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Foreword

This text constitutes a collection of problems for using as an additional learning resource
for those who are taking an introductory course in complex analysis. The problems are
numbered and allocated in four chapters corresponding to different subject areas: Complex
Numbers, Functions, Complex Integrals and Series. The majority of problems are provided
with answers, detailed procedures and hints (sometimes incomplete solutions).

Of course, no project such as this can be free from errors and incompleteness. I will
be grateful to everyone who points out any typos, incorrect solutions, or sends any other
suggestion for improving this manuscript.

Contact: j.ponce@uq.edu.au
2016

mailto:j.ponce@uq.edu.au




1. Complex Numbers

1.1 Basic algebraic and geometric properties
1. Verify that

(a)
(√

2− i
)
− i
(

1−
√

2i
)
=−2i

(b) (2−3i)(−2+ i) =−1+8i

Solution. We have(√
2− i

)
− i
(

1−
√

2i
)
=
√

2− i− i+
√

2 =−2i,

and
(2−3i)(−2+ i) =−4+2i+6i−3i2 =−4+3+8i =−1+8i.

�

2. Reduce the quantity
5i

(1− i)(2− i)(3− i)

to a real number.

Solution. We have

5i
(1− i)(2− i)(3− i)

=
5i

(1− i)(5−5i)
=

i
(1− i)2 =

i
−2i

=
1
2

�



8 Chapter 1. Complex Numbers

3. Show that
(a) Re(iz) =− Im(z);
(b) Im(iz) = Re(z).

Proof. Let z = x+ yi with x = Re(z) and y = Im(z). Then

Re(iz) = Re(−y+ xi) =−y =− Im(z)

and
Im(iz) = Im(−y+ xi) = x = Re(z).

�

4. Verify the associative law for multiplication of complex numbers. That is, show that

(z1z2)z3 = z1(z2z3)

for all z1,z2,z3 ∈ C.

Proof. Let zk = xk + iyk for k = 1,2,3. Then

(z1z2)z3 = ((x1 + y1i)(x2 + y2i))(x3 + y3i)
= ((x1x2− y1y2)+ i(x2y1 + x1y2))(x3 + y3i)
= (x1x2x3− x3y1y2− x2y1y3− x1y2y3)

+ i(x2x3y1 + x1x3y2 + x1x2y3− y1y2y3)

and

z1(z2z3) = (x1 + y1i)((x2 + y2i))(x3 + y3i))
= (x1 + y1i)((x2x3− y2y3)+ i(x2y3 + x3y2))

= (x1x2x3− x3y1y2− x2y1y3− x1y2y3)

+ i(x2x3y1 + x1x3y2 + x1x2y3− y1y2y3)

Therefore,

(z1z2)z3 = z1(z2z3)

�

5. Compute

(a)
2+ i
2− i

;

(b) (1−2i)4.

Answer: (a) (3+4i)/5, (b) −7+24i.
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6. Let f be the map sending each complex number

z = x+ yi−→
[

x y
−y x

]
Show that f (z1z2) = f (z1) f (z2) for all z1,z2 ∈ C.

Proof. Let zk = xk + yki for k = 1,2. Then

z1z2 = (x1 + y1i)(x2 + y2i) = (x1x2− y1y2)+ i(x2y1 + x1y2)

and hence

f (z1z2) =

[
x1x2− y1y2 x2y1 + x1y2
−x2y1− x1y2 x1x2− y1y2

]
.

On the other hand,

f (z1) f (z2) =

[
x1 y1
−y1 x1

][
x2 y2
−y2 x2

]
=

[
x1x2− y1y2 x2y1 + x1y2
−x2y1− x1y2 x1x2− y1y2

]
.

Therefore, f (z1z2) = f (z1) f (z2). �

7. Use binomial theorem

(a+b)n =

(
n
0

)
an +

(
n
1

)
an−1b+ ...+

(
n

n−1

)
abn−1 +

(
n
n

)
bn

=
n

∑
k=0

(
n
k

)
an−kbk

to expand
(a) (1+

√
3i)2011;

(b) (1+
√

3i)−2011.

Solution. By binomial theorem,

(1+
√

3i)2011 =
2011

∑
k=0

(
2011

k

)
(
√

3i)k =
2011

∑
k=0

(
2011

k

)
3k/2ik.

Since ik = (−1)m for k = 2m even and ik = (−1)mi for k = 2m+1 odd,

(1+
√

3i)2011 = ∑
0≤2m≤2011

(
2011
2m

)
3m(−1)m

+ i ∑
0≤2m+1≤2011

(
2011

2m+1

)
3m
√

3(−1)m

=
1005

∑
m=0

(
2011
2m

)
(−3)m + i

1005

∑
m=0

(
2011

2m+1

)
(−3)m

√
3.
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Similarly,

(1+
√

3i)−2011 =

(
1

1+
√

3i

)2011

=

(
1−
√

3i
4

)2011

=
1

42011

2011

∑
k=0

(
2011

k

)
(−
√

3i)k

=
1

42011

1005

∑
m=0

(
2011
2m

)
(−3)m

− i
42011

1005

∑
m=0

(
2011

2m+1

)
(−3)m

√
3.

�

8. Graph the following regions in the complex plane:
(a) {z : Rez≥ 2Imz};
(b) {z : π/2 < Argz≤ 3π/4};
(c) {z : |z−4i+2|> 2}.

Solution. (a)

Figure 1.1:
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(b)

Figure 1.2:

(c)

Figure 1.3:
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9. Find all complex solutions of the following equations:
(a) z = z;
(b) z+ z = 0;

(c) z =
9
z

.

Solution. (a) Let z = z+ iy. Thus

z = z
x+ iy = x+ iy
x− iy = x+ iy
−iy = iy

y = 0

Hence, z = z if and only if Imz = 0.
(b) Let z = z+ iy. Thus

z+ z = 0
x+ iy+ z+ iy = 0
x− iy+ x+ iy = 0

2x = 0
x = 0

Hence, z+ z if and only if Rez = 0.
(c) In this part we have

z =
9
z
⇐⇒ zz = 9 ⇐⇒ |z|2 = 9 ⇐⇒ |z|= 3.

Hence, z =
9
z

if and only if |z|= 3. �

10. Suppose that z1 and z2 are complex numbers, with z1z2 real and non-zero. Show that
there exists a real number r such that z1 = rz2.

Proof. Let z1 = x1 + iy1 and z2 = x2 + iy2 with x1,x2,y1,y2 ∈ R. Thus

z1z2 = x1x2− y1y2 +(x1y2 + y1x2)i

Since z1z2 is real and non-zero, z1 6= 0, z2 6= 0, and

x1x2− y1y2 6= 0 and x1y2 + y1x2 = 0.

Thus, since z2 6= 0, then
z1

z2
=

x1 + iy1

x2− iy2
· x2 + iy2

x2 + iy2

=
x1x2− y1y2 +(x1y2 + y1x2)i

x2
2 + y2

2

=
x1x2− y1y2

x2
2 + y2

2
.

By setting r =
x1x2− y1y2

x2
2 + y2

2
, we have the result. �
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11. The set Q adjoin
√

2 is defined by Q
(√

2
)
=
{

p+q
√

2 : p,q ∈Q
}

.

(a) Show that Q
(√

2
)

is a field.

(b) Is
√

3 ∈Q
(√

2
)

?

Proof. (a) Let p+q
√

2,r+ s
√

2 ∈Q
(√

2
)

. Since Q⊂ R and R is a field, we have
the following:
Closure under (+):(

p+q
√

2
)
+
(

r+ s
√

2
)

= (p+ r)+(q+ s)
√

2 ∈Q
(√

2
)

Closure under (·):(
p+q

√
2
)
·
(

r+ s
√

2
)

= (pr+2sq)+(rq+ ps)
√

2 ∈Q
(√

2
)

(b) Suppose that
√

3 = a+b
√

2 ∈Q
(√

2
)

. Note that b 6= 0. Thus we have

√
3−b

√
2 = a

3−2
√

2
√

3b+2b2 = a2

2
√

6b = 3−a2.

Since b 6= 0,
√

6 =
3−a2

2b
.

That is,
√

6 ∈Q, which is a contradiction. Therefore,
√

3 /∈Q
(√

2
)

�

1.2 Modulus
1. Show that

|z1− z2|2 + |z1 + z2|2 = 2(|z1|2 + |z2|2)

for all z1,z2 ∈ C.

