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Abstract: In this article, we study Jacobi-type vector fields on Riemannian manifolds. A Killing
vector field is a Jacobi-type vector field while the converse is not true, leading to a natural question
of finding conditions under which a Jacobi-type vector field is Killing. In this article, we first prove
that every Jacobi-type vector field on a compact Riemannian manifold is Killing. Then, we find
several necessary and sufficient conditions for a Jacobi-type vector field to be a Killing vector field on
non-compact Riemannian manifolds. Further, we derive some characterizations of Euclidean spaces
in terms of Jacobi-type vector fields. Finally, we provide examples of Jacobi-type vector fields on
non-compact Riemannian manifolds, which are non-Killing.
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1. Introduction

Throughout this article, we assume that manifolds are connected and differentiable. There are
several important types of smooth vector fields on an n-dimensional Riemannian manifold (M, g),
whose existence influences the geometry of the Riemannian manifold M. A smooth vector field ξ on M
is called a Killing vector field if its local flow consists of local isometries of the Riemannian manifold M.
The geometry of Riemannian manifolds with Killing vector fields has been studied quite extensively
(cf., e.g., [1–6]). The presence of a non-zero Killing vector field on a compact Riemannian manifold
constrains its geometry, as well as topology; for instance, it does not allow the Riemannian manifold to
have negative Ricci curvature, and on a Riemannian manifold of positive curvature, its fundamental
group contains a cyclic subgroup with a constant index depending only on n (cf. [1,2]).

In Riemannian geometry, Jacobi vector fields are vector fields along a geodesic defined by the
Jacobi equation that arise naturally in the study of the exponential map. More precisely, a vector field J
along a geodesic γ in a Riemannian manifold M is called a Jacobi vector field if it satisfies the Jacobi
equation (cf. [7]):

D2

dt2 J(t) + R(J(t),
.
γ(t))

.
γ(t) = 0,

where D denotes the covariant derivative with respect to the Levi–Civita connection ∇, R is the
Riemann curvature tensor of M,

.
γ(t) is the tangent vector field, and t is the parameter of the geodesic.

Clearly, the Jacobi equation is a linear, second order ordinary differential equation; in particular, the
values of J and D

dt J(t) at one point of γ uniquely determine the Jacobi vector field. Further, a Killing
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vector field ξ on a Riemannian manifold (M, g) is a Jacobi vector field along each geodesic, since it
satisfies the differential equation:

..
γ + R(ξ,

.
γ)

.
γ = 0. Furthermore, it follows from the Jacobi equation

that Jacobi vector fields on a Euclidean space are simply those vector fields that are linear in t.
As a natural extension of Jacobi vector fields, one of the authors introduced in [8] the notion of

Jacobi-type vector fields as follows. A vector field η on a Riemannian manifold M is called a Jacobi-type
vector field if it satisfies the following Jacobi-type equation:

∇X∇Xη −∇∇X Xη + R(η, X)X = 0, X ∈ X(M),

where X(M) denotes the Lie algebra of smooth vector fields on M. Obviously, every Jacobi-type vector
field is a Jacobi vector field along each geodesic on M.

Since each Killing vector field is a Jacobi-type vector field (see [8]), a natural question is
the following:

Question 1: “For a given Riemannian manifold M, under which topological or geometric conditions is
every Jacobi-type vector on M Killing?”

One objective of this article is to study this question. In Section 3, we prove that if a Riemannian
manifold M is compact, then every Jacobi-type vector field on M is Killing. In contrast, not every
Jacobi-type vector field on a non-compact Riemannian manifold is Killing (see the examples in
Section 6). Therefore, the second interesting question is

Question 2: “Under what conditions is a Jacobi-type vector field on a non-compact Riemannian
manifold a Killing vector field?”

