MATH 201

HOME WORK PROBLEMS

Title of the book used for this course is: Calculus, sixth edition, by Swokowski, Olinick and Pence.

In this coures we cover chapters 8,12 and 13 , but we start with chapter 12 and 13 then finally chapter 8 , also section 10.6 should be read by the students.

Chapter 12

Section 12.1 : Functions of Several Variables;

Do the following problems from the book
$1,3,5,8,9,14,21,22,23,24,26,27,47,51$.

Section 12.2 : Limits and Continuity;

I- Do the following problems from the book
$3,5,6,9,12,14,16,19,20,25,26,28,29,36,38,42$.
II- Find the following limits, if they exist:

1) $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{z y^{2}}{x^{2}+y^{2}+z^{2}}$,
2) $\lim _{(x, y) \rightarrow(2,1)} \frac{(y-1)(x-2)^{2}}{(y-1)^{3}+(x-2)^{3}}$.
3) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{3}}{x^{3}+y^{6}}$,
4) $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2} y}{x^{4}+y^{2}}$,
5) $\lim _{(x, y) \rightarrow(0,0)} \frac{10 x y}{5 x^{3}+2 y^{3}}$

$$
\text { 6) } \lim _{(x, y, z) \rightarrow(0,0,0)} \frac{y^{3}+x^{3} \sin z^{3}}{x^{2}+y^{2}+z^{2}} \text {. }
$$

III- Discuss the continuity of the following functions on their domain:

1. $f(x, y)=\left\{\begin{array}{cc}\frac{x^{2} y}{x^{4}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{array}\right.$
2. $f(x, y, z)=\left\{\begin{array}{cl}\frac{x z-y^{2}}{x^{2}+y^{2}+z^{2}}, & (x, y, z) \neq(0,0,0) \\ 0, & (x, y, z)=(0,0,0)\end{array}\right.$
3. $f(x, y)=e^{x^{2}+5 x y+y^{3}}$.
4. $h(x, y)=\sin \left(\sqrt{y-4 x^{2}}\right)$.
5. $k(x, y, z)=\ln \left(36-4 x^{2}-y^{2}-9 z^{2}\right)$.

Section 12.3 : Partial Derivatives;

I- Do the following problems from the book
$4,6,8,12,13,16,17,21,22,27,29,32,34,36,39,42,44,47$.
II- Do the following problems;

1. Using the defintion, find f_{x}, f_{y} of the function

$$
f(x, y)=3 x^{2}-2 x y+y^{2}
$$

2. Let $f(x, y)=e^{x-y} \sin (x+y)$. Show that

$$
\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}=\frac{2(f(x, y))^{2}}{\sin ^{2}(x+y)}
$$

Section 12.4 : Increments and Differentials;

Do the following problems from the book
$2,9,11,12,16,18,20,24(\mathrm{~b}), 32,38,42$.

1. Use the differential to approximate the change in the function

$$
w=f(x, y, z)=x^{2} \ln \left(z^{2}+y^{2}\right)
$$

as (x, y, z) changes from $(1,2,3)$ to $(0.9,1.9,3.1)$.
2. Use the differential to approximate the change in the function

$$
w=f(x, y)=y x^{2 / 5}+x \sqrt{y}
$$

as (x, y) changes from $(52,16)$ to $(35,18)$.
3. Let $f(x, y, z)=\left\{\begin{array}{cl}\frac{x y^{2} z}{x^{4}+y^{4}+z^{4}}, & (x, y, z) \neq(0,0,0) \\ 0, & (x, y, z)=(0,0,0)\end{array}\right.$

1- Show that $f_{x}(0,0,0), f_{y}(0,0,0)$ and $f_{z}(0,0,0)$ exist.
2- Discuss the differentiability of f at $(0,0,0)$.

Section 12.5 : Chain Rules;

Do the following problems from the book
$2,4,6,10,12,14,18,19,22,26,38,40,42$.

1. If $w=x^{2}+y^{2}+z^{2}$, where $x=r \cos \theta, \quad y=r \sin \theta$ and $z=r$. Use the differential to show that $d w=4 r d r$.
2. Let $z=f(x, y)$ be determined implicitly by $y x^{2}+z^{2}+\cos (x y z)-4=0$. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$. Then show that

$$
2 y \frac{\partial z}{\partial y}-x \frac{\partial z}{\partial x}=\frac{x y z \sin (x y z)}{2 z-x y \sin (x y z)} .
$$

Section 12.8: Extrema of Functions of Several Variables ;

Do the following problems from the book;
11, 20, 23, 24, 26, 30, 31, 32.

Section 12.9: Lagrange Multipliers;

Do the following problems from the book;
$1,2,3,11$.

Chapter 13: Multiple Integral

Section 13.1: Double Integral ;

Do the following problems from the book;
$1-10,13,16,18,19,20,21,23,25,26,27,29,31,32,33,37,38,39,43,44,50$.

1. Sketch the region bounded by the graphs of the given equations, and then evaluate the given integral

$$
y=x, y=\sqrt{x}, x=0 ; \iint_{R} \sin y^{2} d A
$$

2. Evaluate the double integral

$$
\int_{0}^{2} \int_{y / 2}^{1} e^{x^{2}} d x d y
$$

Section 13.2: Area and Volume;

Do the following problems from the book;
$2,4,6,7,11,14,18,22,24,27,28,30,31,32$.

1. Sketch the region bounded by the graphs of the equation $y=\sin x, y=$ $\cos x, x=0, x=\pi / 4$. . Then use the double intgeral to find its area.

Section 13.3: Double Integral by Polar Coordinate;

Do the following problems from the book;
$1-12,13,15,17,18,19,21,23,24$.
1- Use polar coordinate to evaluate the double integral

$$
\int_{-3}^{3} \int_{0}^{\sqrt{9-x^{2}}}\left(x^{2}+y^{2}\right)^{3 / 2} d y d x
$$

Section 13.5: Triple Integral;

Do the following problems from the book;
$2,6,7,8,9,11,12,13,14,16,17,23,26,28$.

Chapter 8

Section 8.1: Sequences;

Do the following problems from the book;
$3,5,7,11,12,13,14,16,17,18,20,22,23,24,26,27,28,29,30,31,32,33,34$, $35,36,37,38,41,42,45,46$.

Section 8.2: Convergent or Divergent Series;

Do the following problems from the book;
$2,4,5,6,8,10,14,15,18,20,25,28,30,34,37,38,39,40,42,43,45,46,50,57,58$.

Section 8.3 : Positive term Series;

Do the following problems from the book;
$2-11,14,15,16,18,20,22,23,24,25,26,30,31,33,34,35,39,40,42,43,45$, 46, 57, 58.

Section 8.4: The Ratio and Root Test

Do the following problems from the book;
$2,4,6,8,9,10,11,12,14,15,16,18,20,21,22,23,25,27,28,29,31,32,33,34$, 35, 38.

Section 8.5: Alternating Series and Absolute Convergence;

Do the following problems from the book;
$2-7,9,10,12,13,14,16,18,19,20,21,22,27,28,29,32,33,34,35,38,40,41$, 43, 44, 45, 46.

Section 8.6: Power Series;

Do the following problems from the book;
$5,6,7,8,14,15,19,23,25,27,30,35,36,41,42,44,45,46$.

Section 8.7: Power Series Represention of Functions;

Do the following problems from the book;
$2,4,6,7,10,13,14,16,19,22,25,29,30,32,33,34,37$.

Section 8.8: Maclaurin and Taylor Series;

Do the following problems from the book;
$2,4,8,10,13,15,18,19,21,26,29,32,34,36,38,39,42$.