Proof. We have

|z1− z2|2 + |z1 + z2|2

= (z1− z2)(z1− z2)+(z1 + z2)(z1 + z2)

= (z1− z2)(z1− z2)+(z1 + z2)(z1 + z2)

= ((z1z1 + z2z2)− (z1z2 + z2z1))+((z1z1 + z2z2)+(z1z2 + z2z1))

= 2(z1z1 + z2z2) = 2(|z1|2 + |z2|2).

�



14 Chapter 1. Complex Numbers

2. Verify that
√

2|z| ≥ |Rez|+ | Imz|.
Hint: Reduce this inequality to (|x|− |y|)2 ≥ 0.

Solution. Note that

0≤ (|Rez|+ | Imz|)2 = |Rez|2−2|Rez|| Imz|+ | Imz|2.

Thus
2|Rez|| Imz| ≤ |Rez|2 + | Imz|2,

and then
|Rez|2 +2|Rez|| Imz|+ | Imz|2 ≤ 2(|Rez|2 + | Imz|2).

That is
(|Rez|+ | Imz|)2 ≤ 2(|Rez|2 + | Imz|2) = 2|z|2,

and therefore,
|Rez|+ | Imz| ≤

√
2|z|.

�

3. Sketch the curves in the complex plane given by
(a) Im(z) =−1;
(b) |z−1|= |z+ i|;
(c) 2|z|= |z−2|.

Solution. Let z = x+ yi.
(a) {Im(z) =−1}= {y =−1} is the horizontal line passing through the point −i.
(b) Since

|z−1|= |z+ i| ⇔ |(x−1)+ yi|= |x+(y+1)i|
⇔ |(x−1)+ yi|2 = |x+(y+1)i|2

⇔ (x−1)2 + y2 = x2 +(y+1)2

⇔ x+ y = 0,

the curve is the line x+ y = 0.
(c) Since

2|z|= |z−2| ⇔ 2|x+ yi|= |(x−2)+ yi|
⇔ 4|x+ yi|2 = |(x−2)+ yi|2

⇔ 4(x2 + y2) = (x−2)2 + y2

⇔ 3x2 +4x+3y2 = 4

⇔
(

x+
2
3

)2

+ y2 =
16
9

⇔
∣∣∣∣z+ 2

3

∣∣∣∣= 4
3

the curve is the circle with centre at −2/3 and radius 4/3.
�
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4. Show that

R4−R
R2 +R+1

≤
∣∣∣∣ z4 + iz
z2 + z+1

∣∣∣∣≤ R4 +R
(R−1)2

for all z satisfying |z|= R > 1.

Proof. When |z|= R > 1,

|z4 + iz| ≥ |z4|− |iz|= |z|4−|i||z|= R4−R

and

|z2 + z+1| ≤ |z2|+ |z|+ |1|= |z|2 + |z|+1 = R2 +R+1

by triangle inequality. Hence∣∣∣∣ z4 + iz
z2 + z+1

∣∣∣∣≥ R4−R
R2 +R+1

.

On the other hand,

|z4 + iz| ≤ |z4|+ |iz|= |z|4 + |i||z|= R4 +R

and

|z2 + z+1|=

∣∣∣∣∣
(

z− −1+
√

3i
2

)(
z− −1−

√
3i

2

)∣∣∣∣∣
=

∣∣∣∣∣z− −1+
√

3i
2

∣∣∣∣∣
∣∣∣∣∣z− −1−

√
3i

2

∣∣∣∣∣
≥

(
|z|−

∣∣∣∣∣−1+
√

3i
2

∣∣∣∣∣
)(
|z|−

∣∣∣∣∣−1−
√

3i
2

∣∣∣∣∣
)

= (R−1)(R−1) = (R−1)2

Therefore,∣∣∣∣ z4 + iz
z2 + z+1

∣∣∣∣≤ R4 +R
(R−1)2 .

�

5. Show that
|Log(z)| ≤ |ln |z||+π (1.1)

for all z 6= 0.

Proof. Since Log(z) = ln |z|+ iArg(z) for −π < Arg(z)≤ π ,

|Log(z)|= | ln |z|+ iArg(z)| ≤ |ln |z||+ |iArg(z)| ≤ |ln |z||+π.

�



16 Chapter 1. Complex Numbers

1.3 Exponential and Polar Form, Complex roots
1. Express the following in the form x+ iy, with x,y ∈ R:

(a)
i

1− i
+

1− i
i

;

(b) all the 3rd roots of −8i;

(c)
(

i+1√
2

)1337

Solution. (a)

i
1− i

+
1− i

i
=

i2 +(1− i)2

(1− i)i

=
−1−2i

1− i
· 1− i

1− i

=
−1+ i−2i−2

2

=
−3− i

2
=−3

2
− i

2

(b) We have that

−8i = 23 exp
(
−iπ

2

)
Thus the cube roots are

2exp
(
−iπ

6

)
, 2exp

(
iπ
2

)
and 2exp

(
7iπ
6

)
.

That is √
3− i, 2, −

√
3− i

(c) (
i+1√

2

)1337

=

(
exp

iπ
4

)1337

= exp
1337πi

4
= exp

(
167 ·2πi+

π

4
i
)

= exp
π

4
i =

1+ i√
2
.

�

2. Find the principal argument and exponential form of

(a) z =
i

1+ i
;

(b) z =
√

3+ i;
(c) z = 2− i.
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Answer:
(a) Arg(z) = π/4 and z = (

√
2/2)exp(πi/4).

(b) Arg(z) = π/6 and z = 2exp(πi/6).
(c) Arg(z) =− tan−1(1/2) and z =

√
5exp(− tan−1(1/2)i).

3. Find all the complex roots of the equations:
(a) z6 =−9;
(b) z2 +2z+(1− i) = 0.

Solution. (a) The roots are

z = 6
√
−9 =

6√9eπi =
3
√

3eπi/6e2mπi/6 (m = 0,1,2,3,4,5)

=
35/6

2
+

3
√

3
2

i, 3
√

3i,−35/6

2
+

3
√

3
2

i,−35/6

2
−

3
√

3
2

i,− 3
√

3i,
35/6

2
−

3
√

3
2

i.

(b) The roots are

z =
−2+

√
4−4(1− i)
2

=−1+
√

i

=−1+
√

eπi/2 =−1+ eπi/4e2mπi/2 (m = 0,1)

=

(
−1+

√
2

2

)
+

√
2

2
i,

(
−1−

√
2

2

)
−
√

2
2

i.

�

4. Find the four roots of the polynomial z4+16 and use these to factor z4+16 into two
quadratic polynomials with real coefficients.

Solution. The four roots of z4 +16 are given by

4
√
−16 =

4√16eπi =
4
√

16eπi/4e2mπi/4

= 2eπi/4,2e3πi/4,2e5πi/4,2e7πi/4

for m = 0,1,2,3. We see that these roots appear in conjugate pairs:

2eπi/4 = 2e7πi/4 and 2e3πi/4 = 2e5πi/4.

This gives the way to factor z4 +16 into two quadratic polynomials of real coeffi-
cients:

z4 +16 = (z−2eπi/4)(z−2e3πi/4)(z−2e5πi/4)(z−2e7πi/4)

=
(
(z−2eπi/4)(z−2e7πi/4)

)(
(z−2e3πi/4)(z−2e5πi/4)

)
= (z2−2Re(2eπi/4)z+4)(z2−2Re(2e3πi/4)z+4)

= (z2−2
√

2z+4)(z2 +2
√

2z+4)

�



18 Chapter 1. Complex Numbers

5. Do the following:
(a) Use exponential form to compute

i. (1+
√

3i)2011;
ii. (1+

√
3i)−2011.

(b) Prove that

1005

∑
m=0

(
2011
2m

)
(−3)m = 22010

and

1005

∑
m=0

(
2011

2m+1

)
(−3)m = 22010.

Solution. Since

1+
√

3i = 2

(
1
2
+

√
3

2
i

)
= 2exp

(
πi
3

)
,

we have

(1+
√

3i)2011 = 22011 exp
(

2011πi
3

)
= 22011 exp

(
2011πi

3

)
= 22011 exp

(
670πi+

πi
3

)
= 22011 exp

(
πi
3

)
= 22011

(
1
2
+

√
3

2
i

)
= 22010(1+

√
3i).