In Section 4, we obtain three necessary and sufficient conditions for a Jacobi-type vector field
on a non-compact Riemannian manifold to be Killing (see Theorems 2–4). In Section 5, we prove
two characterizations of Euclidean spaces using Jacobi-type vector fields (see Theorems 6 and 7).
In the last section, we provide some explicit examples of non-Killing Jacobi-type vector fields.

2. Preliminaries

First, we recall the following result from [8].

Proposition 1. A Killing vector field on a Riemannian manifold is a Jacobi-type vector field.

Although each Killing vector field on a Riemannian manifold is a Jacobi-type vector field, there
do exist Jacobi-type vector fields that are non-Killing. For instance, let us consider the Euclidean
space (Rn, g) with the canonical Euclidean metric g = ∑n

i=1 dxi ⊗ dxi. Then, it is easy to verify that the
position vector field ψ of Rn:

ψ = ∑ xi ∂

∂xi

is of the Jacobi type and it satisfies
(
Lψg

)
(X, Y) = 2g(X, Y), where L denotes the Lie derivative.

Hence, ψ is a non-Killing vector field.
We need the following lemma from [8].

Lemma 1. If η is a Jacobi-type vector field on a Riemannian manifold M, then we have the following equation:

∇X∇Yη −∇∇XYη + R(η, X)Y = 0, X, Y ∈ X(M).
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For a given Jacobi-type vector field η on a Riemannian manifold M, let us denote by ω

the one-form dual to η. Furthermore, we define a symmetric tensor field B of type (1, 1) and a
skew-symmetric tensor field ϕ of type (1, 1) respectively by:(

Lη g
)
(X, Y) = 2g(BX, Y) and dω(X, Y) = 2g(ϕX, Y)

for X, Y ∈ X(M). By applying Koszul’s formula, we find:

∇Xη = BX + ϕX, X ∈ X(M). (1)

Combining this with Lemma 1 yields:

(∇XB)Y + (∇X ϕ)Y + R(η, X)Y = 0, (2)

where (∇X A)Y = ∇X(AY)− A∇XY for a tensor field A of type (1, 1). If we define a smooth function
h on M by h = Tr B, then for a local orthonormal frame {e1, .., en} on M, by choosing Y = ei in
Equation (2) and by taking the inner product with ei, we find:

n

∑
i=1

g ((∇XB) ei, ei) = 0,

where we have used the skew-symmetry of the tensor ϕ. Hence, the above equation gives Xh = 0 for
any X ∈ X(M). Thus, h is a constant function. Consequently, we have the following.

Lemma 2. Let η be a Jacobi-type vector field on a Riemannian manifold (M, g). If B is the symmetric operator
associated with η defined by

(
Lη g

)
(X, Y) = 2g(BX, Y), then Tr B is a constant.

3. Jacobi-Type Vector Fields on Compact Riemannian Manifolds

For Question 1, we prove the following.

Theorem 1. Every Jacobi-type vector field on a compact Riemannian manifold is a Killing vector field.

Proof. Let η be a Jacobi-type vector field on an n-dimensional compact Riemannian manifold (M, g).
Consider the Ricci operator Q defined by:

g(QX, Y) = Ric(X, Y), X, Y ∈ X(M),

where Ric is the Ricci tensor. Then, for a local orthonormal frame {e1, .., en} on M, we have:

QX =
n

∑
i=1

R(X, ei)ei, X ∈ X(M)

and consequently, Equation (2) gives:

n

∑
i=1

(∇ei B) ei +
n

∑
i=1

(∇ei ϕ) ei + Q(ξ) = 0. (3)

Furthermore, using Equation (1), we get:

R(X, Y)η = (∇XB)Y + (∇X ϕ)Y− (∇YB) X− (∇Y ϕ) X,
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which yields:

Ric(Y, η) = g

(
Y,

n

∑
i=1

(∇ei B)ei

)
− g

(
Y,

n

∑
i=1

(∇ei ϕ)ei

)
,

where we have applied Lemma 2 and the facts that B is symmetric and ϕ is skew-symmetric. The above
equation implies:

Q(η) =
n

∑
i=1

(∇ei B) ei −
n

∑
i=1

(∇ei ϕ) ei,

which together with Equation (3) gives:

n

∑
i=1

(∇ei B) ei = 0 and
n

∑
i=1

(∇ei ϕ)ei + Q(η) = 0. (4)

Since B is a symmetric operator, we can choose a local orthonormal frame {e1, . . . , en} on M that
diagonalizes B, and as ϕ is skew-symmetric, we have:

n

∑
i=1

g(Bei, ϕei) = 0. (5)

Recall that the divergence of a vector field X on M is given by (see, e.g., [9]):

div X =
n

∑
i=1
〈∇ei X, ei〉 . (6)

Now, by using Equations (1), (5), and (6), we see that the divergence of the vector field Bη satisfies:

div(Bη) = ‖B‖2 ,

where ‖B‖2 denotes the squared norm of B. Thus, after integrating the above equation over the
compact M, we get B = 0. Consequently, Equation (1) confirms that η is a Killing vector field.

Remark 1. Let M be a compact real hypersurface of a Kähler manifold with a unit normal vector field N.
In view of Theorem 1, we observe that the assumption “the characteristic vector field ξ = −JN is of the Jacobi
type” in the results of [10,11] is redundant.

4. Jacobi-Type Vector Fields on Non-Compact Riemannian Manifolds

On a compact Riemannian manifold, the notions of Jacobi-type vector fields and Killing vector
fields are equivalent according to Theorem 1, yet on non-compact Riemannian manifolds, they are
different in general (see the examples in Section 6). Therefore, it is an interesting question to seek
some conditions under which a Jacobi-type vector field is a Killing vector field on a non-compact
Riemannian manifold.

Note that if η is a Killing vector field on an n-dimensional Riemannian manifold M, then B = 0
in Equation (1). Thus, we have ϕη = ∇ηη. Hence, we obtain:

div(ϕη) = −‖ϕ‖2 − g

(
η,

n

∑
i=1

(
∇ei ϕ

)
ei

)
.

Using Equation (4) in the above equation shows that, for a Killing vector field η, we have:

div(ϕη) = Ric (η, η)− ‖ϕ‖2 .
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Moreover, if we define a smooth function f on M by f = 1
2 ‖η‖

2, we get∇ f = −ϕη, and thus, for
a Killing vector field η, the Laplacian ∆ f is given by:

∆ f = ‖ϕ‖2 − Ric (η, η) . (7)

A natural question is the following:

Question 3: “Does the function f = 1
2 ‖η‖

2 for a Jacobi-type vector field η on a Riemannian manifold
satisfying (7) make η a Killing vector field?”

The next theorem provides an answer to this question.

Theorem 2. Let η be a Jacobi-type vector field on a Riemannian manifold M. Then, η is a Killing vector field if
and only if the function f = 1

2 ‖η‖
2 satisfies:

∆ f ≤ ‖ϕ‖2 − Ric (η, η) .

Proof. Let η be a Jacobi-type vector field on an n-dimensional Riemannian manifold M. Then, using
Equation (1), the gradient ∇ f of f = 1

2 ‖η‖
2 is given by:

∇ f = Bη − ϕη. (8)

Now, using Equations (1) and (4), we compute:

div(Bη) = ‖B‖2 and div(ϕη) = −‖ϕ‖2 − g

(
η,

n

∑
i=1

(
∇ei ϕ

)
ei

)
. (9)

Thus, by using Equation (8), we conclude:

∆ f = ‖B‖2 + ‖ϕ‖2 + g

(
η,

n

∑
i=1

(∇ei ϕ) ei

)
. (10)

Applying Equation (2) and Lemma 2, we find:

Ric(η, η) = −g

(
η,

n

∑
i=1

(∇ei ϕ) ei

)
, (11)

which together with Equation (10) yields:

∆ f = ‖B‖2 + ‖ϕ‖2 − Ric(η, η).

