longrightarrow (H, \cdot, \xi)$  such that

$$\mu(q) < \xi(f(q)), \forall q \in G \quad (1)$$

The category of all  $\mathbb{L}$ -valued subgroup spaces and all group homomorphisms satisfying  $(\ddagger)$ is denoted by  $\mathbb{L}$ -GRP. Sometime we denote the set of  $\mathbb{L}$ -valued subgroups of a group G by  $\mathbb{L}(G)$ .

**Example 3.** [3] Let  $\mathbb{L} = ([0,1], \leq, \wedge, *)$  be an enriched cl-premonoid, where \* is a tnorm on [0,1]. Let G be the cyclic group  $C_n$  of order  $n \ (n \ge 1)$  with a as the generator; specifically,  $C_n = \{e, a, a^2, ..., a^{n-1}; a^n = e\}$  with respect to multiplication  $\cdot$ . Define  $\mu \colon G \to [0,1]$  by

$$\mu(x) = \begin{cases} 1, & \text{if } x = e; \\ \frac{1}{n}, & \text{otherwise.} \end{cases}$$

Then  $(G,\cdot,\mu)$  is an enriched lattice-valued subgroup space. In fact, for (LG1)  $\mu(e)=1$ while (LG3) follows from the definition. For (LG2), consider  $x,y \in G$  with  $x \neq e$  and  $y \neq e$ , then  $\mu(x) * \mu(y) = \frac{1}{n} * \frac{1}{n} \leq \frac{1}{n} * 1 = \frac{1}{n}$  implying  $\mu(x) * \mu(y) \leq \mu(xy)$ ; other choices follow similarly. Hence  $\mu$  is an enriched lattice-valued subgroup of the group G. Remark 4. In [33], C. L. Walker pointed out that for a category of fuzzy subsets F = Set(I) where all objects are  $(X,\nu)$ ,  $X \in |Set|$ , with  $\nu \colon X \longrightarrow I$  - a mapping from X to the unit interval. The morphisms F are all mappings  $f:(X,\nu)\longrightarrow (Y,\mu)$  satisfying  $\nu(x) \leq \mu(f(x))$ . Furthermore, note that in [14], J. Goguen, defined the category  $SET(\mathbb{L})$ having objects the pair  $(X,\nu)$ , where  $\nu\colon X\longrightarrow \mathbb{L}$ , and morphisms  $f\colon (X,\nu)\longrightarrow (Y,\mu)$ such that  $\nu(x) \leq \mu(f(x))$  holds. L. Stout [32] argued that this category  $SET(\mathbb{L})$  has initial structure and is cartesian closed. The initial structure is given as: for a family of mappings  $(f_j: X \longrightarrow (Y_j, \mu_j))_j$ ,  $\nu(x) = \bigwedge_j \mu_j(f_j(x))$  gives the initial structure on X. The cartesian closed structure is obtained as:  $(C(X,Y),\nabla)$ , where  $\nabla(f) = \bigwedge_{x \in X} [\nu(x) \longrightarrow (C(X,Y),\nabla)]$  $\mu(f(x))$ , where for all  $(f:(X,\nu)\longrightarrow (Y,\mu))\in \mathcal{C}(X,Y)$ , and the implication  $\to$  is given by:  $\nu(x) \longrightarrow \mu(f(x)) = \bigvee \{\lambda : \lambda \wedge \nu(x) \leq \mu(f(x))\}.$ 

**Lemma 5.** L-GRP has initial structure where the underlying forgetful functor is given by  $\mathfrak{T} \colon \mathbb{L} \text{-} GRP \longrightarrow GRP$ .

*Proof.* Consider a group  $(G,\cdot)$  and a family of mappings  $(f_j\colon G\longrightarrow (H_j,\mu_j))_{j\in J}$ , where each  $f_j: G \longrightarrow H_j$  is a group homomorphism,  $\mu_j$  is a subgroup of  $H_j$ , for each  $j \in J$ . Then the structure on  $\mu$  on G is given by  $\nu(g) = \bigwedge_j \mu_j(f_j(g)) (= \bigwedge_j f_j^{\leftarrow}(\mu_j)(g))$ , for all  $g \in G$ , note that for each  $j \in J$ ,  $f_i^{\leftarrow}(\mu_j)$  is also an  $\mathbb{L}$ -subgroup of G, and the arbitrary intersection  $\nu$  is also an  $\mathbb{L}$ -subgroup of G, and hence  $(G, \cdot, \nu) \in |\mathbb{L}$ -**GRP**|. Let  $(Z, \cdot, \varrho) \in |\mathbb{L}$ -**GRP**|, we prove that the mapping  $\varphi: (Z, \cdot, \rho) \longrightarrow (G, \cdot, \nu)$  a group homomorphism is an L-GRPmorphism if and only if  $f_j \circ \varphi \colon (Z, \cdot, \varrho) \longrightarrow (H_j, \cdot, \mu_j)$  is an  $\mathbb{L}$ -GRP-morphism. We only show  $g:(Z,\cdot,\varrho)\longrightarrow (G,\cdot,\nu)$  is an  $\mathbb{L}$ -GRP-morphism. So, for any  $z\in Z,\ \varrho(z)\leq$  $\mu_j(f_j(\varphi(z))) = \bigwedge_{j \in J} f_i^{\leftarrow}(\mu_j)(\varphi(z)) = \nu(\varphi(z)), \text{ i.e., } \varrho(z) \leq \nu(\varphi(z)).$ 

**Theorem 2.** Let  $\mathbb{L} = (\mathbb{L}, \leq, * = \wedge)$  be a complete Heyting algebra, and  $(G, \cdot, \nu)$  be an  $\mathbb{L}$ -valued subgroup space and  $\mathcal{T}(G) = \{f : (G, \nu) \longrightarrow (G, \nu); f \text{ is bijective and both } f \text{ and } f \text$  $f^{-1}$  satisfy  $(\ddagger)$  }. Then  $(\mathcal{T}(G), \cdot, \nabla)$  is an  $\mathbb{L}$ -subgroup space, where (fg)(x) = f(x)g(x)and  $f^{-1}(x) = (f(x))^{-1}$ .

```
Proof. Clearly (\mathcal{T}(G),\cdot) is a group under composition. Define
\nabla(f) = \bigwedge_{x \in G} [\nu(x) \to \nu(f(x))], \forall f \in \mathcal{T}(G)
```

$$\nabla^{(-1)}(f) = \bigwedge_{x \in G} [\nu(x) \to \nu(f^{-1}(x))], \, \forall f \in \mathcal{T}(G)$$
 (b)

Combining (a) and (b) it follows upon using Proposition 1(7) that

 $\nabla(f) = \bigwedge_{x \in G} [\nu(x) \to \nu(f(x)) \wedge \nu(f^{-1}(x))]$ . Then clearly (LG1) and (LG3) are true upon using Proposition 1(7) and (LG2), i.e.,  $\nabla(id_G) = \top$ , and  $\nabla(f) \leq \nabla(f^{-1})$ ; we only look at (LG2).