Similarly,

(1+
√

3i)−2011 = 2−2013(1−
√

3i).

By Problem 7 in section 1.1, we have

22010(1+
√

3i) = (1+
√

3i)2011

=
1005

∑
m=0

(
2011
2m

)
(−3)m + i

1005

∑
m=0

(
2011

2m+1

)
(−3)m

√
3.

It follows that

1005

∑
m=0

(
2011
2m

)
(−3)m =

1005

∑
m=0

(
2011

2m+1

)
(−3)m = 22010.

�
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6. Establish the identity

1+ z+ z2 + · · ·+ zn =
1− zn+1

1− z
(z 6= 1)

and then use it to derive Lagrange’s trigonometric identity:

1+ cosθ + cos2θ · · ·+ cosnθ =
1
2
+

sin (2n+1)θ
2

2sin θ

2

(0 < θ < 2π).

Hint: As for the first identity, write S = 1 + z + z2 + · · ·+ zn and consider the
difference S− zS. To derive the second identity, write z = eiθ in the first one.

Proof. If z 6= 1, then

(1− z)(1+ z+ · · ·+ zn) = 1+ z+ · · ·+ zn− (z+ z2 + · · ·+ zn+1)

= 1− zn+1

Thus

1+ z+ z2 + · · ·+ zn =

 1− zn+1

1− z
, if z 6= 1

n+1, if z = 1.

Taking z = eiθ , where 0 < θ < 2π , then z 6= 1. Thus

1+ eiθ + e2iθ + · · ·+ eniθ =
1− e(n+1)θ

1− eiθ =
1− e(n+1)θ

−eiθ/2
(
eiθ/2− e−iθ/2

)
=
−e−iθ/2(1− e(n+1)θ )

2isin(θ/2)

=
i
(

e−iθ/2− e(n+
1
2 )iθ
)

2sin(θ/2)

=
1
2
+

sin[(n+ 1
2)θ ]

2sin(θ/2)
+ i

cos(θ/2)− cos[(n+ 1
2)θ ]

2sin(θ/2)
Equating real and imaginary parts, we obtain

1+ cosθ + cos2θ · · ·+ cosnθ =
1
2
+

sin[(n+ 1
2)θ ]

2sin(θ/2)

and

sinθ + sin2θ · · ·+ sinnθ =
cos(θ/2)− cos[(n+ 1

2)θ ]

2sin(θ/2)
.

�

7. Use complex numbers to prove the Law of Cosine: Let ∆ABC be a triangle with
|BC|= a, |CA|= b, |AB|= c and ∠BCA = θ . Then

a2 +b2−2abcosθ = c2.

Hint: Place C at the origin, B at z1 and A at z2. Prove that

z1z2 + z2z1 = 2|z1z2|cosθ .
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Proof. Following the hint, we let C = 0, B = z1 and A = z2. Then a = |z1|, b = |z2|
and c = |z2− z1|. So

a2 +b2− c2 = |z1|2 + |z2|2−|z2− z1|2

= (z1z1 + z2z2)− (z2− z1)(z2− z1)

= (z1z1 + z2z2)− (z2− z1)(z2− z1)

= (z1z1 + z2z2)− (z1z1 + z2z2− z1z2− z2z1)

= z1z2 + z2z1.

Let z1 = r1eiθ1 and z2 = r2eiθ2 . Then

z1z2 + z2z1 = r1eiθ1r2eiθ2 + r2eiθ2r1eiθ1

= (r1eiθ1)(r2e−iθ2)+(r2eiθ2)(r1e−iθ1)

= r1r2ei(θ1−θ2)+ r1r2ei(θ2−θ1)

= 2r1r2 cos(θ1−θ2) = 2|z1||z2|cosθ = 2abcosθ .

Therefore, we have

a2 +b2− c2 = z1z2 + z2z1 = 2abcosθ

and hence

a2 +b2−2abcosθ = c2.

�



2. Functions

2.1 Basic notions

1. Write the following functions f (z) in the forms f (z) = u(x,y)+ iv(x,y) under Carte-
sian coordinates with u(x,y) = Re( f (z)) and v(x,y) = Im( f (z)):

(a) f (z) = z3 + z+1
(b) f (z) = z3− z;

(c) f (z) =
1

i− z
;

(d) f (z) = exp(z2).

Solution. (a)

f (z) = (x+ iy)3 +(x+ iy)+1
= (x+ iy)(x2− y2 +2ixy)+ x+ iy+1
= x3− xy2 +2ix2y+ ix2y− iy3−2xy2 + x+ iy+1
= x3−3xy2 + x+1+ i(3x2y− y3 + y).

(b)

f (z) = z3− z = (x+ yi)3− (x+ yi)

= (x3 +3x2yi−3xy2− y3i)− (x+ yi)

= (x3−3xy2− x)+ i(3x2y− y3− y),
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(c)

f (z) =
1

i− z
=

1
−x+(1− y)i

=
−x− (1− y)i
x2 +(1− y)2

=− x
x2 +(1− y)2 − i

1− y
x2 +(1− y)2

(d)

f (z) = exp(z2) = exp((x+ yi)2)

= exp((x2− y2)+2xyi)

= ex2−y2
(cos(2xy)+ isin(2xy))

= ex2−y2
cos(2xy)− iex2−y2

sin(2xy)

�

2. Suppose that f (z) = x2−y2−2y+ i(2x−2xy), where z= x+ iy. Use the expressions

x =
z+ z

2
and y =

z− z
2i

to write f (z) in terms of z and simplify the result.

Solution. We have

f (z) = x2− y2−2y+ i(2x−2xy)
= x2− y2 + i2x− i2xy−2y
= (x− iy)2 + i(2x+2iy)
= z2 +2iz.

�

3. Suppose p(z) is a polynomial with real coefficients. Prove that
(a) p(z) = p(z);
(b) p(z) = 0 if and only if p(z) = 0;
(c) the roots of p(z) = 0 appear in conjugate pairs, i.e., if z0 is a root of p(z) = 0,

so is z0.

Proof. Let p(z) = a0 +a1z+ ...+anzn for a0,a1, ...,an ∈ R. Then

p(z) = a0 +a1z+ · · ·+anzn

= a0 +a1z+ · · ·+anzn

= a0 +(a1)z+ · · ·+(an)zn

= a0 +a1z+ · · ·+anzn = p(z).

If p(z) = 0, then p(z) = 0 and hence p(z) = p(z) = 0; on the other hand, if p(z) = 0,
then p(z) = p(z) = 0 and hence p(z) = 0.
By the above, p(z0) = 0 if and only if p(z0) = 0. Therefore, z0 is a root of p(z) = 0
if and only if z0 is. �
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4. Let
T (z) =

z
z+1

.

Find the inverse image of the disk |z|< 1/2 under T and sketch it.

Solution. Let D = {|z|< 1/2}. The inverse image of D under T is

T−1(D) = {z ∈ C : T (z) ∈ D}= {|T (z)|< 1
2
}

=

{
z :
∣∣∣∣ z
z+1

∣∣∣∣< 1
2

}
= {2|z|< |z+1|}.

Let z = x+ yi. Then

2|z|< |z+1| ⇔ 4(x2 + y2)< (x+1)2 + y2

⇔ 3x2−2x+3y2 < 1

⇔
(

x− 1
3

)2

+ y2 <
4
9

⇔
∣∣∣∣z− 1

3

∣∣∣∣< 2
3

So

T−1(D) =

{
z :
∣∣∣∣z− 1

3

∣∣∣∣< 2
3

}
is the disk with centre at 1/3 and radius 2/3. �

5. Sketch the following sets in the complex plane C and determine whether they are
open, closed, or neither; bounded; connected. Briefly state your reason.

(a) |z+3|< 1;
(b) | Im(z)| ≥ 1;
(c) 1≤ |z+3|< 2.

