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Abstract 
The influence of different kinds of dynamic forces on multistory structures is notable. This 

paper studies the effect of harmonic and impulsive loading and free-vibration on a three-

story shear frame structure.  A persistent pulse loading was considered at the upper level of 

the structure, and the resulted mathematical model of the time-dependent multi-level 

displacements were derived. For harmonic force, normalized response amplitudes under the 

applied harmonic loading is plotted against the frequency ratio 𝜔/𝜔1. These frequency-

response curves show three resonance conditions at 𝜔=𝜔1, 𝜔=𝜔2 and 𝜔=𝜔3; at these 

exciting frequencies, the steady-state response is unbounded. At other exciting frequencies, 

the vibration is finite and could be calculated from the derived equations. When the structure 

is excited with harmonic loading over a range of frequencies, the structure experiences 

resonance at some frequency. Resonance occurs when the frequency of the excitation is equal 

to the natural frequency of the structure. At the resonant frequency, the structure experiences 

its largest response as compared to any other frequency of loading. For rectangular pulse 

force, the time-history of the multi-level displacements were presented.  The results indicate 

that the extreme displacement occurs at the top-level.  Additionally, when the persistent pulse 

loading had been expired, the maximum top-level displacement response was obtained. As 

the impact of the preliminary conditions is essential, the final response of the structure to the 

pulse loading is not being “steady-state. For free vibration, floor displacements versus t /T1 

was plotted and observed the relative contributions of the three vibration modes to the 

response that was produced by the given initial displacement. Although all three modes 

contribute to the response, the dominant response is due to the first mode since the shape of 

the given initial displacement is similar to the configuration of the first mode. 
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INTRODUCTION  

Shear frames are used in all the major 

reinforced concrete buildings and 

structures in all over the world. These 

frames are subjected to various static and 

dynamic loads. The most common static 

load is the gravity load identified as dead 

and live loads. Among the dynamic loads, 

we have high probable wind and wave 

loads and less likely earthquake, impulsive 

and harmonic loads.  The harmonic 

loading is an external subjection with a 

sinusoidal behavior and a specified 

regularity of occurrence. Due to the 

probability of resonance, the concern of 

structural system response to harmonic 

loading is of substantial importance.  The 

resonance Phenomena is quite likely to 

develop when the natural frequency of the 

structural system is approaching that for 

the external loading conditions.  This 

phenomena is accompanied by infinite 

movements of the structure, which cause 

plastic deformations and also may lead 

catastrophic devastation.         
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Substantial research exists on the response 

of shear frames and buildings subjected to 

wind, wave and earthquake loads. Tuken 

[7] proposed an analytical procedure to 

estimate the lateral displacement of a 

mixed (frame + shear wall) structure 

subject to earthquake forces. The 

analytical procedure was then applied to a 

3-D building with different heights. The 

analytical lateral displacements matched 

reasonably well with SAP2000 results. 

Tuken and Siddiqui [8] proposed a simple-

to-apply analytical method based on “dual 

system” concept to determine the amount 

of shear walls which can satisfy the 

strength, stiffness and ductility 

requirements imposed by the seismic 

codes on RC moment resisting frame 

buildings. The proposed methodology was 

then applied to a 10-story RC building 

containing shear walls. It was shown that 

the amount of shear walls which is enough 

to satisfy the strength requirements also 

fulfills the stiffness criteria (i.e. story drift 

limitation) required by the seismic codes. 

Dahish et al. [9] studied the influence of 

shear walls in controlling the lateral 

response of the RC frame building by 

varying the shear wall thicknesses, height, 

configuration and opening locations. The 

seismic load was considered from one 

direction only while studying the effect of 

the first two parameters (i.e., thickness and 

height) as the building and shear wall 

arrangements were symmetric along the 

two orthogonal directions. On the other 

hand; since the opening location and the 

shear wall configuration were not 

symmetric in the two orthogonal 

directions, the seismic load was considered 

from the two directions separately in 

studying these two parameters. As a result, 

authors obtained the optimum amount and 

the most appropriate arrangement of shear 

walls for a given RC frame building 

against a specified earthquake loading. 