Hence, if the inequality ∆ f ≤ ‖ϕ‖2 − Ric (η, η) holds, then the above equation implies B = 0,
that is η is a Killing vector field.

The converse is trivial as a Killing vector field is a Jacobi vector field and the function f
satisfies Equation (7).

Recall that the flow {ψt} of a vector field X ∈ X(M) on a Riemannian manifold M is called a
geodesic flow, if for each point p ∈ M, the curve σ(t) = ψt(p) is a geodesic on M passing through the
point p. As the local flow of a Killing vector field on a Riemannian manifold M consists of isometries
of M, it follows that a local flow of a Killing vector field is a geodesic flow, but the converse is not
true. For example, the Reeb vector field ζ of a proper trans-Sasakian manifold has as the local flow a
geodesic flow, yet ζ is not a Killing vector field (cf. [12]).

In the next theorem, we provide a very simple characterization for a Killing vector field to have
constant length via a Jacobi-type vector field on a Riemannian manifold.
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Theorem 3. Let η be a Jacobi-type vector field on a Riemannian manifold M with the flow of η a geodesic flow.
Then, η is a Killing vector field of constant length if and only if the Ricci curvature Ric (η, η) satisfies:

Ric (η, η) ≥ ‖ϕ‖2 .

Proof. Let η be a Jacobi-type vector field on an n-dimensional Riemannian manifold M. Since the local
flow of η is a geodesic flow, Equation (1) implies:

Bη + ϕη = 0. (12)

Now, using Equation (9), we conclude:

‖B‖2 − ‖ϕ‖2 − g

(
η,

n

∑
i=1

(∇ei ϕ) ei

)
= 0,

which upon using Equation (11) gives:

Ric (η, η) = ‖ϕ‖2 − ‖B‖2 .

Using the inequality Ric (η, η) ≥ ‖ϕ‖2 in the above equation, we get B = 0, that is η is a Killing
vector field. Moreover, Equation (12) gives ϕη = 0, and consequently, Equation (8) implies ∇ f = 0,
that is η has constant length.

Conversely, if η is a Killing vector field of constant length, then using B = 0 and Equation (1) in
X
(
||η||2

)
= 0 gives g(X, ϕη) = 0, X ∈ X(M). This gives ϕη = 0, which together with Equation (1)

confirms ∇ηη = 0, that is the local flow of η is a geodesic flow. As f is a constant, Equation (7) implies
the equality Ric (η, η) = ‖ϕ‖2.

Recall that a smooth function f on a Riemannian manifold M is said to be harmonic if ∆ f = 0 and
superharmonic if ∆ f ≤ 0. The Hessian operator A f of a smooth function f is a symmetric operator
defined by:

A f X = ∇X∇ f , X ∈ X(M),

and the Hessian of f , denoted by Hess( f ), is given by:

Hess( f )(X, Y) = g(A f X, Y), X, Y ∈ X(M).

Now, we prove the following characterization of a Killing vector field using a Jacobi-type vector
field on a Riemannian manifold.

Theorem 4. A Jacobi-type vector field η on a Riemannian manifold M is a Killing vector field of constant length
if and only if the function f = 1

2 ‖η‖
2 is superharmonic and the Hessian of f satisfies Hess( f )(η, η) ≤ 0.

Proof. Let η be a Jacobi-type vector field on a Riemannian manifold M. Suppose the function
f = 1

2 ‖η‖
2 satisfies:

Hess( f )(η, η) ≤ 0 and ∆ f ≤ 0. (13)

Using Equation (1), we have:
∇ηη = Bη + ϕη. (14)

After combining (14) with Equation (8), we get:

2Bη = ∇ f +∇ηη, 2ϕη = ∇ηη −∇ f . (15)
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Now, by taking the inner product in Equation (8) with η, we get η( f ) = g(Bη, η), which gives:

ηη( f ) = g
((
∇η B

)
η, η
)
+ 2g

(
Bη,∇ηη

)
. (16)

Furthermore, the first equation in Equation (15) implies:

2g
(

Bη,∇ηη
)
= ∇ηη( f ) +

∥∥∇ηη
∥∥2 .