Solution. (a) Since {|z+3|< 1}= {(x+3)2+y2−1 < 0} and f (x,y) = (x+3)2+
y2−1 is a continuous function on R2, the set is open. It is not closed since the only
sets that are both open and closed in C are /0 and C.
Since

|z|= |z+3−3| ≤ |z+3|+ |−3|= |z+3|+3 < 4

for all |z+3|< 1, {|z+3|< 1} ⊂ {|z|< 4} and hence it is bounded.
It is connected since it is a convex set. �

Solution. (b) We have

{| Im(z)| ≥ 1}= {|y| ≥ 1}= {y≥ 1}∪{y≤−1}.
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Since f (x,y) = y is continuous on R2, both {y≥ 1} and {y≤−1} are closed and
hence {| Im(z)| ≥ 1} is closed. It is not open since the only sets that are both open
and closed in C are /0 and C.
Since zn = n+2i ∈ {| Im(z)| ≥ 1} for all n ∈ Z and

lim
n→∞
|zn|= lim

n→∞

√
n2 +4 = ∞,

the set is unbounded.
The set is not connected. Otherwise, let p = 2i and q =−2i. There is a polygonal
path

p0 p1∪ p1 p2∪ ...∪ pn−1 pn

with p0 = p, pn = q and pk ∈ {| Im(z)| ≥ 1} for all 0≤ k ≤ n.
Let 0≤m≤ n be the largest integer such that pm ∈ {y≥ 1}. Then pm+1 ∈ {y≤−1}.
So Im(pm) ≥ 1 > 0 and Im(pm+1) ≤ −1 < 0. It follows that there is a point p ∈
pm pm+1 such that Im(p) = 0. This is a contradiction since pm pm+1 ⊂ {| Im(z)| ≥ 1}
but p 6∈ {| Im(z)| ≥ 1}. Therefore the set is not connected. �

Solution. (c) Since −2 ∈ {1 ≤ |z+ 3| < 2} and {|z+ 2| < r} 6⊂ {1 ≤ |z+ 3| < 2}
for all r > 0, {1 ≤ |z+ 3| < 2} is not open. Similarly, −1 is a point lying on its
complement

{1≤ |z+3|< 2}c = {|z+3| ≥ 2}∪{|z+3|< 1}
and {|z+1|< r} 6⊂ {1≤ |z+3|< 2}c for all r > 0. Hence {1≤ |z+3|< 2}c is not
open and {1≤ |z+3|< 2} is not closed. In summary, {1≤ |z+3|< 2} is neither
open nor closed.
Since

|z|= |z+3−3| ≤ |z+3|+ |−3|< 5

for all |z+3|< 2, {1≤ |z+3|< 2} ⊂ {|z|< 5} and hence it is bounded.
The set is connected. To see this, we let p1 = −3/2, p2 = −3+ 3i/2, p3 = −9/2
and p4 =−3−3i/2. All these points lie on the circle {|z+3|= 3/2} and hence lie
in {1≤ |z+3|< 2}.
It is easy to check that for every point p∈ {1≤ |z+3|< 2}, ppk ⊂ {1≤ |z+3|< 2}
for at least one pk ∈ {p1, p2, p3, p4}. So the set is connected. �

6. Show that

|sinz|2 = (sinx)2 +(sinhy)2

for all complex numbers z = x+ yi.

Proof.

|sin(z)|2 = |sin(x+ yi)|2 = |sin(x)cos(yi)+ cos(x)sin(yi)|2

= |sin(x)cosh(y)− icos(x)sinh(y)|2

= sin2 xcosh2 y+ cos2 xsinh2 y

= sin2 x(1+ sinh2 y)+ cos2 xsinh2 y

= sin2 x+(cos2 x+ sin2 x)sinh2 y = (sinx)2 +(sinhy)2.

�
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7. Show that

|cos(z)|2 = (cosx)2 +(sinhy)2

for all z ∈ C, where x = Re(z) and y = Im(z).

Proof.

|cos(z)|2 = |cos(x+ yi)|2 = |cos(x)cos(yi)− sin(x)sin(yi)|2

= |cos(x)cosh(y)− isin(x)sinh(y)|2

= cos2 xcosh2 y+ sin2 xsinh2 y

= cos2 x(1+ sinh2 y)+ sin2 xsinh2 y

= cos2 x+(cos2 x+ sin2 x)sinh2 y = (cosx)2 +(sinhy)2

�

8. Show that

tan(z1 + z2) =
tanz1 + tanz2

1− (tanz1)(tanz2)

for all complex numbers z1 and z2 satisfying z1,z2,z1+z2 6= nπ+π/2 for any integer
n.

Proof. Since

tanz1 + tanz2 =
i(e−iz1− eiz1)

eiz1 + e−iz1
+

i(e−iz2− eiz2)

eiz2 + e−iz2

= i
(e−iz1− eiz1)(eiz2 + e−iz2)+(e−iz2− eiz2)(eiz1 + e−iz1)

(eiz1 + e−iz1)(eiz2 + e−iz2)

=−2i
ei(z1+z2)− e−i(z1+z2)

(eiz1 + e−iz1)(eiz2 + e−iz2)

and

1− (tanz1)(tanz2) = 1−
(

i(e−iz1− eiz1)

eiz1 + e−iz1

)(
i(e−iz2− eiz2)

eiz2 + e−iz2

)
=

(e−iz1 + eiz1)(e−iz2 + eiz2)+(e−iz1− e−iz1)(e−iz2− eiz2)

(e−iz1 + eiz1)(e−iz2 + eiz2)

= 2
ei(z1+z2)+ e−i(z1+z2)

(eiz1 + e−iz1)(eiz2 + e−iz2)
,

we have

tanz1 + tanz2

1− (tanz1)(tanz2)
=−i

ei(z1+z2)− e−i(z1+z2)

ei(z1+z2)+ e−i(z1+z2)
= tan(z1 + z2).



26 Chapter 2. Functions

Alternatively, we can argue as follows if we assume that the identity holds for z1 and
z2 real. Let

F(z1,z2) = tan(z1 + z2)−
tanz1 + tanz2

1− (tanz1)(tanz2)
.

We assume that F(z1,z2) = 0 for all z1,z2 ∈ R with z1,z2,z1 + z2 6= nπ +π/2.
Fixing z1 ∈ R, we let f (z) = F(z1,z). Then f (z) is analytic in its domain

C\({nπ +π/2}∪{nπ +π/2− z1}).

And we know that f (z) = 0 for z real. Therefore, by the uniqueness of analytic
functions, f (z)≡ 0 in its domain. So F(z1,z2) = 0 for all z1 ∈ R and z2 ∈ C in its
domain.
Fixing z2 ∈ C, we let g(z) = F(z,z2). Then g(z) is analytic in its domain

C\({nπ +π/2}∪{nπ +π/2− z2}).

And we have proved that g(z) = 0 for z real. Therefore, by the uniqueness of analytic
functions, g(z)≡ 0 in its domain. Hence F(z1,z2) = 0 for all z1 ∈ C and z2 ∈ C in
its domain. �

9. Find all the complex roots of the equation cosz = 3.

Solution. Since cosz = (eiz + e−iz)/2, it comes down to solve the equation eiz +
e−iz = 6, i.e.,

w+w−1 = 6⇔ w2−6w+1 = 0

if we let w = eiz. The roots of w2− 6w+ 1 = 0 are w = 3± 2
√

2. Therefore, the
solutions for cosz = 3 are

iz = log(3±2
√

2)⇔ z =−i(ln(3±2
√

2)+2nπi) = 2nπ− i ln(3±2
√

2)

for n integers. �

10. Calculate sin
(

π

4
+ i
)

.

Solution.

sin
(

π

4
+ i
)
=

1
2i
(ei(π/4+i)− e−i(π/4+i))

=
1
2i
(e−1eπi/4− ee−πi/4)

=
1
2i

(
e−1(cos

π

4
+ isin

π

4
)− e(cos

π

4
− isin

π

4
)
)

=

√
2

4

(
e+

1
e

)
+

√
2

4

(
e− 1

e

)
i

�
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11. Compute cos
(

π

3
+ i
)

.

Solution.

cos
(

π

3
+ i
)
=

1
2
(ei(π/3+i)+ e−i(π/3+i))

=
1
2
(e−1eπi/3 + ee−πi/3)

=
1
2

(
e−1(cos

π

3
+ isin

π

3
)+ e(cos

π

3
− isin

π

3
)
)

=
1
4

(
e+

1
e

)
−
√

3i
4

(
e− 1

e

)
�

12. Find ii and its principal value.

Solution. We have

ii = ei log i = ei(2nπi+πi/2) = e−2nπ−π/2

for n integers and its principal value given by

ii = eiLog i = ei(πi/2) = e−π/2.

�

13. Let f (z) be the principal branch of 3
√

z.

(a) Find f (−i).