For, let  $f, g \in \mathcal{T}(X)$ , then we have

$$\nabla(f) \wedge \nabla(g) = \bigwedge_{x \in G} [\nu(x) \to \nu(f(x)) \wedge \nu(f^{-1}(x))] \wedge \bigwedge_{x \in G} [\nu(x) \to \nu(g(x)) \wedge \nu(g^{-1}(x))]$$

$$\leq \bigwedge_{x \in G} [\nu(x) \to \nu(f(x)) \wedge \nu(g(x)) \wedge \nu(g^{-1}(x)) \wedge \nu(f^{-1}(x))] \leq \bigwedge_{x \in G} [\nu(x) \to \nu(f(x)g(x)) \wedge \nu(g^{-1}(x))]$$

$$= \bigwedge_{x \in G} [\nu(x) \to \nu(f(x)) \wedge \nu(f(x))] \wedge \nu(f(x)) \wedge \nu($$

 $= \bigwedge_{x \in G} [\nu(x) \to \nu(fg(x)) \land \nu((fg)^{-1}(x))] = \nabla(fg).$ 

**Definition 14.** [23, 25] An  $\mathbb{L}$ -valued subgroup is called  $\mathbb{L}$ -valued normal subgroup if for all  $x, y \in G$  if it satisfies one of the following equivalent conditions:

- (1)  $\nu(xy) = \nu(yx)$ ;
- (2)  $\nu(xyx^{-1}) \ge \nu(y);$
- (3)  $\nu(xyx^{-1}) = \nu(y)$ .

**Definition 15.** A mapping  $\ell \colon \mathbb{L}^X \longrightarrow \mathbb{L}^X$  is said to be an  $\mathbb{L}$ -valued closure operation on X if the following conditions hold for every  $\nu, \mu \in \mathbb{L}^X$ :

- (1)  $\nu \leq \ell(\nu)$ ;
- (2)  $\nu \leq \mu \text{ implies } \ell(\nu) \leq \ell(\mu);$
- (3)  $\ell(\ell(\nu)) = \ell(\nu)$ ;
- (4)  $\ell(\top_{\emptyset}) = \bot$ .

The pair  $(X, \ell)$  is called is called an  $\mathbb{L}$ -valued closure space and  $\nu \in \mathbb{L}^X$  is called closed if  $\nu = \ell(\nu)$ . Note that (2) implies  $\ell(\nu) \vee \ell(\mu) \leq \ell(\nu \vee \mu)$ , for any  $\nu, \mu \in \mathbb{L}^X$ .

The category of all  $\mathbb{L}$ -valued closure spaces and all closure preserving mappings, i.e., mappings  $f: (X, \ell) \longrightarrow (Y, \ell)$  that satisfy  $f^{\rightarrow}(\ell(\nu)) \leq \ell(f^{\rightarrow}(\nu))$  for all  $\nu \in \mathbb{L}^X$ , is denoted by  $\mathbb{L}$ -CLS.

**Lemma 6.** We have the following forgetful functor forgetting  $\mathbb{L}$ -valued closure structure:

$$\mathfrak{U}: \left\{ \begin{array}{ccc} \mathbb{L}\text{-}\mathit{CLS} & \longrightarrow & \mathit{SET}(\mathbb{L}) \\ (X,\ell) & \longmapsto & (X,\nu) \\ f & \longmapsto & f \end{array} \right.$$

where  $\mathfrak{U}((X,\ell))=(X,\nu)$  and for  $f\colon X\longrightarrow Y$ ,  $\mathfrak{U}(f)=f$ ,  $f^{\to}\colon \mathbb{L}^X\longrightarrow \mathbb{L}^Y$ , and  $\mathfrak{U}(f)$  yields an  $\mathbf{SET}(\mathbb{L})$ -morphism.

Let  $X \in |\mathbf{SET}|$  and let  $\Omega \subset \mathbb{L}^X$  be a collection of  $\mathbb{L}$ -subsets of X. Then we call  $\Omega$  a lattice-valued Moore collection if every intersection of members of  $\Omega$  belongs to  $\Omega$ , i.e., given a family  $(\nu_j)_{j\in J}$  of  $\mathbb{L}$ -subsets:  $\forall j\in J, \nu_j\in\Omega \Longrightarrow \bigwedge_{j\in J}\nu_j\in\Omega$ . If  $\Omega$  is a lattice-valued Moore collection containing  $\top_{\emptyset}$ , then if  $\ell(\mu)_{\Omega}=\bigwedge\{\nu\in\Omega\colon\mu\leq\nu,\ \nu\text{ is }\mathbb{L}\text{-valued closed set}\}$ , i.e. if  $\ell(\mu)$  is the intersection of all  $\mathbb{L}$ -valued closed sets that contain  $\mu$ , then  $\ell$  is an  $\mathbb{L}$ -valued closure operator. We refer to Birkhoff [9], and Schechter [31], for the classical notion of Moore collection.

**Example 4.** L-valued subgroups of a group  $(G,\cdot)$  form a lattice-valued Moore collection; this is so, since arbitrary intersection of  $\mathbb{L}$ -valued subgroups is again an  $\mathbb{L}$ -valued subgroup, cf. [11], pp. 115. In fact, if we let  $\mu = \bigwedge_{j \in J} \nu_j$ , then we can easily verify the Definition 13. In fact, (LG1)  $\mu(e) = \bigwedge \nu_j(e) = \top$  for all  $j \in J$ ; (LG2) upon using Proposition 1(10), we have:  $\mu(x) * \mu(y) = (\bigwedge_{j \in J} \nu_j(x)) * (\bigwedge_{j \in J} \nu_j(y)) \leq \bigwedge_{j \in J} (\nu_j(x) * \nu_j(y)) \leq \bigwedge_{j \in J} \nu_j(xy) = \mu(xy)$ , so,  $\mu(x) * \mu(y) \leq \mu(xy)$ ; (LG3)  $\mu = \bigwedge_{j \in J} (\nu_j(x)) \leq \bigwedge_{j \in J} (\nu_j(x^{-1})) = \mu(x^{-1})$ . Also, if  $\mu \in \mathbb{L}^G$ , then  $\mathbb{L}$ -valued closure of  $\mu$  is the subgroup generated by  $\mu$ . This can be given as:

$$\langle \ell(\mu) \rangle = \bigwedge \{ \nu \colon \mu \leq \nu, \ \nu \text{ is closed } \mathbb{L}^G\text{-valued subgroup of } G \},$$

the  $\mathbb{L}$ -valued subgroup that contains  $\mu$ .