Tuken and Siddiqui [10] proposed a 

simple-to-apply analytical method to 

determine the number of shear walls 

necessary to make reinforced concrete 

buildings seismic-resistant against 

moderate to severe earthquakes. The 

method is based on the following design 

strategy: (i) The total design base shear 

must be resisted by shear walls; (ii) equal 

amounts of shear walls must be placed in 

both orthogonal directions of the structure; 

and (iii) the moment resisting frame 

elements, which are beams and columns, 

must independently be able to resist 25% 

of the total design base shear. In this 

design methodology, the optimum amount 

of shear walls in such a system was 

obtained by equating the total design base 

shear to the total shear resistance of all 

shear walls in one direction. Since the 

seismic load may come from any direction, 

an equal amount of shear walls should be 

provided in both orthogonal directions. A 

particular method is also presented to 

check the stiffness requirement of any 

seismic code for the prescribed amount of 

shear walls. The complete analytical 

procedure was implemented on a ten-story 

RC building. Tuken and Siddiqui [11] 

proposed an analytical method based on 

the dual-system concept and the Saudi 

Building Code (SBC 301, SBC 304) 

provisions to determine the optimum 

quantity of shear walls. For displacement 

and curvature ductility of RC shear wall-

moment resisting frame buildings, they 

also outlined a detailed plastic analysis 

based on the assumption that plastic hinges 

form at the base of the shear walls. The 

proposed methodology was then applied to 

a 10-story RC building. Authors showed 

that the optimum amount of shear walls, 

which is enough to satisfy the strength 

requirements, also fulfills the stiffness 

requirement of SBC and the ductility 

requirements imposed by SBC can easily 

be satisfied by using the same amount of 

shear walls. Tuken et al. [12] presented a 

detailed procedure for reliability 

assessment of RC shear wall-frame 

building subjected to earthquake loading 

against serviceability limit state.  Monte 
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Carlo simulation was used for the 

reliability assessment. The procedure was 

then implemented on a 10-story RC 

building to demonstrate that the shear 

walls improve the reliability substantially. 

The annual and lifetime failure 

probabilities of the studied building were 

estimated by employing the information of 

the annual probability of earthquake 

occurrence and the design life of the 

building. A risk-based cost assessment 

methodology that relates the total cost of 

the building with both the target reliability 

and the structural lifetime failure 

probability was then presented. The 

structural failure probability by 

considering human errors was also studied. 

It was shown that concrete strength and 

human error in the estimation of total load 

changes the reliability keenly. Elhelloty 

[2] carried out the modal and transient 

analysis to study the effect of lateral loads 

resisting systems on the response of 

buildings subjected to dynamic loads. In 

his study, two multi-story (with 3- and 5-

levels) steel structures were studied for the 

probability of resonance, mode shapes and 

internal stresses.  Two (with or without) 

bracing systems (shear walls of steel and 

laminated composite plates) were 

considered. A comparative study is 

conducted to evaluate the effect of lateral 

loads resisting systems on the performance 

of buildings subjected to dynamic loads 

using the finite element system ANSYS16. 

Jayatilake et al. [3] examined three-

dimensional nonlinear dynamic responses 

of typical tall RC buildings (with 20-

stories) with and without setbacks under 

blast loading.  This structure had been 

designed for dead, live and wind loads 

only.  The focus of the investigation was 

on the effects of lateral impulsive loading, 

considering the maximum displacements, 

inertia forces, and other internal loadings.  

Additionally, the prospect of progressive 

collapse following the formation of plastic 

centers were reported.  A commercial 3-D 

finite element-based software was utilized 

to simulate the time-history of the tall 

building. The results indicates that 

structures with setbacks (to guard the 

setbacks level and the below) exhibits an 

improved structural performance (with 

regard to maximum drifts) compared to 

that without setbacks.  Moreover, the 

report established that rate of change of 

angular velocities are directly correlated to 

the phases of the angular modes. Abrupt 

changes in moments and shears are 

experienced near the levels of the setbacks. 