Using the above equation in Equation (16) gives:

Hess( f )(η, η) = g
((
∇η B

)
η, η
)
+
∥∥∇ηη

∥∥2 . (17)

Note that Equation (2) implies
(
∇η B

)
η = −

(
∇η ϕ

)
η, and as ϕ is skew-symmetric, we obtain

g
((
∇η ϕ

)
η, η
)
= 0. Consequently, the above equation implies g

((
∇η B

)
η, η
)
= 0. Thus, Equation (17)

reduces to:
Hess( f )(η, η) =

∥∥∇ηη
∥∥2

and using the condition in Equation (13) forces the above equation to yield ∇ηη = 0.
Consequently, the first equation in Equation (15) gives ∇ f = 2Bη, and on account of Equation (9),
we conclude that ∆ f = 2 ‖B‖2.

Now, using the fact that the function f is superharmonic, we conclude B = 0. Hence, η is a
Killing vector field. Moreover, using ∇ηη = 0 and B = 0 in Equation (15), we find ∇ f = 0 on the
connected M, which proves that f is a constant. Thus, η is a Killing vector field of constant length.

Conversely, if η is a Killing vector field of constant length, then obviously, η is a Jacobi-type vector
field that satisfies Hess( f )(η, η) = 0 and ∆ f = 0.

5. Jacobi-Type Vector Fields on Euclidean Spaces

A vector field X on a Riemannian manifold (M, g) is called conformal if it satisfies (cf. e.g., [7,13]):

LX g = 2ρg (18)

for some smooth function ρ : M→ R. The conformal vector field X is called non-trivial if the function
ρ in (18) is a non-zero function. Further, a conformal vector field X is called a gradient conformal
vector field if X is the gradient of some smooth function. Non-Killing conformal vector fields have
been used, e.g., in [2,3,5,14–18] to characterize spheres among compact Riemannian manifolds.

We already known from Section 2 that the position vector field ξ of the Euclidean n-space Rn

is a Jacobi-type vector field satisfying Lξ g = 2g. Hence, ξ is conformal. In fact, it is also a gradient
conformal vector field with ξ = ∇ f with f = 1

2 ‖ξ‖
2. Furthermore, it is known that if ψ denotes the

position vector field on the complex Euclidean n-space Cn, then ζ = ψ + Jψ is of the Jacobi type, which
is a non-gradient conformal vector field on Cn, where J denotes the complex structure on Cn.

From these properties of the vector fields ζ, we ask the next question.

Question 4: “Is a Jacobi-type vector field on a complete Riemannian manifold that is also a conformal vector
field characterized as a Euclidean space?”

The main purpose of this section is to study this question. First, we show that a complete
Riemannian manifold admits a Jacobi-type vector field that is also a non-trivial gradient conformal
vector field if and only if it is isometric to the Euclidean space Rn. Then, we prove that a
complete Riemannian manifold admits a Jacobi-type vector field that is also a conformal vector
field (not necessarily a gradient conformal vector field) that annihilates the operator ϕ if and only if it
is isometric to the Euclidean space Rn.

To prove these results mentioned above, we need the following result from [19] (cf. Theorem 1).
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Theorem 5. Let M be a complete Riemannian manifold. If there exists a smooth function f : M→ R satisfying
Hess( f ) = cg for some non-zero constant c, then M is isometric to Rn.

Now, we prove the following result, which is an easy application of Theorem 5.

Theorem 6. Let M be a complete Riemannian manifold. Then, M admits a Jacobi-type vector field that is also a
non-trivial gradient conformal vector field if and only if M is isometric to a Euclidean space.

Proof. Clearly, if M is isometric to the Euclidean n-space Rn, then the position vector field ξ is a
Jacobi-type vector field, which is also a non-trivial gradient conformal vector field.