In view of the Theorem 5.2.6[11], normal  $\mathbb{L}$ -valued subgroup of the group G form a lattice-valued Moore collection, and in particular,  $\ell(\mu)$ ,  $\mu \in \mathbb{L}^G$  is the normal  $\mathbb{L}$ -valued subgroup generated by  $\mu$ . More precisely,  $\langle \ell(\mu) \rangle = \bigwedge \{ \nu \colon \mu \leq \nu, \nu \text{ is closed normal } \mathbb{L}^G\text{-valued subgroup of } G \}$ ,

### **Theorem 3.** $\mathbb{L}$ -*CLS* is a topological category.

*Proof.* Note that the objects of  $\mathbb{L}$ -CLS are structured sets and the composition of closure preserving mappings is closure preserving.

Consider X is a set,  $(Y_j, \ell^j)_{j \in J}$  a family of  $\mathbb{L}$ -valued closure spaces and a source  $\mathcal{S} = (f_j \colon X \longrightarrow (Y_j, \ell^j))_{j \in J}$  of family of functions, then

$$\Omega = \{ \omega \in \mathbb{L}^X : \omega = \bigwedge_{j \in J} f_j^{\leftarrow}(\omega_j), \forall \omega_j = \ell_j(\omega_j), \ j \in J \}$$

is a lattice-valued Moore family which contains  $\top_{\emptyset}$ . Then  $\Omega$  induces an  $\mathbb{L}$ -valued closure operation on X given by:  $\ell(\mu)_{\Omega} = \bigwedge \{\omega \in \Omega \colon \mu \leq \omega\}$ , for all  $\mu \in \mathbb{L}^X$ . Now let  $(Z, \ell) \in |\mathbb{L}\text{-}\mathbf{CLS}|$ , and  $g \colon Z \longrightarrow X$  be a function such that  $f_j \circ g \colon (Z, \ell) \longrightarrow (Y, \ell_j)$  is closure preserving mapping for all  $j \in J$ . If  $\mu \in \mathbb{L}^X$  is a  $^{-\Omega}$  closed, then  $\mu \in \Omega$  and thus  $\mu = \bigwedge_{j \in J} f_j^{\leftarrow}(\omega_j)$  where  $\omega_j = \ell_j(\omega_j)$  in  $(Y_j, \ell_j)$ . In view of Proposition 1.2(5) [22], we have:

$$g^{\leftarrow}(\mu) = g^{\leftarrow}\left(\bigwedge_{j} f_{j}^{\leftarrow}(\omega_{j})\right) = \bigwedge_{j} g^{\leftarrow}\left(f_{j}^{\leftarrow}(\omega_{j})\right) = \bigwedge_{j} (f_{j} \circ g)^{\leftarrow}(\omega_{j})$$

This implies  $(f_j \circ g)^{\leftarrow}(\omega_j)$  is closed in  $(Z, \ell)$  implying  $g^{\leftarrow}(\mu)$  is closed in  $(Z, \ell)$ .

Remark 5. Every  $\mathbb{L}$ -valued topological space  $(X,\Delta)$  is an  $\mathbb{L}$ -valued closure space with the closure operation defined by:  $\ell(\nu) = \overline{\nu}^{(X,\Delta)} = \overline{\nu}^X$  for every  $\nu \in \mathbb{L}^X$ . Also, every mapping  $f \colon (X,\Delta) \longrightarrow (Y,\Gamma)$  continuous if and only if it is closure preserving with respect to the induced  $\mathbb{L}$ -valued closure operations. In fact, if  $\nu \in \mathbb{L}^X$ , then in view of the Proposition 1.4 [22],  $f^{\to}(\ell(\nu)) = f^{\to}(\overline{\nu}^X) \leq \overline{f^{\to}(\nu)}^Y = \ell(f^{\to}(\nu))$ , i.e.,  $f^{\to}(\ell(\nu)) \leq \ell(f^{\to}(\nu))$ , meaning f is closure preserving. Conversely, let  $\nu \in \mathbb{L}^X$  and f be closure preserving, then  $f^{\to}(\overline{\nu}^X) = f^{\to}(\ell(\nu)) \leq \ell(f^{\to}(\nu)) = \overline{f^{\to}(\nu)}^Y$ , i.e.,  $f^{\to}(\overline{\nu}^X) \leq \overline{f^{\to}(\nu)}^Y$  meaning the mapping  $f \colon (X,\Delta) \longrightarrow (Y,\Gamma)$  is continuous by the Proposition 1.4 [22]. Thus we have the following.

Corollary 1.  $\mathbb{L}$ -TOP, the category of  $\mathbb{L}$ -valued topological spaces and continuous mappings is a full subcategory of the category  $\mathbb{L}$ -CLS

**Definition 16.** A triple  $(G, \cdot, \ell)$  is called an  $\mathbb{L}$ -closure group if  $(G, \cdot) \in |\mathbf{GRP}|$  and  $(G, \ell) \in |\mathbb{L}$ - $\mathbf{CLS}|$  such the following are fulfilled:

 $(clGM) \ \ell(\nu)(x) * \ell(\nu)(y) \le \ell(\nu \cdot \nu)(xy), \ \forall \nu \in \mathbb{L}^G \ and \ \forall x, y \in G;$  $(clGI) \ \ell(\nu)(x) \le \ell(\nu^{-1})(x^{-1}), \ \forall \nu \in \mathbb{L}^G \ and \ x \in G.$ 

The category of all  $\mathbb{L}$ -valued closure groups and closure-preserving group homomorphisms is denoted by  $\mathbb{L}$ -CLGRP.

**Remark 6.** If we consider each  $\nu \in \mathbb{L}(G)$ , i.e., each  $\nu \in \mathbb{L}^G$  is an  $\mathbb{L}$ -valued subgroup of the group G, then we obtain a category  $\mathbb{L}$ - $CLGRP^*$  of all  $\mathbb{L}$ -valued closure of  $\mathbb{L}$ -valued subgroups of G, and closure-preserving mappings. Then  $\mathbb{L}$ - $CLGRP^*$  is a subcategory of  $\mathbb{L}$ -CLGRP.