Typical twenty story tall buildings with 

shear walls and frames that are designed 

for only normal loads perform reasonably 

well, without catastrophic collapse, when 

subjected to a blast that is equivalent to 

500 kg TNT at a standoff distance of 10 m. 

Patel et al. [4] reviewed the work carried 

out in the past few years on blast effects on 

structures. A blast explosion inside or 

surrounding the structure can cause severe 

damage to the structural and non-structural 

members. The structure can be made blast 

resistant but not a blast-proof in reality and 

also it is not an economical option. The 

objective of this study is to shed light on 

blast-resistant building design theories, the 

enhancement of building security against 

the effects of explosives in the structural 

design process and the design techniques 

that should be carried out. The paper 

includes introduction and detail 

explanation on blast wave phenomenon as 

well as a review of various research on 

blast load and their effect on the structure 

studied in the past. 

 

The above review shows that there is 

substantial research available on the 

response of shear frames and buildings 

subjected to wind, wave and earthquake 

loads, but the studies on shear frames and 

structures subjected to harmonic and 

impulsive loads and free vibration are 

limited. Tuken [1] analytically formulated 

the response of a 3-story shear frame 

subjected to impulsive loading. He applied 

a rectangular pulse force at the top floor 
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and obtained the equations for the floor 

displacements as functions of time. Then 

the floor displacements under the applied 

rectangular pulse force is plotted against 

time. He observed that the displacement 

values at the top floor are maximum where 

the impulsive load is applied, and the peak 

value of the response at the top floor is 

obtained at the end of the rectangular pulse 

force duration. Baig et al. [5] adopted the 

harmonic response technique on ANSYS 

platform for a 15-story structure bare 

frame and evaluated the displacements of 

the structure at various floor levels by 

employing mode superposition method. 

Peak displacement is then visualized from 

the frequency v/s displacement graph 

obtained from mode superposition of 

reduced modes at forcing frequencies. 

Saatcioglu et al. [13] investigated 10-story 

moment resisting frames with or without 

shear walls subjected to blast loads 

consisting of different charge-weight and 

standoff distance combinations. The 

results are presented with regard to 

ductility and drift demands. They show 

better performance in seismic-resistant 

buildings subjected to blast loads, 

pertaining the progressive collapse 

potential, overall structural response and 

local column performance. Khan et al. 

[14] carried out a reliability assessment of 

Tension Leg Platform (TLP) tethers 

against maximum tension (i.e., Tension 

exceeding yield) under combined action of 

extreme wave and impulsive forces. With 

this object in mind, a non-linear dynamic 

analysis of TLP was done in the time 

domain. By employing the Von-Mises 

failure theory, a limit state function for 

maximum tension was derived. Reliability 

assessment of the TLP tethers was then 

performed utilizing the established 

function of limit state together with the 

time-history responses to various dynamic 

excitations (namely: half-triangular, 

triangular and sinusoidal).  The tethers 

were designed by finding the most optimal 

condition (by solution of the bounded 

optimization issue). In addition to that, a 

sensitivity analysis was conducted in order 

to investigate the impact of different 

arbitrary parameters on the safety of 

tethers. A parametric study was done to 

observe the effects of variable 

submergence, material yield strength and 

angle of impact on the tether reliability. In 

order to show the importance of quality 

control in the various design parameters, 

the effect of uncertainty on the overall 

tether reliability was also discussed. Andac 

Lulec [15] predicted the response of shear-

critical structures accurately under quasi-

static conditions by utilizing the VecTor 

family of nonlinear finite element 

programs and using a macro-element 

smeared rotating crack approach. For this 

purpose, VecTor3 and VecTor6 were 

adapted for the blast and impact analyses 

of reinforced and prestressed concrete 

structures in 3-D, respectively. The 

experimentally observed results were close 

to those obtained from the simulations. 

Moreover, a semi-analytical expression 

was derived for the prediction of 

perforation velocity from missile impact. 

This expression, which is based on the 

Modified Compression Field Theory, 

considers the influence of longitudinal and 

shear reinforcement differently from the 

other commonly used empirical formulae. 

The derived expression was then validated 

with many missile impact data available in 

the literature, and satisfactory accuracy 

was observed.  