Solution.

f (−i) = exp(
1
3

Log(−i)) = exp(
1
3
(−πi

2
)) = exp(−πi

6
) =

√
3

2
− i

2

�

(b) Show that

f (z1) f (z2) = λ f (z1z2)

for all z1,z2 6= 0, where λ = 1,
−1+

√
3i

2
or
−1−

√
3i

2
.
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Proof. Since

f (z1) f (z2)

f (z1z2)
= exp(

1
3

Logz1 +
1
3

Logz2−
1
3

Log(z1z2))

= exp(
1
3
(Logz1 +Logz2−Log(z1z2)))

= exp(
i
3
(Argz1 +Argz2−Arg(z1z2))) = exp(

2nπi
3

)

for some integer n, λ = exp(2nπi/3). Therefore,

λ =


1 if n = 3k
−1+

√
3i

2 if n = 3k+1
−1−

√
3i

2 if n = 3k+2

where k ∈ Z. �

14. Let f (z) be the principal branch of z−i.

(a) Find f (i).

Solution.

f (i) = i−i = exp(−iLog(i)) = exp(−i(πi/2)) = eπ/2.

�

(b) Show that

f (z1) f (z2) = λ f (z1z2)

for all z1,z2 6= 0, where λ = 1,e2π or e−2π .

Proof. Since

f (z1) f (z2)

f (z1z2)
= exp(−iLogz1− iLogz2 + iLog(z1z2))

= exp(−i(Logz1 +Logz2−Log(z1z2)))

= exp(−i(iArgz1 + iArgz2− iArg(z1z2)))

= exp(Argz1 +Argz2−Arg(z1z2))

= exp(2nπ)

for some integer n, λ = exp(2nπ). And since

−π < Arg(z1)≤ π,−π < Arg(z2)≤ π

and

−π < Arg(z1z2)≤ π,

we conclude that

−3π < Argz1 +Argz2−Arg(z1z2)< 3π

and hence −3 < 2n < 3. So n =−1,0 or 1 and λ = e−2π ,1 or e2π . �
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15. Determine the Möbius transformation mapping 0 to 2, 2i to 0, and i to 3/2.

Solution. Consider the function

f (z) =
az+b
cz+d

. (2.1)

Then

f (0) = 2 then
b
d
= 2 (2.2)

f (−2) = 0 then −2ia+b = 0 (2.3)

f (i) =
3
2

then
ai+b
ci+d

=
3
2
. (2.4)

From 2.2 we get d 6= 0. Notice also that we can take d to be any nonzero complex
number.
Let us take d = i. Thus, from expression 2.2, we have b = 2i. From 2.3, a = 1, and
from 2.4 we have c = 1.
Hence the transformation we are looking for is

f (z) =
z+2i
z+ i

.

Remark: Other formulations are possible for different choices of the constant d,
e.g.

f (z) =
iz−2
iz−1

.

�

16. Let T be a mapping from C to C. A fixed point of T is a point z satisfying T (z) = z.
(a) Show that any Möbius transformation, apart from the identity, can have at most

2 fixed points in C.
(b) Give examples of Möbius transformations having (i) 2; (ii) 1 and (iii) no fixed

points in C.

Proof. (a) Let the Möbius transformation be

T (z) =
az+b
cz+d

.

If T (z) = z, then

az+b
cz+d

= z,

cz2 +dz = az+b,
cz2 +(d−a)z−b = 0. (2.5)

Now, if c 6= 0, then the expression 2.5 is a quadratic equation with one or two
solutions. That is

−(d−a)+ [(d−a)2 +4bc]1/2

2c
.
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If c = 0, expression 2.5 becomes

(d−a)z = b.

This equation has one solution b/(d−a), if d 6= a. It has no solution, if d = a and
b 6= 0. And, finally, it has infinitely many solutions, if d = a and b = 0.
Notice that in the last case we have d = a and b = c = 0. Since ad−bc 6= 0, then
a = d 6= 0. Thus we have

T (z) =
az
d

= z.

That is the identity, which is excluded.
(b) (i) From part (a), if c 6= 0 and (d−a)2 +4bc 6= 0, we will have 2 fixed points.
Hence, the function

T (z) =
1
z

is an example with two fixed points: −1 and 1.
(ii) Now, a function with one fixed point, is the following

T (z) =
z
2
.

(iii) Finally, with no fixed points, we have

T (z) = z+1.

�

17. For z ∈ C, show that:
(a) sinz = sinz;
(b) coshz = coshz.

Proof. (a) Using the definition of sinz, we have

sinz =
eiz− e−iz

2i
=

e−iz− eiz

−2i
=

(
e−iz− eiz

−2i

)
=

(
eiz− e−iz

2i

)
= sinz

(b) Recall that for z = x+ iy, we have that

ez = ex−iy = exe−iy = exeiy = ez.

Thus

coshz =
ez− e−z

2
=

(
ez− e−z

2

)
= coshz

�



2.1 Basic notions 31

18. Find all solutions z ∈C of of the following (express your answers in the form x+ iy):
(a) logz = 4i;
(b) zi = i.

Solution. (a) We have that exp(logz) = z. Thus

z = exp(logz) = exp(4i) = cos4+ isin4

Notice that, if z = exp(4i), then we have

log(exp(4i)) = 4i+2nπi (n ∈ Z)

In particular, for n = 0, we have that log [exp(4i)] = 4i.

(b) Method one: We know that zi = exp(i logz). Thus

exp(i logz) = i

Since i = exp(i(π/2+2nπ)), with n ∈ Z, then we have

exp
(

i
(

π

2
+2nπ

))
= exp [i(ln |z|+ i arg(z))]

= exp [− arg(z)+ i ln |z|]
= exp [− arg(z)] · exp [i ln |z|]

Thus
arg(z) = 2kπ (k ∈ Z) and ln |z|= π

2
+2nπ (n ∈ Z)

Hence,
z = exp

[
π

2
+2nπ

]
(n ∈ Z).

Method two: Consider the following identity

log [exp(i logz)] = log i (2.6)

Thus

log [exp(i logz)] = i logz+2n1πi (n1 ∈ Z)

Hence, substituting in (2.6), we obtain

i logz+2n1πi = log i (n1 ∈ Z)

Thus
logz =−i log i−2n1π (n1 ∈ Z)

From the polar form of i, we have that r = 1 and Θ = π

2 . Thus

log i = ln1+ i
(

π

2
+2n2π

)
(n2 ∈ Z)

So
logz =−i

[
ln1+ i

(
π

2
+2n2π

)]
−2n1π =

π

2
+2π(n2−n1)
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with n1, n2 ∈ Z. Since n2−n1 ∈ Z, we have

logz =
π

2
+2nπ (n ∈ Z)

Therefore, zi = i when

z = exp
[

π

2
+2nπ

]
(n ∈ Z)

�

19. Show that

tanh−1 z =
1
2

log
(

1+ z
1− z

)
. (2.7)

Solution. If w = tanh−1 z, then

z = tanhw =
sinhw
coshw

=
ew− e−w

ew + e−w =
e2w−1
e2w +1

Thus

z(e2w +1) = e2w−1

e2w =
z+1
1− z

2w loge = log
(

z+1
1− z

)
w =

1
2

log
(

z+1
1− z

)
Hence

tanh−1 z =
1
2

log
(

z+1
1− z

)
.

�

20. Find all solutions of the equation tanhz = i and express them in the form x+ iy.

Solution. Method one:

Applying the inverse hyperbolic function in both sides we have

z = tanh−1 z = tanh−1(i).

Using the formula (2.7), we have

tanh−1 (i) =
1
2

log
(

1+ i
1− i

)
=

1
2

log(i)
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Using the definition of log for i with r = 1 and Θ = π/2 we have that

log(i) = ln1+ i
(

π

2
+2nπ

)
= i
(

π

2
+2nπ

)
(n ∈ Z).

Therefore

z = tanh−1 (i) =
1
2

[
i
(

π

2
+2nπ

)]
= i
(

π

4
+nπ

)
for n ∈ Z.

Method two:

We know that

tanhz =
sinhz
coshz

=
−isin(iz)
cos(iz)

=−i tan(iz).

Thus,
tanhz = i ⇐⇒ −i tan(iz) = i ⇐⇒ tan(iz) =−1.