**Theorem 4.**  $\mathbb{L}$ -*CLGRP* is a topological category.

*Proof.* Consider  $(G, \cdot)$  a group, and a source  $S = (f_j : (G, \cdot) \longrightarrow (G_j, \cdot, \ell_j))_{j \in J}$  of family of functions, where for each  $j \in J$ ,  $f_j : G \longrightarrow G_j$  is a group homomorphism, then

$$\Omega = \{ \omega \in \mathbb{L}^G \colon \omega = \bigwedge_{j \in J} f_j^{\leftarrow}(\omega_j), \forall \omega_j = \ell_j(\omega_j), \ j \in J \}$$

In view of Theorem 3, we have  $(G, \cdot, \ell)$  is an  $\mathbb{L}$ -valued closure space. We only verify (clGM). So we have:

$$\stackrel{\backprime}{\ell}(\omega)(x) * \ell(\omega)(y) = \bigwedge_{j \in J} f_j^{\leftarrow}(\omega_j)(x) * \bigwedge_{j \in J} f_j^{\leftarrow}(\omega_j)(y) \le \bigwedge_{j \in J} f_j^{\leftarrow}(\omega_j) \odot f_j^{\leftarrow}(\omega_j)(xy) 
= \bigwedge_{j \in J} f_j^{\leftarrow}(\omega_j \odot \omega_j)(xy) \le \ell(\omega \cdot \omega)(xy).$$

**Definition 17.** [8, 19, 32] An  $\mathbb{L}$ -tolerance space is a pair  $(X, \tau)$ , where  $\tau \colon X \times X \longrightarrow \mathbb{L}$  such that

(T1)  $\tau(x, x) = \top$ ,  $\forall x \in X$  (reflexivity); (T2)  $\tau(x, y) = \tau(y, x)$  (symmetry).

If, in addition  $\tau$  satisfies (T3)  $\tau(x,y)*\tau(y,z) \leq \tau(x,z)$ , for any  $x,y,z \in X$ , then we speak of transitive tolerance relation which is essentially gives an  $\mathbb{L}$ -equivalence relation. A mapping between  $\mathbb{L}$ -valued tolerance spaces (resp. transitive  $\mathbb{L}$ -valued tolerance spaces):  $f:(X,\tau) \longrightarrow (Y,\tau')$  is called  $\mathbb{L}$ -valued tolerance preserving if  $\tau(x,y) \leq \tau'(f(x),f(y))$ . The category of all  $\mathbb{L}$ -valued tolerance spaces and  $\mathbb{L}$ -tolerance preserving mappings is denoted by  $\mathbb{L}$ -TOL while  $\mathbb{L}$ -TranTOL denotes the category of transitive  $\mathbb{L}$ -tolerance spaces.

For an MV-valued algebra  $\mathbb{L}$ , given  $\mathbb{L}$ -TranTOL a category of transitive  $\mathbb{L}$ -valued tolerance spaces and  $\mathbb{L}$ -valued tolerance preserving mappings, one can obtain a functor  $\mathcal{A}$ :  $\mathbb{L}$ -TOL  $\longrightarrow \mathbb{L}$ -SET where  $\mathcal{A}(X,\tau)=(X,\tau\mathbb{D})$ ,  $\mathbb{D}$ :  $X \longrightarrow X \times X$  and  $\mathcal{A}(f)=f$ , here  $\mathcal{A}(f)$  sends f to an  $\mathbb{L}$ -tolerance preserving mapping to  $f:(X,\tau\mathbb{D}) \longrightarrow (Y,\tau'\mathbb{D})$ , i.e.,  $\tau\mathbb{D}(x)=\tau(x,x)\leq \tau'(f(x),f(x))=\tau'\mathbb{D}(f(x))$ , i.e.,  $\tau\mathbb{D}(x)\leq \tau'\mathbb{D}(f(x))$ . Conversely, given  $\mathbb{L}$ -SET, one obtains a functor  $\mathcal{B}$ :  $\mathbb{L}$ -SET  $\longrightarrow \mathbb{L}$ -TranTOL as defined by:  $\mathcal{B}(X,\nu)=(X,\tau:=\nu\wedge\nu)$  and  $\mathcal{B}(f)=f$ ,  $\tau(x,y)=\nu(x)\wedge\nu(y)\leq\nu(f(x))\wedge\nu(f(y))=\tau(f(x),f(y))$ . In view of [11], pp 148, for a group  $(G,\cdot)$ , we consider a mapping  $\varrho_L$ :  $\mathbb{L}^G \longrightarrow \mathbb{L}^{G\times G}$  defined by:  $\varrho_L(\nu)(x,y)=\nu(x^{-1}y)$ , and analogously,  $\varrho_R(\nu)(x,y)=\nu(xy^{-1})$ . Then we have the following.

**Lemma 7.** Let  $(G, \cdot) \in |GRP|$ , and the category  $\mathbb{L}$ -TranTOL consists of morphisms  $f: (G, \tau) \longrightarrow (H, \varrho')$  which are  $\mathbb{L}$ -valued tolerance preserving such that each morphism is a group homomorphism. Then

$$\mathfrak{A} \,:\, \left\{ \begin{array}{ccc} \mathbb{L}\text{-}\textit{GRP} & \longrightarrow & \mathbb{L}\text{-}\textit{TranTOL} \\ (G,\nu) & \longmapsto & (G,\varrho_L(\nu)) \\ f & \longmapsto & f \end{array} \right.$$

*Proof.* Let  $\nu \in \mathbb{L}(G)$ , then we have  $\rho_L(\nu)(x,x) = \nu(x^{-1}x) = \nu(e) = \top$  which is (T1); for (T2), we apply Theorem 5.1.1(5)[11](see also, Theorem 1.2.2[24]) to get  $\rho_L(\nu)(x,y) = \nu(x^{-1}y) = \nu((x^{-1}y)^{-1}) = \nu(y^{-1}x) = \rho_L(y,x)$ . Now for any  $x,y,z \in X$ ,  $\rho_L(\nu)(x,y) * \rho_L(y,z) = \nu(x^{-1}y) * \nu(y^{-1}z) \leq \nu(x^{-1}yy^{-1}z) = \nu(x^{-1}z) = \rho_L(\nu)(x,z)$ , which is (T3). To check the morphism part, we have for any  $x,y \in G$  and  $\nu \in \mathbb{L}(G)$ :  $\tau(x,y) = \rho_L(\nu)(x,y) = \nu(x^{-1}y) \leq \nu'(f(x^{-1}y)) = \nu'((f(x))^{-1}f(y)) = \rho_L(\nu)(f(x),f(y)) = \tau'(f(x),f(y))$ , i.e.,  $\tau(x,y) \leq \tau'(\nu')(f(x),f(y))$ .