 

The above computational researches on 

harmonic and impulsive loads are 

primarily based on advanced numerical 

(e.g., finite element or boundary element) 

softwares. Simple analytical methods were 

used in very limited studies for obtaining 

the response of shear frames or buildings 

subjected to harmonic and impulsive 

loads. In the present study, the effect of 

harmonic and impulsive load and also free 

vibration on a 3-story shear frame was 

studied using a simple analytical approach. 
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The shear frame consists of beams and 

columns rigidly connected at the ends. The 

columns which are fixed at the base 

primarily provide the lateral stiffness. For 

dynamic analysis, the entire shear frame 

was modeled as Multi Degree of Freedom 

(MDOF) system having rigid beams and 

lumped masses of each story placed at the 

middle of the beams. 

 

ANALYTICAL FORMULATION 

In this section, the analytical formulation 

of a 3-story shear frame is presented for 

obtaining its response against harmonic 

loading. The dimensions, floor masses and 

story stiffnesses of this frame are shown in 

Fig. 1. This shear frame is subjected to a 

harmonic force p(t)=p0.sin𝜔t at the top 

floor. The equations for the floor 

displacements as functions of time is 

derived and the normalized response 

amplitudes are plotted against the 

frequency ratio 𝜔/𝜔1. The same structure 

is also subjected to a rectangular pulse 

force at the top floor as shown in Fig. 2. 

The pulse has an amplitude 𝑝0 = 900 kN 

and duration 𝑡𝑑  = 𝑇1/2 where 𝑇1 is the 

fundamental vibration period of the 

system. The equations for the floor 

displacements as functions of time is 

derived and the floor displacements under 

rectangular impulsive loading is plotted 

against time. The free vibration response 

of the same undamped system was also 

determined if the structure is displaced as 

shown in Fig. 3 and then released. Floor 

displacements versus t/T1 was plotted and 

the relative contributions of the three 

vibration modes to the response that was 

produced by the given initial displacement 

was observed.

 

 
Fig. 1: Schematic view of the 3-story shear frame 

 

 

 

Fig. 2: The impulsive load applied to the top floor 
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Fig. 3: Given initial displacement for free vibration 

 

Mass Matrix  

Since the beams are rigid in flexure and axial deformation is neglected in columns, three 

DOFs associated with each story represent the properties of this three-story shear frame. The 

corresponding story masses are: 

𝑚1 = 𝑚;     𝑚2 =  𝑚;     𝑚3 =
𝑚

2
 

𝐦 = 𝑚[
1 0 0
0 1 0
0 0 0.5

]       

Here, 𝑚 = 45 t = 45,000 kg (as shown in Fig. 1) 

 

Stiffness Matrix 

The stiffness coefficients 𝑘𝑖1, 𝑘𝑖2 and 𝑘𝑖3 were obtained by applying unit displacement at 

each degree of freedom respectively as shown in Fig. 4. Keeping all the stiffness coefficients 

in the form of a matrix, we obtain the stiffness matrix as given below: 

𝐤 = 𝑘 [
2 −1 0
−1 2 −1
0 −1 1

] 

where,  

𝑘 = 2 (
12𝐸𝐼

ℎ3
) =

24𝐸𝐼

ℎ3
= 57,000 kN/m; 𝐸 = modulus of elasticity of concrete; 𝐼 = moment of 

inertia of each column and ℎ = story height. 

 

The Equation of Motion for Harmonic and Impulsive Loading and Free Vibration 

Having derived the mass matrix and stiffness matrix, one can write the governing equation of 

motion for the studied shear frame under harmonic loading applied at the top floor as follows: 

𝑚[
1 0 0
0 1 0
0 0 0.5

] {
𝑢1̈
𝑢2̈
𝑢3̈

} + 𝑘 [
2 −1 0
−1 2 −1
0 −1 1

] {

𝑢1
𝑢2
𝑢3
} = {

0
0
𝑝0

} sin𝜔𝑡 

 

The governing equation of motion for the same structure under rectangular pulse force 

applied at the top floor can also be obtained as follows: 

