Chapter 1 Systems of Linear Equations

- 1.1 Introduction to Systems of Linear Equations
- 1.2 Gaussian Elimination and Gauss-Jordan Elimination Methods

Lecture Outlines:

- Linear Equations and Systems of Linear Equations
- Augmented Matrices
- Elementary Row Operations
- Consistent and Inconsistent Systems
- Solving Syst of Lin Equations using Elementary Row operation
- * R.E.F and R.R.E.F properties
- Gaussian Elimination Method
- Gauss-Jordan Elimination Method
- Homogeneous Systems

1.1 Introduction to Systems of Linear Equations

■ a linear equation in *n* variables:

$$a_1x_1 + a_2x_2 + a_3x_3 + \cdots + a_nx_n = b$$

 $a_1, a_2, a_3, \dots, a_n, b$: real number
 a_1 : leading coefficient
 x_1 : leading variable

- Notes:
 - (1) Linear equations have <u>no products or roots of variables</u> and <u>no variables involved in trigonometric, exponential, or logarithmic functions</u>.
 - (2) Variables appear only to the first power.

Ex 1: (Linear or Nonlinear)

Linear (a)
$$3x + 2y = 7$$

$$(b) \frac{1}{2}x + y - \pi z = \sqrt{2} \qquad \text{Linear}$$

Linear (c)
$$x_1 - 2x_2 + 10x_3 + x_4 = 0$$

Linear (c)
$$x_1 - 2x_2 + 10x_3 + x_4 = 0$$
 (d) $(\sin \frac{\pi}{2})x_1 - 4x_2 = e^2$ Linear

Nonlinear (e)xy+z=2

 $Exponential (f)(e^x) - 2y = 4$

Nonlinear

not the first power

Nonlinear
$$(g)\sin x_1 + 2x_2 - 3x_3 = 0$$

trigonom etric functions

$$(h) \frac{1}{x} + \frac{1}{y} = 4$$
Nonlinear
not the first power

\blacksquare a solution of a linear equation in n variables:

$$a_1x_1 + a_2x_2 + a_3x_3 + \dots + a_nx_n = b$$

$$x_1 = s_1, x_2 = s_2, x_3 = s_3, \dots, x_n = s_n$$
 such
$$a_1s_1 + a_2s_2 + a_3s_3 + \dots + a_ns_n = b$$
 that

Solution set:

the set of all solutions of a linear equation

■ Ex 2: (Parametric representation of a solution set)

$$x_1 + 2x_2 = 4$$

a solution: (2, 1), i.e.
$$x_1 = 2, x_2 = 1$$

If you solve for x_1 in terms of x_2 , you obtain

$$x_1 = 4 - 2x_2$$

By letting $x_2 = t$ you can represent the solution set as

$$x_1 = 4 - 2t$$

And the solutions are $\{(4-2t, t) | t \in R\}$ or $\{(s, 2-\frac{1}{2}s) | s \in R\}$

• a system of **m** linear equations in **n** variables (unknowns):

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + \cdots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + a_{23}x_{3} + \cdots + a_{2n}x_{n} = b_{2}$$

$$a_{31}x_{1} + a_{32}x_{2} + a_{33}x_{3} + \cdots + a_{3n}x_{n} = b_{3}$$

$$\vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + a_{m3}x_{3} + \cdots + a_{mn}x_{n} = b_{m}$$

Consistent:

A system of linear equations that has at least one solution.

Inconsistent:

A system of linear equations that has no solution.

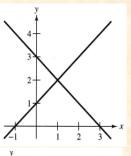
Notes:

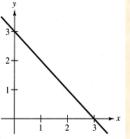
Every system of linear equations has either

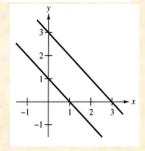
- (1) exactly one solution,
- (2) infinitely many solutions, or
- (3) no solution.