**Lemma 8.** Let  $(G, \cdot) \in |GRP|$ , and the category  $\mathbb{L}$ -TranTOL consists of morphisms  $f: (G, \rho_L(\nu)) \longrightarrow (H, \rho_L(\nu'))$  which are  $\mathbb{L}$ -valued tolerance preserving such that each morphism is a group homomorphism. Then

$$\mathfrak{B}: \left\{ egin{array}{lll} \mathbb{L}- \textit{TranTOL} & \longrightarrow & \mathbb{L}\text{-}\textit{GRP} \\ (G, arrho_L(
u)) & \longmapsto & (G, 
u) \\ f & \longmapsto & f \end{array} 
ight.$$

Proof. Let  $\nu \in \mathbb{L}^G$ , and  $(G, \rho_L(\nu)) \in |\mathbb{L}\text{-TranTOL}|$ , it suffices to show that  $\nu \in \mathbb{L}(G)$ . Thus, for any  $x \in X$ ,  $\nu(e) = \nu(x^{-1}x) = \rho_L(\nu)(x,x) = \top$  which is (LG1). For (LG2) is obviously true while for (LG3), we have for any  $x, y \in G$ :  $\nu(x) * \nu(y) = \nu(xe) * \nu(ey) = \rho_L(\nu)(x,e) * \rho_L(\nu)(e,y) \le \rho_L(\nu)(x,y) = \nu(x^{-1}y)$ , i.e.,  $\nu(x) * \nu(y) \le \nu(x^{-1}y)$ , this happens when we combine (LG2) and (LG3), cf. Theorem 5.1.3[11]. This shows that  $\nu \in \mathbb{L}(G)$ . For the morphism part, let  $x \in G$  and  $\nu \in \mathbb{L}^G$ . Then  $\nu(x) = \nu(ex) = \rho_L(\nu)(e,x) \le \rho_L(\nu')(f(e),f(x)) = \nu'\left(f(e)\right)^{-1}f(x) = \nu'(f(ex)) = \nu'(f(x))$ , i.e.,  $\nu(x) \le \nu'(f(x))$ .

# 5. Enriched latticed-valued subgroups on lattice-valued neighborhood groups

Let  $\mathbb{L} = (\mathbb{L}, \leq, *)$  be a complete **MV**-valued algebra with square roots. If  $(X, \mathfrak{N} = (\mathfrak{N}_x)_{x \in X})$  is a stratified  $\mathbb{L}$ -neighborhood space, then in view of [12] (page 13), and [18] (page 226), one can see that  $\mathfrak{N}$  induces a closure operator  $\bar{} : \mathbb{L}^X \longrightarrow \mathbb{L}^X$  given for any  $x \in X$  and  $\nu \in \mathbb{L}^X$  by

$$\overline{\nu}(x) = ([\mathfrak{N}_x](\nu \to \bot)) \to \bot.$$

**Theorem 5.** [3, 12, 18] (a) Let  $(X, \mathfrak{N} = (\mathfrak{N}_x)_{x \in X}) \in |S\mathbb{L} - NS|$ . Then

$$\overline{\nu}(x) = \bigvee \{ \mathcal{F}(\nu) \colon \mathcal{F} \in \mathcal{F}^s_{\mathbb{L}}(X), \ \mathcal{F} \geq \mathfrak{N}_x \}, \ \forall \nu \in \mathbb{L}^X, \ and \ \forall x \in X.$$

- (b) Let  $(G, \cdot, \mathfrak{N} = (\mathfrak{N}_x)_{x \in G}) \in |\mathbf{SL}\text{-}\mathbf{NGRP}|$  and  $\nu \in \mathbb{L}^G$  be an  $\mathbb{L}$ -valued subgroup of a group G. Then the  $\mathbb{L}$ -valued closure  $\overline{\nu}$  of  $\nu$  in (a) is an  $\mathbb{L}$ -valued subgroup of G.
- (c) Let  $(G, \cdot, \mathfrak{N}) \longrightarrow (H, \cdot, \mathfrak{M})$  be continuous group homomorphism. Then  $\overline{\nu}(x) \leq \overline{f} \xrightarrow{} (\overline{\nu})(f(x))$  for all  $\nu \in \mathbb{L}^G$  and  $x \in G$ . Moreover, if  $\nu \in \mathbb{L}^G$  is an  $\mathbb{L}$ -valued subgroup of G, then  $\overline{f} \xrightarrow{} (\nu)$  is an  $\mathbb{L}$ -valued subgroup of G.
- (d) If  $\nu \in \mathbb{L}^G$  is an  $\mathbb{L}$ -valued normal subgroup of a group G, then  $\overline{\nu}$  is also an  $\mathbb{L}$ -valued

normal subgroup of G.

(e) If  $(G, \cdot, \mathfrak{N}) \longrightarrow (H, \cdot, \mathfrak{M})$  is a continuous group homomorphism and  $\mu \in \mathbb{L}^H$  is an  $\mathbb{L}$ -valued subgroup of H, then  $\overline{f^{\leftarrow}(\mu)}$  is an  $\mathbb{L}$ -valued subgroup of G.

*Proof.* (b) follows from the Theorem 5.1[3].

(c) Let  $\nu \in \mathbb{L}^G$ , and  $x \in G$ . Then since  $\nu \leq f^{\leftarrow}(f^{\rightarrow}(\nu))$  due to Definition 6 (LF2),  $\mathcal{F}(\nu) \leq \mathcal{F}(f^{\leftarrow}(f^{\rightarrow}(\nu))) = f^{\Rightarrow}(\mathcal{F})(f^{\rightarrow}(\nu))$ , and since  $\mathfrak{M}_{f(x)} \leq f^{\Rightarrow}(\mathfrak{N}_x)$  due to continuity of f, we have

 $\overline{\nu}(x) = \bigvee \{ \mathcal{F}(\nu) \colon \mathcal{F} \in \mathcal{F}^s_{\mathbb{L}}(X), \mathcal{F} \geq \mathfrak{N}_x \} \leq \bigvee \{ f^{\Rightarrow}(\mathcal{F})(f^{\rightarrow}(\nu)) \colon f^{\Rightarrow}(\mathcal{F}) \in \mathcal{F}^s_{\mathbb{L}}(Y), f^{\Rightarrow}(\mathcal{F})(f^{\rightarrow}(\nu)) \geq f^{\Rightarrow}(\mathfrak{N}_x)(f^{\rightarrow}(\nu)) \}$ 

 $\leq \bigvee \{f^{\Rightarrow}(\mathcal{F})(f^{\rightarrow}(\nu)) \colon \ f^{\Rightarrow}(\mathcal{F}) \in \mathcal{F}^{s}_{\mathbb{L}}(H), f^{\Rightarrow}(\mathcal{F})(f^{\rightarrow}(\nu)) \geq \mathfrak{M}_{f(x)}(f^{\rightarrow}(\nu))\}$ 