𝑚[
1 0 0
0 1 0
0 0 0.5

] {
𝑢1̈
𝑢2̈
𝑢3̈

} + 𝑘 [
2 −1 0
−1 2 −1
0 −1 1

] {

𝑢1
𝑢2
𝑢3
} = {

0
0
𝑝0

}   where   𝑝0 = 900 kN 
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The governing equation of motion for the same structure can also be easily written for free 

vibration under the given initial displacement as below: 

𝑚[
1 0 0
0 1 0
0 0 0.5

] {
𝑢1̈
𝑢2̈
𝑢3̈

} + 𝑘 [
2 −1 0
−1 2 −1
0 −1 1

] {

𝑢1
𝑢2
𝑢3
} = {

0
0
0
} 

 

 

  
 

 

Fig. 4: Determination of stiffness coefficients 

 

 

RESPONSE ANALYSIS 

 

Natural Frequencies and Mode Shapes  
The natural frequencies and mode shapes can be determined from: 

𝐤 − 𝜔𝟐𝐦 =
24𝐸𝐼

ℎ3
[
2 − 𝜆 −1 0
−1 2 − 𝜆 −1
0 −1 1 − 0.5𝜆

]   where  𝜆 =
𝑚ℎ3

24𝐸𝐼
𝜔𝟐 

 

det [𝐤 − 𝜔𝟐𝐦] = 0 gives the frequency equation as follows 

 

𝜆3 − 6𝜆2 + 9𝜆 − 2 = 0 
 

The solution of this 3rd-degree frequency equation gives 

𝜆1 = 2 − √3 = 0.2679, 𝜆2 = 2   𝑎𝑛𝑑   𝜆3 = 2 + √3 = 3.7321 
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The corresponding natural frequencies are 

𝜔1 = 2.5359√
𝐸𝐼

𝑚ℎ3
;  𝜔2 = 6.9282√

𝐸𝐼

𝑚ℎ3
;  𝜔3 = 9.4641√

𝐸𝐼

𝑚ℎ3
 

 

And the mode shapes are as follows: 

∅1 = {
0.5
0.866
1

}       ∅2 = {
−1
0
1
}       ∅3 = {

0.5
−0.866
1

}       

 

Determination of Response for Harmonic and Impulsive Loading and Free Vibration  

i. The response of harmonic loading 

The response of the shear frame structure subjected to harmonic load is obtained following 

the procedure presented in Chopra [6]. 

 

The steady-state response is assumed as 

{

𝑢1(𝑡)
𝑢2(𝑡)
𝑢3(𝑡)

} = {

𝑢10
𝑢20
𝑢30

} sin𝜔𝑡 

 

Where 

{

𝑢10
𝑢20
𝑢30

} = [𝐤 − 𝜔𝟐𝐦]−𝟏 {
0
0
𝑝0

} =
1

det[𝐤−𝜔𝟐𝐦]
adj [𝐤 − 𝜔𝟐𝐦] {

0
0
𝑝0

} 

 

In which, 

det[𝒌 − 𝜔𝟐𝒎] =  𝑚𝟏𝑚𝟐𝑚𝟑( 𝜔1
2  −  𝜔2)( 𝜔2

2  −  𝜔2)( 𝜔3
2  −  𝜔2)                 

 

                          = 
𝑚3

2
( 1 − 

𝜔2

𝜔1
2) ( 1 − 

𝜔2

𝜔2
2) ( 1 −  

𝜔2

𝜔3
2)𝜔1

2𝜔2
2𝜔3

2 

                           

                          = 𝑘3 ( 1 − 
𝜔2

𝜔1
2) ( 1 − 

𝜔2

𝜔2
2) ( 1 −  

𝜔2

𝜔3
2) 

 
And 

adj [𝐤 − 𝜔𝟐𝐦] {
0
0
𝑝0

} = k2 𝑝0  

{
 
 

 
 1

2(1 − 
𝜔2

𝜔2
2)

4 (1 − 
𝜔2

𝜔2
2) − 1

}
 
 

 
 

 