Conversely, suppose that the complete Riemannian manifold M admits a Jacobi-type vector field
η that is also a non-trivial gradient conformal vector field. Then, as η is closed, we have that ϕ = 0 and
B = ρI in Equation (1) and that the smooth function ρ is a constant by Lemma 2. Moreover, ξ being
a gradient conformal vector field, there is a smooth function f : M → R that satisfies η = ∇ f , and
consequently, Equation (1) takes the form:

∇X∇ f = ρX, X ∈ X(M),

where the constant ρ 6= 0 is guaranteed by the fact that η is a non-trivial gradient conformal vector
field. The above equation implies that Hess( f ) = ρg with non-zero constant ρ. Consequently, by
Theorem 5, we conclude that M is isometric to a Euclidean space.

Finally, we prove the following.

Theorem 7. Let M be a complete Riemannian manifold. Then, M admits a Jacobi-type vector field η, which is
also a non-trivial conformal vector field that annihilates the operator ϕ (associated with η) if and only if M is
isometric to a Euclidean space.

Proof. Clearly, if M is isometric to the Euclidean n-space Rn, then its position vector field ξ is a
Jacobi-type vector field with ϕ = 0, which is also a non-trivial conformal vector field.

Conversely, if the complete Riemannian manifold (M, g) admits a Jacobi-type vector field η that
is also a non-trivial conformal vector field with ϕ(η) = 0, then as η is a conformal vector field, we have
B = ρI in Equation (1), which thus takes the form:

∇Xη = ρX + ϕX, X ∈ X(M) (19)

and the smooth function ρ is a constant by Lemma 2.
Define a smooth function f : M → R by f = 1

2 ‖ξ‖
2, whose gradient is easily found using

Equation (19), as:
∇ f = ρη − ϕ(η) = ρη.

Then, after taking the covariant derivative in the above equation with respect to X ∈ X(M) and
using Equation (19), we conclude that:

∇X∇ f = ρ2X + ρϕX.

Thus, we get:
Hess( f )(X, X) = ρ2g(X, X).

Now, using polarization in the above equation, we get Hess( f ) = ρ2g. Note that the constant ρ

has to be non-zero as the vector field η is a non-trivial conformal vector field. Hence, by Theorem 5,
we conclude that M is isometric to a Euclidean space.
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Remark 2. It was proven in [20] that a complete Kähler n-manifold (M, J, g) is isometric to a complex Euclidean
n-space Cn if and only if (M, J, g) admits a “special kind” of non-trivial Jacobi-type vector field.

6. Examples of Non-Killing Jacobi-Type Vector Fields

In this section, we provide some examples of Jacobi-type vector fields that are non-trivial
conformal vector fields.

Example 1. Let x1, · · · , xn be Euclidean coordinates of the Euclidean n-space (Rn, 〈 , 〉). Consider the vector field:

ξ = ψ−
〈

ψ,
∂

∂xi

〉
∂

∂xj +

〈
ψ,

∂

∂xj

〉
∂

∂xi ,

where ψ is the position vector field of Rn and i, j are two fixed indices with i 6= j. If we denote by∇ the covariant
derivative operator with respect to the Euclidean connection on (Rn, 〈 , 〉), then it is easy to verify that:

∇Xξ = X + ϕ(X), X ∈ X(Rn),

where:
ϕ(X) = −(Xxi)

∂

∂xj + (Xxj)
∂

∂xi ,

is skew symmetric. Hence:
Lξ 〈 , 〉 = 2 〈 , 〉 ,

that is, ξ is a conformal vector field, which is non-closed. Moreover, we have:

∇X∇Yξ −∇∇XYξ = −Hess(xi)(X, X)
∂

∂xj + Hess(xj)(X, X)
∂

∂xi ,

where Hess( f ) is the Hessian of f . However, the Hessians Hess(xi) and Hess(xj) of the coordinate functions
xi and xj are zero. Therefore, the above equation confirms that ξ is a Jacobi-type vector field on (Rn, 〈 , 〉).
Therefore, ξ is a Jacobi-type vector field, which is a non-trivial conformal vector field. Hence, ξ is a non-Killing
vector field on Rn.