• Ex 4: (Solutions of a system of linear equations)

- (1) x + y = 3 x - y = -1two intersecting lines
- (2) x + y = 3 2x + 2y = 6two coincident lines
- (3) x + y = 3 x + y = 1two parallel lines







exactly one solution

inifinite number of solutions

no solution

■ Ex 5: (Using <u>back substitution</u> to solve a system in row echelon form) <u>back substitution</u>: basic idea is to eliminate variables between rows/lines

$$x - 2y = 5$$
 (1)
 $y = -2$ (2)

Sol: By substituting y = -2 into (1), you obtain

$$x - 2(-2) = 5$$
$$x = 1$$

The system has exactly one solution: x = 1, y = -2

• Ex 6: (Using back substitution to solve a system in row echelon form)

$$x - 2y + 3z = 9$$
 (1)
 $y + 3z = 5$ (2)
 $z = 2$ (3)

Sol: Substitute z = 2 into (2)

$$y + 3(2) = 5$$
$$y = -1$$

and substitute y = -1 and z = 2 into (1)

$$x - 2(-1) + 3(2) = 9$$

 $x = 1$

The system has exactly one solution:

$$x = 1, y = -1, z = 2$$

Equivalent:

Two systems of linear equations are called <u>equivalent</u> if they have precisely <u>the same solution set</u>.

- Notes: Elementary Row Operations method (E.R.O.)
 Each of the following operations on a system of linear equations produces an equivalent system.
 - (1) Interchange/swap two equations (rows).
 - (2) Multiply an equation by a nonzero constant.
 - (3) Add a multiple of one equation to another equation. leave the first as it is, and replace the second by the new one

• Ex 7: Solve a system of linear equations (consistent system)

$$x - 2y + 3z = 9$$

$$-x + 3y = -4$$

$$2x - 5y + 5z = 17$$
(3)

Sol: $(1) + (2) \rightarrow (2)$

$$x - 2y + 3z = 9$$

$$y + 3z = 5$$

$$2x - 5y + 5z = 17$$
(4)
$$(1) \times (-2) + (3) \rightarrow (3)$$

$$x - 2y + 3z = 9$$

$$y + 3z = 5$$

$$-y - z = -1$$
(5)

$$(4) + (5) \rightarrow (5)$$

$$x - 2y + 3z = 9$$

$$y + 3z = 5$$

$$2z = 4$$

$$(6)$$

$$(6) \times \frac{1}{2} \rightarrow (6)$$

$$x - 2y + 3z = 9$$

$$y + 3z = 5$$

$$z = 2$$

So the solution is x = 1, y = -1, z = 2 (only one solution)

Note: all the listed systems are equivalent

■ Ex 8: Solve a system of linear equations (inconsistent system)

(1)

$$2x_{1} - x_{2} - 2x_{3} = 2$$

$$x_{1} + 2x_{2} - 3x_{3} = -1$$
(2)
$$(3)$$
Sol: $(1) \times (-2) + (2) \rightarrow (2)$

$$(1) \times (-1) + (3) \rightarrow (3)$$

 $x_1 - 3x_2 + x_3 = 1$

 $x_1 - 3x_2 + x_3 = 1$

$$5x_2 - 4x_3 = 0 (4)$$

$$5x_2 - 4x_3 = -2 (5)$$

$$(4) \times (-1) + (5) \to (5)$$

$$x_{1} - 3x_{2} + x_{3} = 1$$

$$5x_{2} - 4x_{3} = 0$$

$$0 = -2$$
 (a false statement)

So the system has no solution (an inconsistent system).

■ Ex 9: Solve a system of linear equations (infinitely many solutions)

$$x_{2} - x_{3} = 0$$

$$x_{1} - 3x_{3} = -1$$

$$-x_{1} + 3x_{2} = 1$$

$$(2)$$

$$-x_{1} + 3x_{2} = 1$$

$$(3)$$
Sol: $(1) \leftrightarrow (2)$

$$x_{1} - 3x_{3} = -1$$

$$x_{2} - x_{3} = 0$$

$$-x_{1} + 3x_{2} = 1$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(1)$$

$$(3)$$

$$(1)$$

$$(3)$$

$$(1)$$

$$(3)$$

$$(1)$$

$$(3)$$

$$(1)$$

$$(3)$$

$$(3)$$

$$(1)$$

$$(3)$$

$$(3)$$

$$(1)$$

$$(3)$$

$$(3)$$

$$(1)$$

$$(3)$$

$$(3)$$

 $3x_2 - 3x_3 = 0$

(4)

$$x_1$$
 $-3x_3 = -1$
 $x_2 - x_3 = 0$

$$\Rightarrow x_2 = x_3, \quad x_1 = -1 + 3x_3$$
Let $x_3 = t$ No constraints on x_3 then $x_1 = 3t - 1$,
$$x_2 = t, \qquad t \in R$$

$$x_3 = t,$$

So this system has infinitely many solutions.