 $=\bigvee\{\mathcal{G}(f^{\rightarrow}(\nu))\colon\thinspace\mathcal{G}\in\mathcal{F}^{s}_{\mathbb{L}}(Y),\ \mathcal{G}\geq\mathfrak{M}_{f(x)}\}=\overline{f^{\rightarrow}(\nu)}(f(x)),\ \mathrm{i.e.},\ \overline{\nu}(x)\leq\overline{f^{\rightarrow}(\nu)}(f(x)).$ 

(d) Let  $\nu \in \mathbb{L}^G$  be an  $\mathbb{L}$ -valued normal subgroup of a group G, and consider the mapping  $\mathcal{C}_a \colon G \longrightarrow G$  defined by  $\mathcal{C}_a(g) = a^{-1}ga$ ; need to that  $\overline{\nu}$  is also an  $\mathbb{L}$ -normal subgroup of G. Note that  $\nu$  is  $\mathbb{L}$ -normal subgroup of G if and only if  $\nu(aga^{-1}) = \nu(g)$ . Now since the mapping  $\mathcal{C}_a$  is continuous, we have  $\overline{\nu}(g) \leq \overline{\mathcal{C}_a(\nu)}(\mathcal{C}_a(g)) = \bigvee_{x \in \mathcal{C}_a^{\leftarrow}(g)} \overline{\nu}(x) = \bigvee_{\mathcal{C}_a(x) = g} \overline{\nu}(x) = \overline{\nu}(aga^{-1})$ , i.e.,  $\overline{\nu}(aga^{-1}) \geq \overline{\nu}(g)$ , meaning that  $\overline{\nu}$  is a normal  $\mathbb{L}$ -valued subgroup of G.

(e) Let  $(G,\cdot,\mathfrak{N})\longrightarrow (H,\cdot,\mathfrak{M})$  be a continuous group homomorphism, and  $\mu\in\mathbb{L}(H).$  Then

 $\overline{f^{\leftarrow}(\mu)}(e) = \bigvee \{ \mathcal{F}(f^{\leftarrow}(\mu)) \colon \mathcal{F} \in \mathcal{F}^s_{\mathbb{L}}(G), \mathcal{F} \ge \mathfrak{N}^e \}$ 

 $\geq \bigvee\{[e](f^{\leftarrow}(\mu)\colon [e]\in\mathcal{F}^s_{\mathbb{L}}(G), [e]\geq \mathfrak{N}^e\}$ 

 $\geq \bigvee \{\mu(e) \colon [e] \in \mathcal{F}^s_{\mathbb{L}}(G), [e] \geq \mathfrak{N}^e\} = \top$ , whence  $\mu(e) = \top$ , since  $\mu \in \mathbb{L}(G)$ , implying  $f^{\leftarrow}(\mu)(e) = \top$ .

Now let  $x, y \in G$  and  $\mu \in \mathbb{L}^H$ . Then in view of the Definition 1(GLM3), we have:  $f^{\leftarrow}(\mu)(x) * f^{\leftarrow}(\mu)(y) = \bigvee \{ \mathcal{F}(f^{\leftarrow}(\mu)) : \mathcal{F} \in \mathcal{F}^s_{\mathbb{L}}(G), \mathcal{F} \geq \mathfrak{N}^x \} * \bigvee \{ \mathcal{G}(f^{\leftarrow}(\mu)) : \mathcal{G} \in \mathcal{F}^s_{\mathbb{L}}(G), \mathcal{G} \geq \mathfrak{N}^y \}$ 

 $= \bigvee \{ \mathcal{F}(f^{\leftarrow}(\mu)) * \mathcal{G}(f^{\leftarrow}(\mu)) \colon \mathcal{F}, \mathcal{G} \in \mathcal{F}^{s}_{\mathbb{L}}(G), \mathcal{F} \geq \mathfrak{N}^{x}, \mathcal{G} \geq \mathfrak{N}^{y} \}$ 

 $\leq \bigvee \{\mathcal{F} \odot \mathcal{G}(f^{\leftarrow}(\mu)) \colon \mathcal{F} \odot \mathcal{G} \in \mathcal{F}^s_{\mathbb{L}}(G), \mathcal{F} \odot \mathcal{G} \geq \mathfrak{N}_x \odot \mathfrak{N}^y \}$  (By applying Theorem 1.2.8 and Theorem 1.2.11[24], whence  $f^{\leftarrow}(\mu) \in \mathbb{L}(G)$ )

 $\leq \bigvee \{\mathcal{F} \odot \mathcal{G}(f^{\leftarrow}(\mu)) \colon \mathcal{F} \odot \mathcal{G} \in \mathcal{F}^s_{\mathbb{L}}(G), \mathfrak{N}_{xy} \leq \mathcal{F} \odot \mathcal{G} \} \text{ (since } (G, \cdot, \mathfrak{N}) \in |\mathbf{S}\mathbb{L}\text{-}\mathbf{NS}|, \text{ applying the Definition } 10(\text{LNGM}), \text{ and due to Lemma } 1, \mathcal{F} \odot \mathcal{G} \in \mathcal{F}^s_{\mathbb{L}}(G))$ 

 $=\bigvee\{\mathcal{H}(f^{\leftarrow}(\mu))\colon \mathcal{H}\in\mathcal{F}^s_{\mathbb{L}}(G), \mathfrak{N}_{xy}\leq \mathcal{H}\}=\overline{f^{\leftarrow}(\mu)}(xy).$ 

Finally, since  $\overline{f^{\leftarrow}(\mu)} \geq f^{\leftarrow}(\mu)$ , we get  $\overline{f^{\leftarrow}(\mu)}(x^{-1}) \geq \overline{f^{\leftarrow}(\mu)}(x)$ , for any  $x \in G$ . In fact, for any  $\mu \in \mathbb{L}(H)$ ,  $f^{\leftarrow}(\mu) \in \mathbb{L}(G)$  by Theorem 1.2.11[24]. So, we have:

 $\overline{f^{\leftarrow}(\mu)}(x) = \bigvee \{ \mathcal{F}(f^{\leftarrow}(\mu)) \colon \mathcal{F} \in \mathcal{F}^s_{\mathbb{L}}(G), \mathcal{F} \ge \mathfrak{N}^x \}$ 

 $\leq \bigvee \{\mathcal{F}^{-1}(f^{\leftarrow}(\mu)) \colon \mathcal{F}^{-1} \in \mathcal{F}^{s}_{\mathbb{L}}(G), \mathcal{F}^{-1} \geq (\mathfrak{N}^{x})^{-1}\}$ 

 $\leq \bigvee \{\mathcal{F}^{-1}(f^{\leftarrow}(\mu)) \colon \mathcal{F}^{-1} \in \mathcal{F}_{\mathbb{L}}^{\mathbb{L}}(G), \mathcal{F}^{-1} \geq \mathfrak{N}^{x^{-1}}\} \text{ (by Definition 10(LNGI))}$ 

 $= \underbrace{\bigvee \{\mathcal{G}(f^{\leftarrow}(\mu)) \colon \mathcal{G} \in \mathcal{F}^s_{\mathbb{L}}(G), \mathcal{G} \geq \mathfrak{N}^{x^{-1}}\}}$ 

 $=\overline{f^{\leftarrow}(\mu)}(x^{-1}).$ 

**Lemma 9.** [2] Let  $(G, \cdot, \Delta) \in |S\mathbb{L}-TOPGRP|$ ,  $\mu \in \Delta$  and  $\nu \in \mathbb{L}^G$ . Then  $\mu \cdot \nu \in \Delta$ .