Applying the inverse trigonometric function in both sides we have

iz = tan−1(iz) = tan−1(−1). (2.8)

Now, using the formula

tan−1 z =
i
2

log
(

i+ z
i− z

)
we obtain

tan−1 (−1) =
i
2

log
(

i−1
1+ i

)
=

i
2

log(i)

=
i
2

[
i
(

π

2
+2nπ

)]
(n ∈ Z)

= −
(

π

4
+nπ

)
(n ∈ Z).

Thus, substituting in (2.8), we have

iz =−
(

π

4
+nπ

)
(n ∈ Z).

Hence
z = i

(
π

4
+nπ

)
(n ∈ Z).

�
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21. Let Ω1 and Ω2 be nonempty, closed sets in C.
(a) Show that the set Ω1∪Ω2 is closed.
(b) If instead Ω2 is nonempty and open:

(i) could Ω1∪Ω2 still be closed?
(ii) Need it be closed?
Give proofs or examples/counterexamples.

Proof. (a) We need to prove that

∂ (Ω1∪Ω2)⊆Ω1∪Ω2.

Let z ∈ ∂ (Ω1∪Ω2). Thus, for every ε > 0, we have that

Bε(z)∩ (Ω1∪Ω2) 6= /0 (2.9)

and

Bε(z)∩ (Ω1∪Ω2)
c = Bε(z)∩ (Ωc

1∩Ω
c
2) 6= /0. (2.10)

From expression (2.9),

Bε(z)∩Ω1 6= /0 or Bε(z)∩Ω2 6= /0, or both.

But, from expression (2.10), we have

Bε(z)∩Ω
c
1 6= /0 and Bε(z)∩Ω

c
2 6= /0.

Hence
Bε(z)∩Ω1 6= /0 and Bε(z)∩Ω

c
1 6= /0,

or
Bε(z)∩Ω2 6= /0 and Bε(z)∩Ω

c
2 6= /0,

or both. This means that z ∈ ∂Ω1 or z ∈ ∂Ω2 (or both). That is

z ∈ ∂Ω1∪∂Ω2.

Since Ω1 and Ω2 are closed, we have that z ∈ ∂Ω1 ∪ ∂Ω2 ⊆ Ω1 ∪Ω2. Therefore
Ω1∪Ω2 is closed.
(b) (i) The answer is ’yes’. For example, Ω1 = B1(0), Ω2 = B1(0).
(ii) The answer is ’no’. For example, Ω1 = B1(0), Ω2 = B2(0). In this case, Ω1∪
Ω2 = Ω2 is open. �
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2.2 Limits, Continuity and Differentiation
1. Compute the following limits if they exist:

(a) lim
z→−i

iz3 +1
z2 +1

;

(b) lim
z→∞

4+ z2

(z−1)2 .

(c) lim
z→0

Im(z)
z

.

Solution. (a)

lim
z→−i

iz3 +1
z2 +1

= lim
z→−i

i(z3 + i3)
z2 +1

= lim
z→−i

i(z+ i)(z2− iz+ i2)
(z+ i)(z− i)

= lim
z→−i

i(z2− iz+ i2)
z− i

= i
limz→−i(z2− iz+ i2)

limz→−i(z− i)

= i
limz→−i z2− i limz→−i z+ limz→−i i2

limz→−i z− limz→−i i

=
i((−i)2− i(−i)+ i2)

−i− i
=

3
2

(b)

lim
z→∞

4+ z2

(z−1)2 = lim
z→0

4+ z−2

(z−1−1)2

= lim
z→0

4z2 +1
(1− z)2 =

limz→0(4z2 +1)
limz→0(1− z)2

=
4(limz→0 z)2 + limz→0 1
(limz→0 1− limz→0 z)2 = 1

(c) Since

lim
Re(z)=0,z→0

Im(z)
z

= lim
y→0

y
yi

=−i

and

lim
Im(z)=0,z→0

Im(z)
z

= lim
x→0

0
x
= 0

the limit does not exist.
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2. Show the following limits:

(a) lim
z→∞

4z5

z5−42z
= 4;

(b) lim
z→∞

z4

z2 +42z
= ∞;

(c) lim
z→∞

(az+b)3

(cz+d)3 =
a3

c3 , if c 6= 0.

Solution. (a)

lim
z→∞

4z5

z5−42z
= lim

z→0

4
(1

z

)5(1
z

)5−42
(1

z

) = lim
z→0

4
1−42z4 = 4.

(b) Notice that

lim
z→∞

z4

z2 +42z
⇐⇒ lim

z→0

[
1/z4

1/z2 +42/z

]−1

⇐⇒ lim
z→0

[
1

z2 +42z3

]−1

⇐⇒ lim
z→0

(
z2 +42z3)= 0.

Therefore, lim
z→∞

z4

z2 +42z
= ∞.

(c)

lim
z→∞

(az+b)3

(cz+d)3 = lim
z→0

(a/z+b)3

(c/z+d)3 = lim
z→0

(a+bz)3

(c+dz)3 =
a3

c3 .

�

3. Show that lim
z→0

z/z does not exist.

Hint: Consider what happens to the function at points of the form x+0i for x→ 0,
x 6= 0, and then at points of the form 0+ yi for y→ 0, y 6= 0.

Proof. For z = x+0i, x 6= 0,

z
z
=

x
x
= 1→ 1 as x→ 0.

On the other hand, for z = 0+ yi, y 6= 0,

z
z
=

yi
−yi

=−1→−1 as y→ 0.

However, lim
z→0

z/z must be independent of direction of approach. Hence limit does

not exist. �
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4. Show that if f (z) is continuous at z0, so is | f (z)|.

Proof. Let f (z) = u(x,y)+ iv(x,y). Since f (z) is continuous at z0 = x0+y0i, u(x,y)
and v(x,y) are continuous at (x0,y0). Therefore,

(u(x,y))2 +(v(x,y))2

is continuous at (x0,y0) since the sums and products of continuous functions are
continuous. It follows that

| f (z)|=
√
(u(x,y))2 +(v(x,y))2

is continuous at z0 since the compositions of continuous functions are continuous.
�

5. Let

f (z) =

{
z3/z2 if z 6= 0
0 if z = 0

Show that
(a) f (z) is continuous everywhere on C;
(b) the complex derivative f ′(0) does not exist.

Proof. Since both z3 and z2 are continuous on C∗ =C\{0} and z2 6= 0, f (z) = z3/z2

is continuous on C∗.
At z = 0, we have

lim
z→0
| f (z)|= lim

z→0

∣∣∣∣z3

z2

∣∣∣∣= lim
z→0
|z|= 0

and hence limz→0 f (z) = 0= f (0). So f is also continuous at 0 and hence continuous
everywhere on C.
The complex derivative f ′(0), if exists, is given by

lim
z→0

f (z)− f (0)
z−0

= lim
z→0

z3

z3 .

Let z = x+ yi. If y = 0 and x→ 0, then

lim
z=x→0

z3

z3 = lim
x→0

x3

x3 = 1.

On the other hand, if x = 0 and y→ 0, then

lim
z=yi→0

z3

z3 = lim
x→0

(−yi)3

(yi)3 =−1.

So the limit limz→0 z3/z3 and hence f ′(0) do not exist. �
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6. Show that f (z) in (2) is actually nowhere differentiable, i.e., the complex derivative
f ′(z) does not exist for any z ∈ C.

Proof. It suffices to show that C-R equations fail at every z 6= 0:(
∂

∂x
+ i

∂

∂y

)
f (z) =

(
∂

∂x
+ i

∂

∂y

)
z3

z2

=
∂

∂x

(
z3

z2

)
+ i

∂

∂y

(
z3

z2

)
=

(
3z2

z2 −
2z3

z3

)
+ i
(
−3iz2

z2 −
2iz3

z3

)
=

6z2

z2 6= 0

for z 6= 0. �

7. Find f ′(z) when
(a) f (z) = z2−4z+2;
(b) f (z) = (1− z2)4;

(c) f (z) =
z+1

2z+1
(z 6=−1

2
);

(d) f (z) = e1/z (z 6= 0).

Answer. (a) 2z−4; (b) −8(1− z2)3z; (c) −1/(2z+1)2; (d) −e1/z/z2.