1.2 Gaussian Elimination and Gauss-Jordan Elimination

• $m \times n$ matrix:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix}$$
 m rows

Notes:

- (1) Every entry (or coefficient) a_{ij} in a matrix is a number.
- (2) A matrix with \underline{m} rows/lines and \underline{n} columns is said to be of size $\underline{m} \times \underline{n}$.
- (3) If m = n, then the matrix is called square of order n.
- (4) For a square matrix, the entries $a_{11}, a_{22}, ..., a_{nn}$ are called: the main diagonal entries.

• Ex 1: Matrix
$$\begin{bmatrix}
 0 & 0 \\
 0 & 0
 \end{bmatrix}$$

$$\left[1 - 3 \ 0 \ \frac{1}{2}\right] \qquad 1 \times 4$$

$$\begin{bmatrix} e & \pi \\ 2 & \sqrt{2} \\ -7 & 4 \end{bmatrix} \qquad 3 \times 2$$

Note:

One very common use of matrices is to represent a system of linear equations.

Size

 1×1

 2×2

• a system of *m* equations in *n* variables:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$$

Matrix form: Ax = b

$$Ax = b$$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Augmented matrix:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} & b_2 \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} & b_3 \\ \vdots & & & & & \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} & b_m \end{bmatrix} = [A \mid b]$$

Coefficients matrix:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix} = A$$

• Elementary row operation:

- (1) Interchange/swap two rows/lines. $r_{ij}: R_i \leftrightarrow R_j$
- (2) Multiply a row by a nonzero constant k. $r_i^{(k)}:(k)R_i \to R_i$
- (3) Add a multiple of a row to another row. $r_{ij}^{(k)}:(k)R_i + R_j \to R_j$

Row equivalent:

Two matrices are said to be **row equivalent** if one can be obtained from the other by a finite sequence of **elementary row operation**.

■ Ex 2: (Elementary Row Operations E.R.O)

$$\begin{bmatrix} 0 & 1 & 3 & 4 \\ -1 & 2 & 0 & 3 \\ 2 & -3 & 4 & 1 \end{bmatrix} \xrightarrow{r_{12}} \begin{bmatrix} -1 & 2 & 0 & 3 \\ 0 & 1 & 3 & 4 \\ 2 & -3 & 4 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -4 & 6 & -2 \\ 1 & 3 & -3 & 0 \\ 5 & -2 & 1 & 2 \end{bmatrix} \xrightarrow{r_1^{(\frac{1}{2})}} \begin{bmatrix} 1 & -2 & 3 & -1 \\ 1 & 3 & -3 & 0 \\ 5 & -2 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & 3 \\ 0 & 3 & -2 & -1 \\ 2 & 1 & 5 & -2 \end{bmatrix} \xrightarrow{r_{13}^{(-2)}} \begin{bmatrix} 1 & 2 & -4 & 3 \\ 0 & 3 & -2 & -1 \\ 0 & -3 & 13 & -8 \end{bmatrix}$$

• Ex 3: Using elementary row operations to solve a system

Linear System								ociated ement		<u>[atrix</u>	Elementary Row Operation
X	4	2 y	+	3z	=	9	Γ 1	-2	3	97	
-x	+	3 <i>y</i>			=	-4	-1	3	0	-4	
2x		5 y	+	5 <i>z</i>	=	17	_ 2	-5	5	17	
x											$r_{12}^{(1)}: (1)R_1 + R_2 \to R_2$
							0				N_{12} . (1) $N_1 + N_2 \rightarrow N_2$
2x		5 y	+	5 <i>z</i>	=	17	_2	-5	5	17	
X		2 y									$\mathbf{p}^{(-2)}$, (2) \mathbf{p} + \mathbf{p} > \mathbf{p}
						5	1				$r_{13}^{(-2)}: (-2)R_1 + R_3 \to R_3$
	=	y	-	Z	=	-1	[0	-1	-1	-1	

Linear System

Associated Augemented Matrix

Elementary **Row Operation**

$$x - 2y + 3z = 9$$

$$y + 3z = 5$$

$$\begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 4 \end{bmatrix} \qquad r_{23}^{(1)} : (1)R_2 + R_3 \to R_3$$

$$r_{23}^{(1)}:(1)R_2+R_3\to R_3$$

$$x - 2y + 3z = 9$$

$$y + 3z = 5$$

$$z = 2$$

$$\begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & 2 \end{bmatrix} \qquad r_3^{(\frac{1}{2})} : (\frac{1}{2})R_3 \to R_3$$

$$r_3^{(\frac{1}{2})}:(\frac{1}{2})R_3\to R_3$$

$$\begin{array}{ccc}
x & = & 1 \\
y & = & -1 \\
z & = & 2
\end{array}$$

Definitions of R.E.F. and R.R.E.F.