Example 2. Let M′(ϕ′, ξ ′, η′, g′) be a (2n + 1)-dimensional Sasakian manifold (cf. [21]). Then:

∇′Xξ ′ = −ϕ′X,
(
∇′ϕ′

)
(X, Y) = g′(X, Y)ξ ′ − η′(Y)X, X, Y ∈ X(M′), (20)

where ∇′ denotes the covariant derivative operator with respect to the Riemannian connection on M′. Using the
above equation, we conclude:

R′(X, Y)ξ ′ = η′(Y)X− η′(X)Y, X, Y ∈ X(M′),

which upon taking the inner product with Z ∈ X(M′) gives:

R′′(X, Y; ξ ′, Z) = η′(Y)g′(X, Z)− η′(X)g′(Y, Z),

that is,
R′(ξ ′, Z)X = g′(X, Z)ξ ′ − η′(X)Z, X, Z ∈ X(M′). (21)

Now, let M = (0, ∞)×t M′ be the warped product with the warping function the coordinate function t on
the open interval (0, ∞) and with the warped product metric g = dt2 + t2g′. We shall show that the vector field
ξ ∈ X(M) defined by:

ξ = t
∂

∂t
− ξ ′
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is a Jacobi-type vector field, as well as a non-trivial conformal vector field, which is non-Killing on M.
We denote by∇ the covariant derivative operator with respect to the Riemannian connection on the Riemannian

manifold (M, g), and let E = h ∂
∂t + V, where V ∈ X(M′) is a vector field on M and h : (0, ∞)→ R is a

smooth function. Then, using Proposition 35 in [22], an easy computation gives:

∇Eξ =

(
h

∂

∂t
+ V

)
+ ϕ′(V) + tη′(V)

∂

∂t
− h

t
ξ ′ = E + ϕ(E), (22)

where ϕ is a (1, 1)-tensor field on M defined by:

ϕ(E) = ϕ′(V) + tη′(V)
∂

∂t
− h

t
ξ ′.

It is easy to verify that ϕ is a skew-symmetric tensor field. Furthermore, we may compute that:

∇EE =
(
hh′ − tg′(V, V)

) ∂

∂t
+∇′VV +

2h
t

V. (23)

Now, using Equation (22), we conclude:

∇E∇Eξ =∇EE +
2h
t

ϕ′(V) +∇′V ϕ′(V) + η′(V)V − hh′

t
ξ ′

+
(
2hη′(V) + tV(η′(V))

) ∂

∂t
,

(24)

which upon using Equations (22) and (23), gives:

∇∇EEξ =∇EE +
2h
t

ϕ′(V) + ϕ′
(
∇′VV

)
− hh′

t
ξ ′ + g′(V, V)ξ ′

+
(
2hη′(V) + tη′

(
∇′VV

)
)
) ∂

∂t
.

(25)

Using Proposition 40 in [22] (note the difference in sign convention for the curvature tensor in our work
and [22]), first we get:

R(ξ, E)E = −R(ξ ′, V)V,

where R is the curvature tensor field for the Riemannian manifold (M, g), and then, using (5) of Proposition 40
in [22] or by a direct calculation, we find:

R(ξ, E)E = −R′(ξ ′, V)V + g′(V, V)ξ ′ − η′(V)V. (26)

Hence, from Equations (20), (21), and (24)–(26), we may conclude:

∇E∇Eξ −∇∇EEξ + R(ξ, E)E = 0.

Hence, ξ is a Jacobi-type vector field on the Riemannian manifold M. Furthermore, using Equation (22),
it is easy to verify that ξ is a non-trivial conformal vector field, which is non-Killing on the Riemannian
manifold M.
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