8. Prove the following version of complex L’Hospital: Let f (z) and g(z) be two
complex functions defined on |z− z0| < r for some r > 0. Suppose that f (z0) =
g(z0) = 0, f (z) and g(z) are differentiable at z0 and g′(z0) 6= 0. Then

lim
z→z0

f (z)
g(z)

=
f ′(z0)

g′(z0)

[Refer to: problems 1c and 6 in section 3.1; and problem 12 in section 3.2]

Proof. Since f (z) and g(z) are differentiable at z0, we have

lim
z→z0

f (z)− f (z0)

z− z0
= f ′(z0)

and

lim
z→z0

g(z)−g(z0)

z− z0
= g′(z0).

And since g′(z0) 6= 0,

lim
z→z0

f (z)− f (z0)

g(z)−g(z0)
=

limz→z0( f (z)− f (z0))/(z− z0)

limz→z0(g(z)−g(z0))/(z− z0)
=

f ′(z0)

g′(z0)
.

Finally, since f (z0) = g(z0) = 0,

lim
z→z0

f (z)
g(z)

=
f ′(z0)

g′(z0)
.

�
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9. Show that if f (z) satisfies the Cauchy-Riemann equations at z0, so does ( f (z))n for
every positive integer n.

Proof. Since f (z) satisfies the Cauchy-Riemann equations at z0,(
∂

∂x
+ i

∂

∂y

)
f (z) = 0

at z0. Therefore,(
∂

∂x
+ i

∂

∂y

)
( f (z))n =

∂

∂x
( f (z))n + i

∂

∂y
( f (z))n

= ( f (z))n−1 ∂

∂x
f (z)+ i( f (z))n−1 ∂

∂y
f (z)

= ( f (z))n−1
(

∂

∂x
+ i

∂

∂y

)
f (z) = 0

at z0. �

2.3 Analytic functions
1. Explain why the function f (z) = 2z2−3− zez + e−z is entire.

Proof. Since every polynomial is entire, 2z2−3 is entire; since both −z and ez are
entire, their product −zez is entire; since ez and −z are entire, their composition e−z

is entire. Finally, f (z) is the sum of 2z3−3, −zez and e−z and hence entire. �

2. Let f (z) be an analytic function on a connected open set D. If there are two constants
c1 and c2 ∈ C, not all zero, such that c1 f (z)+ c2 f (z) = 0 for all z ∈ D, then f (z) is
a constant on D.

Proof. If c2 = 0, c1 6= 0 since c1 and c2 cannot be both zero. Then we have c1 f (z) =
0 and hence f (z) = 0 for all z ∈ D.
If c2 6= 0, f (z) =−(c1/c2) f (z). And since f (z) is analytic in D, f (z) is anlaytic in
D. So both f (z) and f (z) are analytic in D. Therefore, both f (z) and f (z) satisfy
Cauchy-Riemann equations in D. Hence(

∂

∂x
+ i

∂

∂y

)
(u+ vi) = 0

and (
∂

∂x
+ i

∂

∂y

)
(u− vi) = 0

in D, where f (z) = u(x,y)+ iv(x,y) with u = Re( f ) and v = Im( f ). It follows that(
∂

∂x
+ i

∂

∂y

)
u =

(
∂

∂x
+ i

∂

∂y

)
v = 0

and hence ux = uy = vx = vy = 0 in D. Therefore, u and v are constants on D and
hence f (z)≡ const. �
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3. Show that the function sin(z) is nowhere analytic on C.

Proof. Since(
∂

∂x
+ i

∂

∂y

)
sin(z) =

∂

∂x
sin(z)+ i

∂

∂y
sin(z)

= cos(z)
∂ z
∂x

+ icos(z)
∂ z
∂y

= cos(z)+ icos(z)(−i) = 2cos(z)

sin(z) is not differentiable and hence not analytic at every point z satisfying cos(z) 6=
0. At every point z0 satisfying cos(z0) = 0, i.e., z0 = nπ +π/2, sin(z) is not differ-
entiable in |z− z0|< r for all r > 0. Hence sin(z) is not analytic at z0 = nπ +π/2
either. In conclusion, sin(z) is nowhere analytic. �

4. Let f (z) = u(x,y)+ iv(x,y) be an entire function satisfying u(x,y) ≤ x for all z =
x+ yi. Show that f (z) is a polynomial of degree at most one.

Proof. Let g(z) = exp( f (z)− z). Then |g(z)|= exp(u(x,y)− x). Since u(x,y)≤ x,
|g(z)| ≤ 1 for all z. And since g(z) is entire, g(z) must be constant by Louville’s
theorem. Therefore, g′(z) ≡ 0. That is, ( f ′(z)− 1)exp( f (z)− z) ≡ 0 and hence
f ′(z) = 1 for all z. So f (z)≡ z+ c for some constant c. �

5. Show that

|exp(z3 + i)+ exp(−iz2)| ≤ ex3−3xy2
+ e2xy

where x = Re(z) and y = Im(z).

Proof. Note that |ez|= eRe(z). Therefore,

|exp(z3 + i)+ exp(−iz2)| ≤ |exp(z3 + i)|+ |exp(−iz2)|
= exp(Re(z3 + i))+ exp(Re(−iz2))

= exp(Re((x3−3xy2)+(3x2y− y3 +1)i))

+ exp(Re(2xy− (x2− y2)i))

= ex3−3xy2
+ e2xy.

�

6. Let f (z) = u(x,y)+ iv(x,y) be an entire function satisfying

v(x,y)≥ x

for all z = x+ yi, where u(x,y) = Re( f (z)) and v(x,y) = Im( f (z)). Show that f (z)
is a polynomial of degree 1.
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Proof. Let g(z) = exp(i f (z)+ z). Then

|g(z)|= |exp((−v(x,y)+ iu(x,y))+(x+ iy))|= exp(x− v(x,y)).

Since v(x,y) ≤ x, x− v(x,y) ≤ 0 and |g(z)| ≤ 1 for all z. And since g(z) is entire,
g(z) must be constant by Louville’s theorem. Therefore, g′(z)≡ 0. That is, (i f ′(z)+
1)exp(i f (z)+z)≡ 0 and hence f ′(z) = i for all z. So f (z)≡ iz+c for some constant
c. �

7. Show that the entire function cosh(z) takes every value in C infinitely many times.

Proof. For every w0 ∈ C, the quadratic equation y2−2w0y+1 = 0 has a complex
root y0. We cannot have y0 = 0 since 02− 2w0 · 0+ 1 6= 0. Therefore, y0 6= 0 and
there is z0 ∈ C such that ez0 = y0. Then

cosh(z0) =
ez0 + e−z0

2
=

y2
0 +1
2y0

=
2w0y0

2y0
= w0.

And since cosh(z+2πi) = cosh(z), cosh(z0 +2nπi) = w0 for all integers n. There-
fore, cosh(z) takes every value w0 infinitely many times. �

8. Determine which of the following functions f (z) are entire and which are not? You
must justify your answer. Also find the complex derivative f ′(z) of f (z) if f (z) is
entire. Here z = x+ yi with x = Re(z) and y = Im(z).

(a) f (z) =
1

1+ |z|2

Solution. Since u(x,y) = Re( f (z)) = (1+ x2 + y2)−1 and v(x,y) = 0, ux =
2x(1+x2+y2)−2 6= 0 = vy. Hence the Cauchy-Riemann equations fail for f (z)
and f (z) is not entire.

(b) f (z) = 2(3
z) (here 2z and 3z are taken to be the principle values of 2z and 3z,

respectively, by convention)

Solution. Let g(z) = 2z and h(z) = 23z
. Since both g(z) and h(z) are entire,

f (z) = g(h(z)) is entire and

f ′(z) = g′(h(z))h′(z) = 23z
3z(ln2)(ln3)

by chain rule.

(c) f (z) = (x2− y2)−2xyi

Solution. Since(
∂

∂x
+ i

∂

∂y

)
f = (2x−2yi)+ i(−2y−2xi) = 4x−4yi 6= 0,

the Cauchy-Riemann equations fail for f (z) and hence f (z) is not entire.
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(d) f (z) = (x2− y2)+2xyi

Solution. Since(
∂

∂x
+ i

∂

∂y

)
f = (2x−2yi)+ i(2y+2xi) = 0,

the Cauchy-Riemann equations hold for f (z) everywhere. And since fx and fy
are continous, f (z) is analytic on C. And f ′(z) = fx = 2x+2yi = 2z.

9. Let CR denote the upper half of the circle |z|= R for some R > 1. Show that∣∣∣∣ eiz

z2 + z+1

∣∣∣∣≤ 1
(R−1)2

for all z lying on CR.