*Proof.* Let  $x \in G$ ,  $\mu \in \Delta$  and  $\nu \in \mathbb{L}^G$ . Then  $\mu \cdot \nu(x) = \bigvee_{st=x} \mu(x) * \nu(t) = \bigvee_{t \in G} \mu(xt^{-1}) * \nu(t) = \bigvee_{t \in G} \mathcal{R}_t(\mu)(x) * \nu(t)$ . Fix  $t \in G$ , then  $\nu(t)$  is constant and

 $\nu(t) \in \mathbb{L}$ . Since and  $\mathcal{R}_t : G \longrightarrow G$  is a homeomorphism, and  $\mu \in \Delta$ ,  $\bigvee_{t \in G} \mathcal{R}_t(\mu) \in \Delta$  and since  $\Delta$  is stratified, and  $(\mathbb{L}, *)$  is commutative semigroup, we have  $\bigvee_{t \in G} \mathcal{R}_t(\mu) * \nu(t) = \nu(t) * \bigvee_{t \in G} \mathcal{L}_t(\mu) \in \Delta$ , i.e.,  $\mu \cdot \nu \in \Delta$ .

**Proposition 3.** [18] Let  $(X, \Delta_{\mathfrak{N}})$  be a stratified  $\mathbb{L}$ -valued topological space with a corresponding stratified  $\mathbb{L}$ -valued neighborhood system  $\mathfrak{N}$ . Then  $(X, \Delta_{\mathfrak{N}})$  is Hausdorff-separated if and only if for all  $x \neq y \in X$  there are  $\nu_1, \nu_2 \in \Delta_{\mathfrak{N}}$  such that  $\nu_1 * \nu_2 = \top_{\emptyset}$  and  $\nu_1(x) * \nu_2(y) \neq \bot$ .

**Definition 18.** [18] Let  $(X, \Delta)$  be a stratified  $\mathbb{L}$ -valued topological space,  $\mathfrak{N} = (\mathfrak{N}_x)_{x \in X}$  be the corresponding  $\mathbb{L}$ -valued neighborhood system, and A be a subset of X. Then closure of A, written as  $\overline{A}$ , is given by

$$\overline{A} = \{ x \in X \colon \mathfrak{N}_x(\top_{X \cap A^c}) = \bot \}$$

A subset of X is said to be closed with respect to  $\Delta$  if  $A = \overline{A}$ .

**Lemma 10.** A stratified  $\mathbb{L}$ -valued topological group  $(G, \cdot, \Delta_{\mathfrak{N}})$  is Hausdorff-separated if and only if some singleton  $\{a\} \subseteq G$  is closed. In particular  $\{e\}$  is a closed subgroup of G.

Proof. Let  $\{a\} \subseteq G$  be closed subset of G. Then since the mapping  $\varphi \colon (G \times G, \Delta \times \Delta) \to (G, \Delta), (g, h) \longmapsto g^{-1}ha$  is continuous, we have  $\varphi^{-1}(\{a\}) = \{(g, g) \colon g \in G\} \subseteq G \times G$ , the diagonal which in view of the Corollary 6.2.1.2 [18], is a closed subset of  $G \times G$  with respect to the product stratified  $\mathbb{L}$ -topology  $\Delta \times \Delta$  implying that  $(G, \cdot, \Delta)$  is Hausdorff-separated. Conversely, let  $x \notin \{a\}$ . Then  $x \neq a \in X$  yields that there are  $\nu_1, \nu_2 \in \Delta$  such that  $\nu_1 * \nu_2 \leq \top_{X \cap \{a\}^c}$  and  $\mathfrak{N}_x(\nu_1) * \mathfrak{N}_a(\nu_2) \neq \bot$ , which implies that  $x \notin \overline{\{a\}}$ .

**Lemma 11.** If  $(G, \cdot, \Delta_{\mathfrak{N}})$  is a Hausdorff-separated stratified  $\mathbb{L}$ -valued topological group, and A be a closed subgroup of G, then the normalizer of A in G:  $N_G(A) = \{g \in G : \gamma_a(A) = A\}$  is a closed subgroup of G, where  $\gamma_a : G \longrightarrow G$  defined by  $\gamma_a(g) = ag^{-1}a$  the conjugation map.

*Proof.* If  $a \in A$ , take  $c_a(g) = gag^{-1}$ . Then the mapping  $c_a : G \longrightarrow G$  is continuous and hence the inverse image of the closed set  $A : c_a^{-1}(A) = \{g \in G : gag^{-1} \in A\}$  is closed. Thus, we have

$$B := \bigwedge_{a \in A} c_a^{-1}(A) = \{ g \in G \colon \gamma_a(A) \subseteq A \}$$

is a closed subset of G. Since the inversion mapping  $g: G \longrightarrow G, g \longmapsto g^{-1}$  is a homeomorphism,  $A^{-1}$  is closed, since A is closed, and hence  $N_G(A) = B \cap A^{-1}$  is closed.

**Lemma 12.** Let  $(G, \cdot, \Delta)$  be a stratified  $\mathbb{L}$ -valued topological group,  $\mathfrak{N}$  be a corresponding stratified  $\mathbb{L}$ -valued neighborhood system on G and A is a subset of G. Then the centralizer

$$\mathsf{Z}_G(A) = \{ g \in G \colon [g, a] = e \ \forall a \in A \}$$

is closed with respect to  $\Delta$ . In particular, the center of G is closed subgroup.

REFERENCES 966

Proof. If  $a \in A$ , then the mapping  $\varphi: G \longrightarrow G, g \longmapsto [g,a] = gag^{-1}a^{-1}$  is continuous, where the element of the type  $gag^{-1}a^{-1}$  is called *commutator* of the group G. Now since  $\{e\}$  is closed subset of G, and since the inverse image of closed subsets under continuous mapping are again closed, in view of the Corollary 6.2.1.2 [18],  $\mathsf{Z}_G(a) = \{g \in G \colon [g,a] = e\}$  is closed, and as the  $\mathsf{Z}_G(A) = \bigwedge_{a \in A} \mathsf{Z}_G(a)$  is closed, hence the result follows.