Therefore, 

{

𝑢10
𝑢20
𝑢30

} =  
𝑝0
𝑘

1

(1 − 
𝜔2

𝜔1
2)(1 − 

𝜔2

𝜔2
2)(1 − 

𝜔2

𝜔3
2)

{
 
 

 
 

1

2(1 − 
𝜔2

𝜔2
2)

4 (1 − 
𝜔2

𝜔2
2) − 1}
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Finally, the floor displacements can be obtained by the following equations 

{

𝑢1(𝑡)
𝑢2(𝑡)
𝑢3(𝑡)

} =  
𝑝0
𝑘

1

(1 − 
𝜔2

𝜔1
2)(1 − 

𝜔2

𝜔2
2)(1 − 

𝜔2

𝜔3
2)

{
 
 

 
 

1

2(1 − 
𝜔2

𝜔2
2)

4 (1 − 
𝜔2

𝜔2
2) − 1}

 
 

 
 

sin𝜔𝑡 

 

On the other hand, defining  

𝐶𝑛 =
1

(1 − 
𝜔2

𝜔𝑛2
)
   

 

Normalized response amplitudes can be expressed as follows 

 
𝑢10
𝑝0/𝑘

= 𝐶1𝐶2𝐶3 

 
𝑢20
𝑝0/𝑘

= 2𝐶1𝐶3 

 
𝑢30
𝑝0/𝑘

= 𝐶1𝐶2𝐶3( 
4

𝐶2
2 − 1) 

 

ii. The response of impulsive loading 

The response of the same structure subjected to an impulsive load is also obtained following 

the procedure presented in Chopra [6]. 

 

Generalized modal masses and stiffnesses 

 

𝑀𝑛1 = ∅𝟏
𝑻.𝒎. ∅𝟏 = 67500 kg 

 

𝑀𝑛2 = ∅𝟐
𝑻.𝒎. ∅𝟐 = 67500 kg 

 

𝑀𝑛3 = ∅𝟑
𝑻.𝒎. ∅𝟑 = 67500 kg 

 

𝐾𝑛1 = ∅𝟏
𝑻. 𝒌. ∅𝟏 = 22909.66 kN/m 

 

𝐾𝑛2 = ∅𝟐
𝑻. 𝒌. ∅𝟐 = 171000 kN/m 

 

𝐾𝑛3 = ∅𝟑
𝑻. 𝒌. ∅𝟑 = 319090.34 kN/m 

 

Generalized modal forces (constants) 

 

𝑃10 = ∅1
𝑇 {
0
0
𝑃0

} = 900 kN 
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𝑃20 = ∅2
𝑇 {
0
0
𝑃0

} = 900 kN 

𝑃30 = ∅3
𝑇 {
0
0
𝑃0

} = 900 kN 

 

Duration of rectangular pulse 

 

𝑇1 =
2𝜋

𝑤1
= 0.3411 s 

and the rectangular pulse force duration at the third floor is,  td=T1/2=0.1705 s 

𝑇2 =
2𝜋

𝑤2
= 0.1248 s   𝑎𝑛𝑑   𝑇3 =

2𝜋

𝑤3
= 0.0914 s 

 

Determination of lateral displacements 

 

𝑄1 =
𝑃10
𝐾𝑛1

= 3.9285 cm   and   𝑅1 =
𝑃10
𝐾𝑛1

2 𝑠𝑖𝑛 (
𝜋𝑡𝑑
𝑇1
) = 7.8569 cm 

 

𝑄2 =
𝑃20
𝐾𝑛2

= 0.5263 cm   and   𝑅2 =
𝑃20
𝐾𝑛2

2 sin (
𝜋𝑡𝑑
𝑇2
) = −0.9608 cm 

 

𝑄3 =
𝑃30
𝐾𝑛3

= 0.2821 cm   and   𝑅3 =
𝑃30
𝐾𝑛3

2 sin (
𝜋𝑡𝑑
𝑇3
) = −0.2305 cm 

 

𝑞1(𝑡) =

{
 

 𝑄1 (1 − cos (
2𝜋𝑡

𝑇1
))     if    0 ≤ 𝑡 ≤ 𝑡𝑑

𝑅1 sin [2𝜋 (
𝑡

𝑇1
−
1

2

𝑡𝑑
𝑇1
)]     if   𝑡 > 𝑡𝑑

 