- Row-echelon form: (conditions 1, 2, 3)
- Reduced row-echelon form: (conditions 1, 2, 3, 4)
 - (1) A row consisting entirely of zeros occur at the bottom of the matrix.
 - (2) For each row that does not consist entirely of zeros, the <u>first leftmost nonzero</u> entry is 1 (called **a leading 1**).
 - (3) For two successive (nonzero) rows, the leading 1 in the higher row is farther to the left than the leading 1 in the lower row.
 - (4) Every column that has a leading 1 has zeros in every position above and below its leading 1 (the leftmost leading 1 is the only nonzero entry in the column).

• Ex 4: (Row-echelon form or reduced row-echelon form)

$$\begin{bmatrix} 1 & 2 & -1 & 4 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$
 (row - echelon form)

$$\begin{bmatrix} 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(reduced row - echelon form)

$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(reduced row - echelon form)

$$\begin{bmatrix}
 1 & 2 & -3 & 4 \\
 0 & 2 & 1 & -1 \\
 0 & 0 & 1 & -3
 \end{bmatrix}$$

$$\begin{bmatrix}
 1 & 2 & -1 & 2 \\
 0 & 0 & 0 & 0 \\
 0 & 1 & 2 & -4
 \end{bmatrix}$$

Gaussian elimination method:

The procedure for reducing a matrix to a row-echelon form.

Gauss-Jordan elimination method:

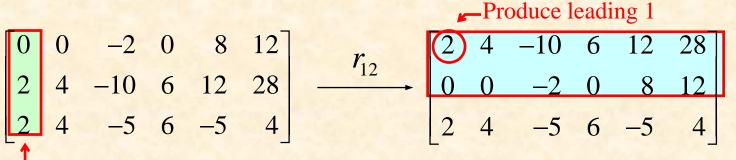
The procedure for reducing a matrix to a reduced row-echelon form.

Notes:

- (1) Every matrix has an unique reduced row echelon form.
- (2) A row-echelon form of a given matrix is not unique.

 (Different sequences of row operations can produce different row-echelon forms.)

• Ex: (Procedure of Gaussian elimination and Gauss-Jordan elimination)



The first nonzero column

$$\begin{array}{c} r_1^{(\frac{1}{2})} \\ \hline \end{array} \begin{array}{c} \text{leading 1} \\ \hline 0 & 2 & -5 & 3 & 6 & 14 \\ \hline 0 & 0 & -2 & 0 & 8 & 12 \\ \hline 2 & 4 & -5 & 6 & -5 & 4 \\ \hline \end{array} \begin{array}{c} r_{13}^{(-2)} \\ \hline \end{array} \begin{array}{c} \hline 1 & 4 & -3 & 2 & 6 & 14 \\ \hline 0 & 0 & -2 & 0 & 8 & 12 \\ \hline 0 & 0 & 5 & 0 & -17 & -24 \\ \hline \end{array}$$

$$\begin{array}{c} \text{The first nonzero Submatrix column} \\ \end{array}$$

leading 1 (row - echelon form)

(row - echelon form)

(row - echelon form)

(reduced row - echelon form)

R.E.F and R.R.E.F. STEPS SUMMARY

- 1- تحديد أقصى عمود الى اليسار والذي ليس كله أصفار
- (المتزعم) بيساوي 1 (المتزعم) اليسار) يساوي 1 (المتزعم) وتجعل أول عنصر في العمود (أقصى اليسار) يساوي 1 (if a then multiply by 1/a)
- 3- تجعل كل العناصر أسفل الواحد المتزعم تساوي صفر باضافة مضاعفات السطر الأول للأسطر الأخرى
- 4- نعيد نفس الخطوات التلاث السابقة على المصفوفة بدون السطر الذي يحتوي الواحد المتزعم
 - 5- بتطبيق الخطوات الأربع السابقة سنحصل على صيغة .R.E.F
 - 6- لتحويل المصفوفة الى صورة مختزلة R.R.E.F

نبدأ من اخر سطر غير منعدم و نضيف مضاعفاته الى الأسطر التي فوقه لايجاد أصفار فوق الاحاد المتزعمة