#### 6. Conclusion

In this article, as a continuation of our previous work on  $\mathbb{L}$ -valued topological groups, where the underlying lattice  $\mathbb{L}$  was an enriched cl-premonoid, we have presented two types of results, one is about the relationship between  $\mathbb{L}$ -valued topological groups and their corresponding Kent convergence groups and conversely; the other is about  $\mathbb{L}$ -valued closure of  $\mathbb{L}$ -valued subgroup of a group. Although, it is an well-known fact that there is a close connection between principal limit convergence spaces and closure spaces, but we did not touch upon this issue here even for  $\mathbb{L}$ -valued generalization of these structures in conjunction with group structures, that is, to study  $\mathbb{L}$ -valued principal convergence spaces and  $\mathbb{L}$ -valued closure spaces. We intend to look into this issue in a future paper.

#### 7. Acknowledgements

We are sincerely grateful to anonymous referees for generously giving their time to read our earlier version of this manuscript and providing various useful suggestions.

#### References

- [1] J. Adámek, H. Herrlich and G. E. Strecker. *Abstract and Concrete Categories*. J. Wiley & Sons, New York, 1990.
- [2] T. M. G. Ahsanullah. On fuzzy neighborhood groups. J. Math. Anal. Appl., 130: 237–251, 1988.
- [3] T. M. G. Ahsanullah, D. Gauld, J. Al-Mufarrij and F. Al-Thukair. Enriched lattice-valued topological groups. New Math. & Nat. Comput., 10(1): 27–53, 2014.
- $[4]\,$  M. Baran. Closure operators in convergence spaces. Acta Math. Hungarica,  $87(1\mbox{-}2)$ :  $33\mbox{-}45,\,2000.$
- [5] M. Baran, S. Kula, T. M. Baran, M. Qasim. Closure operators in semiuniform convergence spaces. Filomat, 30(1): 131–140, 2016.
- [6] M. Baran. Compactness, perfectness, separation, minimality and closedness with respect to closure operators. Appl. Categor. Struc., 10: 403–415, 2002.
- [7] M. Baran. The notion of closedness in topological categories. Comment. Math. Univ. Carol., 34(2):383–395, 1993.

REFERENCES 967

[8] R. Bělohlávek. Fuzzy Relational System: Foundations and Principles. Kluwer Academic Publishers, Dredrecht, 2002.

- [9] G. Birkhoff. Lattice Theory. Amer. Math. Soc. Colloq. Publ., Vol. 25, Providence, RI, 1967.
- [10] E. Čech. Topological Spaces. Revised ed. by Z. Forlík and M. Katětov, Wily & Son, London, 1996.
- [11] S. C. Cheng, J. N. Mordeson, and Yu Yandong. Lectures Notes in Fuzzy Mathematics and Computer Science, Center for Research in Fuzzy Mathematics and Computer Science. Creighton University, Omaha, Nebaraska, USA, 1994.
- [12] M. Demirci. On the convergence structure of L-topological spaces and the continuity in L-topological spaces. New Math. & Nat. Comput., 3(1): 1–25, 2007.
- [13] D. Dikranjan, E. Giuli and A. Tozzi. Topological categories and closure operators. Quaest. Math., 11: 323–337, 1988.
- [14] J. A. Goguen. L-fuzzy sets. J. Math. Anal. Appl., 18: 145–174,1967.
- [15] J. A. Goguen. Concept representations in natural and artificial languages: axioms, extensions, and applications for fuzzy sets. Int. J. Man-machine Studies, 6: 513–561,1974.
- [16] J. Gutiérrez García, I. Mardones Pérez, and M. H. Barton. The relationship between various filter notions on a **G**L-monoid. J. Math. Anal. Appl. 230: 291–302, 1999.
- [17] U. Höhle and A. P. Šosta. Axiomatic foundations of fixed basis fuzzy topology, Chap. 3 Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series, eds. U. Höhle and S. E. Rodabaugh. Vol. 3, Kluwer Academic Publishers, Dordrecht, 1999, pp. 123–272.
- [18] U. Höhle. Many Valued Topology and its Applications. Kluwer Academic Publishers, Dordrecht, 2001.
- [19] G. Jäger and T. M. G. Ahsanullah. Characterization of transitivity in L-tolerance spaces by convergence and closure, Submitted, Priprint, 2021.
- [20] D. C. Kent. Convergence functions and their related topologies, Fund. Math. 54: 125–133, 1964.
- [21] Y. C. Kim. Initial L-fuzzy closure spaces, Fuzzy Sets and Systems, 133(3): 277-297, 2003.
- [22] T. Kubiak. Separation axiom: Extension of mappings and embedding of spaces, Chap. 6, Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series, eds. U. Höhle and S. E. Rodabaugh, Vol. 3. Kluwer Academic Publishers, Dordrecht, 433–479, 1999.

REFERENCES 968

[23] J. N. Mordeson, K. R. Bhutani, and A. Rosenfeld. Fuzzy Group Theory, in: Fuzziness and Soft Computing, Springer, 2005.

- [24] J. N. Mordeson and D. S. Malik. Fuzzy Commutative Algebra. World Scientific, Singapore. 1998.
- [25] J. N. Mordeson, and P. Nair. Fuzzy Mathematics. Springer-Verlag, Berlin, 2001.
- [26] A. Di Nola and G. Gerla. Lattice-valued algebras. Stochastica XI, 2-3: 137–150, 1987.
- [27] G. Preuss. Semiuniform convergence convergence spaces. Math. Japonica, 41: 465–491, 1995.
- [28] G. Preuss. Foundations of Topology: An Approach to Convenient Topology. Kluwer Academic Publishers, Dordrecht. 2002.
- [29] A. Rosenfeld. Fuzzy groups. J. Math. Anal. and Appl. **35**(1971), 512–517.
- [30] K. I. Rosenthal. *Quantales and Their Applications*. Pitman Research Notes in Mathematics. Vol. 234 Longman, Burnt Mill, Harlow, 1990.
- [31] E. Schechter. *Handbook of Analysis and its Foundations*. Academic Press, First Edition. October 30, 1996.
- [32] L. N. Stout. The logic of unbalanced objects in a category with two closed structures. Chapter 3; S. E. Rodabaugh st al (eds.), Applications of Category Theory to Fuzzy Subsets. Kluwer Academic Publishers, Dordrecht. 73–105,1992.
- [33] C. L. Walker. Categories of fuzzy sets. Soft Computing, 8: 299–304, 2004.