 

𝑞2(𝑡) =

{
 

 𝑄2 (1 − cos (
2𝜋𝑡

𝑇2
))     if    0 ≤ 𝑡 ≤ 𝑡𝑑

𝑅2 sin [2𝜋 (
𝑡

𝑇2
−
1

2

𝑡𝑑
𝑇2
)]     if   𝑡 > 𝑡𝑑

 

 

𝑞3(𝑡) =

{
 

 𝑄3 (1 − cos (
2𝜋𝑡

𝑇3
))     if    0 ≤ 𝑡 ≤ 𝑡𝑑

𝑅3 sin [2𝜋 (
𝑡

𝑇3
−
1

2

𝑡𝑑
𝑇3
)]     if   𝑡 > 𝑡𝑑

 

 

Substituting ϕn and qn(t) in the following equation gives the lateral displacements u(t). 

 

𝑢(𝑡) = ∑𝑢𝑛

𝑁

𝑛=1

(𝑡) = ∑∅𝑛𝑞𝑛

𝑁

𝑛=1

(𝑡) = ∅1𝑞1(𝑡) + ∅2𝑞2(𝑡) + ∅3𝑞3(𝑡) 
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⇒ 𝑢(𝑡) = {
0.5
0.866
1

}

{
 
 

 
 

{
 

 𝑄1 (1 − cos (
2𝜋𝑡

𝑇1
))     if    0 ≤ 𝑡 ≤ 𝑡𝑑

𝑅1 sin [2𝜋 (
𝑡

𝑇1
−
1

2

𝑡𝑑
𝑇1
)]     if   𝑡 > 𝑡𝑑

}
 
 

 
 

+ {
−1
0
1
}

{
 
 

 
 

{
 

 𝑄2 (1 − cos (
2𝜋𝑡

𝑇2
))     if    0 ≤ 𝑡 ≤ 𝑡𝑑

𝑅2 sin [2𝜋 (
𝑡

𝑇2
−
1

2

𝑡𝑑
𝑇2
)]     if   𝑡 > 𝑡𝑑

}
 
 

 
 

+ {
0.5

−0.866
1

}

{
 
 

 
 

{
 

 𝑄3 (1 − cos (
2𝜋𝑡

𝑇3
))     if    0 ≤ 𝑡 ≤ 𝑡𝑑

𝑅3 sin [2𝜋 (
𝑡

𝑇3
−
1

2

𝑡𝑑
𝑇3
)]     if   𝑡 > 𝑡𝑑

}
 
 

 
 

 

 

 

iii. The response of free vibration 

 

The free vibration response of the same system to the given initial displacement is obtained 

from 

𝑢(𝑡) = ∑∅𝑛

3

𝑛=1

[𝑞𝑛(0) cos𝜔𝑛𝑡 +
�̇�𝑛(0)

𝜔𝑛
sin𝜔𝑛𝑡] 

where 

𝑞𝑛(0) =
∅𝑛
𝑇 . 𝑚. 𝑢(0)

∅𝑛𝑇 . 𝑚. ∅𝑛
   𝑎𝑛𝑑   �̇�𝑛(0) =

∅𝑛
𝑇 . 𝑚. �̇�(0)

∅𝑛𝑇 . 𝑚. ∅𝑛
 

 

Since the initial conditions are as follows: 

𝑢(0) = {
1
2
3
}   and  �̇�(0) = {

0
0
0
} 

 

Then; 

 

𝑞1(0) = 2.4800   and   �̇�1(0) = 0 

 

𝑞2(0) = 0.3333   and   �̇�2(0) = 0 

 

𝑞3(0) = 0.1786   and   �̇�3(0) = 0    

 

Substituting these values in the above response equation gives u(t) as follows: 

 

{

𝑢1(𝑡)
𝑢2(𝑡)
𝑢3(𝑡)

} =  {
1.2440
2.1547
2.4880

} cos𝜔1𝑡 + {
−0.3333

0
0.3333

} cos𝜔2𝑡 + {
0.0893
−0.1547
0.1786

} cos𝜔3𝑡 
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DISCUSSION OF RESULTS 

 

The normalized response amplitudes were plotted against the frequency ratio 𝜔/𝜔1 and 

shown in Fig. 5. These frequency-response curves show three resonance conditions at 𝜔=𝜔1, 

𝜔=𝜔2 and 𝜔=𝜔3; at these exciting frequencies the steady-state response is unbounded. At 

other exciting frequencies, the vibration is finite and could be calculated from the above three 

equations.  