Note:

Steps 1 to 5 called *Gaussian Elimination* MethodSteps 1 to 6 called *Gauss-Jordan Elimination* Method

- Ex 7: Solve the following system using Gauss-Jordan elimination
- method (only one solution)

$$x - 2y + 3z = 9$$

 $-x + 3y = -4$
 $2x - 5y + 5z = 17$

Sol:

augmented matrix

$$\begin{bmatrix} 1 & -2 & 3 & 9 \\ -1 & 3 & 0 & -4 \\ 2 & -5 & 5 & 17 \end{bmatrix} \xrightarrow{r_{12}^{(1)}, r_{13}^{(-2)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & -1 & -1 & -1 \end{bmatrix} \xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\frac{r_3^{(\frac{1}{2})}}{} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{\mathbf{r}_{32}^{(-3)}, \mathbf{r}_{31}^{(-3)}, \mathbf{r}_{21}^{(2)}} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \longrightarrow \begin{array}{c} x & = 1 \\ y & = -1 \\ z & = 2 \end{array}$$

(row - echelon form)

(reduced row - echelon form)

 Ex 8: Solve a system by Gauss-Jordan elimination method (infinitely many solutions)

$$2x_1 + 4x_2 - 2x_3 = 0$$
$$3x_1 + 5x_2 = 1$$

Sol: augmented matrix

$$\begin{bmatrix} 2 & 4 & -2 & 0 \\ 3 & 5 & 0 & 1 \end{bmatrix} \xrightarrow{r_1^{(\frac{1}{2})}, r_{12}^{(-3)}, r_2^{(-1)}, r_{21}^{(-2)}} \begin{bmatrix} 1 & 0 & 5 & 2 \\ 0 & 1 & -3 & -1 \end{bmatrix} \text{ (reduced row-echelon form)}$$

the corresponding system of equations is

$$\begin{array}{cccc} x_1 & + & 5x_3 = & 2 \\ x_2 & -3x_3 = & -1 \end{array}$$

leading variable : x_1, x_2

free variable: x_3

$$x_1 = 2 - 5x_3$$
 $x_2 = -1 + 3x_3$

Let $x_3 = t$
 $x_1 = 2 - 5t$,
 $x_2 = -1 + 3t$, $t \in R$
 $x_3 = t$,

So this system has infinitely many solutions.

Homogeneous system of linear equations:

A system of linear equations is said to be homogeneous if all the constant terms are zero.

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \cdots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \cdots + a_{2n}x_n = 0$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \cdots + a_{3n}x_n = 0$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \cdots + a_{mn}x_n = 0$$

Trivial solution:

$$x_1 = x_2 = x_3 = \dots = x_n = 0$$

Nontrivial solution:

other solutions

Notes:

- (0) Any consistent system with m<n has infinite number of solutions
- (1) Every homogeneous system of linear equations is consistent.
- (2) If the homogenous system has fewer equations than variables (m<n) then it must have an infinite number of solutions.
- (3) For a homogeneous system, exactly one of the following is true.
 - (a) The system has only the trivial solution.
 - (b) The system has infinitely many nontrivial solutions in addition to the trivial solution.

• Ex 9: Solve the following homogeneous system

$$x_1 - x_2 + 3x_3 = 0$$
$$2x_1 + x_2 + 3x_3 = 0$$

Sol: augmented matrix

$$\begin{bmatrix} 1 & -1 & 3 & 0 \\ 2 & 1 & 3 & 0 \end{bmatrix} \xrightarrow{r_{12}^{(-2)}, r_2^{(\frac{1}{3})}, r_{21}^{(1)}} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix} \text{ (reduced row-echelon form)}$$

leading variable : x_1, x_2

free variable: x_3

Let
$$x_3 = t$$

$$x_1 = -2t, x_2 = t, x_3 = t, t \in R$$

When t = 0, $x_1 = x_2 = x_3 = 0$ (trivial solution)

Keywords in Section 1.2:

- matrix: مصفوفة
- row: 🖦
- مود :column
- entry: عنصر
- size:
- square matrix: مصفوفة مربعة
- symmetric matrix: مصفوفة متماثلة
- trace of a matrix: أثر المصفوفة
- order: ترتیب
- main diagonal: قطر رئيسي
- augmented matrix: مصفوفة موسعة
- coefficient matrix: معامل المصفوفة
- Trivial: بدیهي