 
Fig. 5: Normalized response amplitudes against the frequency ratio 𝜔/𝜔1 

 

The response for impulsive load was 

obtained by changing the values of time t 

in the above-derived equation. The values 

of times versus floor displacements were 

plotted and shown in Fig. 6. One can 

easily observe that the displacement values 

at the top floor is maximum where the 

impulsive load is applied. On the other 

hand, the peak value of the response at the 

top floor is obtained at the end of the 

rectangular pulse force duration. 

The response of the system to pulse 

excitation does not reach a steady-state 

condition; the effects of the initial 

conditions must be considered. One of 

several analytical methods can determine 

the response to such pulse excitations: (1) 

the classical method for solving 

differential equations, (2) evaluating 

Duhamel`s integral and (3) expressing the 

pulse as the superposition of two or more 

simpler functions for which response 

solutions are already available or more 

straightforward to determine. In the 

present study, the last of these approaches 

was used through modal analysis concept.

 

 
Fig. 6: Floor displacements under rectangular impulsive loading. 
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As for the free vibration response, floor 

displacements versus t / T1 was plotted as 

shown in Fig. 7 and the relative 

contributions of the three vibration modes 

to the response that was produced by the 

given initial displacement was observed. 

Although all three modes contribute to the 

response, the dominant response is due to 

the first mode since the shape of the given 

initial displacement is similar to the shape 

of the first mode.

  

 
Fig. 7: Floor displacements (cm) versus t / T1 under the given initial displacement 

 

CONCLUSIONS  

Followings are the main outcomes of the 

present study: 

 When the structure is excited with 

harmonic loading over a range of 

frequencies, the structure experiences 

resonance at some frequency. 

Resonance occurs when the frequency 

of the excitation is equal to the natural 

frequency of the structure.  At the 

resonant frequency, the structure 

experiences its most substantial 

response as compared to any other 

frequency of loading. 

 Frequency-response curves show 

three resonance conditions at ω=ω1, 

ω=ω2, and ω=ω3; at these exciting 

frequencies the steady-state response 

is unbounded. At other exciting 

frequencies, the vibration is finite and 

could be calculated from the derived 

equations.  

 Also, it was observed that the 

amplitude of the motion changes with 

the excitation frequency. As the 

excitation frequency is brought closer 

to the natural frequency, the 

amplitude of the vibrations will 

become very large. 

 Analysis from the damage caused to 

structural elements by impulsive 

loading can estimate the overpressure 

produced on structural elements. 

Although the methods cannot yet be 

precisely validated, different analyses 

do compare reasonably well and the 

results obtained can provide a 

statistical and rational base for the 

safe design of structures in the future.  

 Impulsive and/or blast loading are 

applied very quickly and maintained 

for a very short period of time. If the 

duration of such loading is less than 

one-tenth of the fundamental natural 

period of the structure, then the 

specific impulse is the dominant 

characteristic of the load and the 

loaded area of the structure takes a 

velocity in a very small displacement. 

Then, effective mass and the impulse 

determine the work done into the 

structure and an energy balance can 

be used to analyze the produced 

distortion. On the other hand, the peak 

pressure is dominant if the duration of 

such loading is greater than the 

fundamental natural period of the 

structure.  

 For blast analyses, the blast loads can 

be modeled as impulse loads 

assuming a uniform pressure applied 

to whole surface of the structure.  

 Although all three modes contribute 

to the free vibration response, the 

dominant response is due to the first 

mode since the shape of given initial 

displacement is similar to the shape of 

the first mode.  
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