Proof. For z ∈CR, |z|= R and Im(z)≥ 0. Let z = x+ yi. Since y = Im(z)≥ 0,

|eiz|= |ei(x+yi)|= |e−y+xi|= e−y ≤ 1

for z ∈CR. And since

|z2 + z+1|=

∣∣∣∣∣
(

z− −1+
√

3i
2

)(
z− −1−

√
3i

2

)∣∣∣∣∣
=

∣∣∣∣∣z− −1+
√

3i
2

∣∣∣∣∣
∣∣∣∣∣z− −1−

√
3i

2

∣∣∣∣∣
≥

(
|z|−

∣∣∣∣∣−1+
√

3i
2

∣∣∣∣∣
)(
|z|−

∣∣∣∣∣−1−
√

3i
2

∣∣∣∣∣
)

= (R−1)(R−1) = (R−1)2,

we obtain∣∣∣∣ eiz

z2 + z+1

∣∣∣∣≤ 1
(R−1)2

for z ∈CR. �

10. Let

f (z) =

{
z2/|z| if z 6= 0
0 if z = 0

Show that f (z) is continuous everywhere but nowhere analytic on C.
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Proof. Since both z and |z| are continuous on C, z2/|z| is continuous on C∗. There-
fore, f (z) is continuous on C∗. To see that it is continuous at 0, we just have to show
that

lim
z→0

f (z) = lim
z→0

z2

|z|
= f (0) = 0.

This follows from

lim
z→0

∣∣∣∣ z2

|z|

∣∣∣∣= lim
z→0

|z|2

|z|
= lim

z→0
|z|= 0.

Therefore, f (z) is continuous everywhere on C.
To show that f (z) is nowhere analytic, it suffices to show that the Cauchy-Riemann
equations fail for f (z) on C∗. This follows from(

∂

∂x
+ i

∂

∂y

)(
z2

|z|

)
=

(
2z
|z|
− xz2

|z|3

)
+ i
(
−2iz
|z|
− yz2

|z|3

)
=

(4z− x− iy)z2

|z|3
=

3z
|z|
6= 0

for z 6= 0. Consequently, f (z) is nowhere analytic. �

11. Find where

tan−1(z) =
i
2

Log
i+ z
i− z

is analytic?

Solution. The branch locus of tan−1(z) is{
z :

i+ z
i− z

= w ∈ (−∞,0]
}
=

{
z : z = i

w−1
w+1

,w ∈ (−∞,0]
}
.

For w ∈ (−∞,0],

w−1
w+1

= 1− 2
w+1

∈ (−∞,−1]∪ (1,∞)

so tan−1(z) is analytic in

C\{z : Re(z) = 0, Im(z) ∈ (−∞,−1]∪ [1,∞)} .
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12. Show that the following functions are defined on all of C, but are nowhere analytic
(here z = x+ iy):

(a) z 7→ 2xy+ i(x2 + y2);
(b) z 7→ eyeix.

Proof. (a) Notice that the real and imaginary components of the function

f (z) = f (x+ iy) = 2xy+ i(x2 + y2)

are well defined. Hence the function f (z) is defined on all C. If f (z) were analytic
then we will have

ux = vy ⇒ 2y = 2y (2.11)

and

uy =−vx ⇒ 2x =−2x (2.12)

Equation (2.11) is true for all z ∈ C. However, equation (2.12) is true only on
the imaginary axis. Hence, there is no point in C for which the functions f (z)
is differentiable on a neighbourhood (since the Cauchy Riemann equations are
necessary for differentiability) and therefore, f (z) is nowhere analytic.
(b) Note that the real and imaginary components of the function

f (z) = f (x+ iy) = eyeix = ey cosx+ iey sinx

are well defined. Hence the function f (z) is defined on all C. If f (z) were analytic
then we will have

ux = vy⇒−ey sinx = ey sinx⇒ 2ey sinx = 0⇒ sinx = 0

and
uy =−vx⇒ ey cosx =−ey cosx⇒ 2ey cosx = 0⇒ cosx = 0.

On the one hand, we have that the roots of sinx are nπ (n = 0,±1,±2, . . .), but
cos(nπ) = (−1)n 6= 0. On the other hand, the roots of cosx are (2n−1)π/2 but
sin((2n−1)π/2) =−cos(nπ) =−(−1)n 6= 0. Consequently, the Cauchy-Riemann
equations are not satisfied anywhere. �

13. Show where the function z 7→ x3 + i(1− y)3 is:
(a) analytic;
(b) differentiable (here z = x+ iy).

Solution. If the function

f (z) = f (z+ iy) = x3 + i(1− y)3

were analytic then we will have

ux = vy ⇒ 3x2 =−3(1− y)2,
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which is only satisfied at x = 0, y = 1; and, on the other hand,

uy =−vx ⇒ 0 = 0,

which holds everywhere. Note also that the componentes of f (z), and all its first-
order partials exist everywhere.
Since the Cauchy-Riemann equations only hold at z = i, the function f (z) is only dif-
ferentiable at z = i. Hence, in particular, it is not differentiable on any neighbourhood
of any point, and therefore is nowhere analytic. �

14. Verify that the following functions are analytic on their domain of definition, and
state the derivative, (here z = x+ iy = eiθ ):

(a) z 7→ lnr+ iθ , domain {z : r > 0, 0 < θ < 2π};
(b) z 7→ 4z+1

z3− z
, domain C\{0,1,−1}.

Solution. (a) We have ur = 1/r, vr = 0, uθ = 0, vθ = 1. Hence u, ur, uθ , v, vr, vθ

are defined and continuous on the domain, with the Cauchy-Riemann equations
being satisfied. That is

rur = vθ ⇔ r · 1
r
= 1, and uθ =−vr ⇔ 0 = 0.

The derivative is then

f ′(z) = e−iθ (ur + ivr) = e−iθ
(

1
r

)
=

1
reiθ =

1
z
,

since z = reiθ . This is defined on the whole domain, Therefore the function f (z) is
analytic there.
(b) The functions is a rational function and hence exists and is differentiable as long
as the denominator does not vanish, which is true on the whole domain. Hence f is
analytic on the whole domain, with

f ′(z) =
(z3− z) ·4− (4z+1)(3z2−1)

(z3− z)2 =
−(8z3 +3z+1)

(z3− z)2 .

�

2.3.1 Harmonic functions
1. Verify that the following functions u are harmonic, and in each case give a conjugate

harmonic function v (i.e. v such that u+ iv is analytic).
(a) u(x,y) = 3x2y+2x2− y3−2y2,
(b) y(x,y) = ln(x2 + y2).

Solution. (a) If u(x,y) = 3x2y+2x2− y3−2y2, then

ux = 6xy+4x, uy = 3x2−3x2−4y
uxx = 6y+4, uyy =−6y−4
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Thus
∆u = uxx +uyy = 6y+4+(−6y−4) = 0.

Hence, u is harmonic.
The harmonic conjugate of u will satisfy the Cauchy-Riemann equations and have
continuos partials of all orders. By Cauchy-Riemann equations

ux = vy, vx =−uy,

we have that vy = 6xy+4x. Thus

v =
∫
(6xy+4x)dy = 3xy2 +4xy+g(x).

Thus
vx = 3y2 +4y+g′(x)

Since vx =−uy,

3y2 +4y+g′(x) = −3x2 +3y2 +4y
g′(x) = −3x2

g(x) = −x3

Therefore, the harmonic conjugate is

v(x,y) = 3xy2 +4xy− x3.

(b) If u(x,y) = ln(x2− y2), then

ux =
2x

x2 + y2 , uy =
2y

x2 + y2

uxx =
2(y2− x2)

(x2 + y2)2 , uyy =
2(x2− y2)

(x2 + y2)2

Thus

∆u = uxx +uyy =
2(y2− x2)

x2 + y2 +
2(x2− y2)

x2 + y2 x2 + y2 = 0.

Hence, u is harmonic.
Similarly to the previous part, by Cauchy-Riemann equations

ux = vy, vx =−uy,

we have that vy =
2x

x2 + y2 . Thus

v =
∫ 2x

x2 + y2 dy = 2arctan
y
x
+g(x)

So we have
vx =

−2y
x2 + y2 +g′(x)
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Since vx =−uy,

−2y
x2 + y2 +g′(x) =

−2y
x2 + y2

g′(x) = 0
g(x) = c c ∈ R

Hence the harmonic conjugate is

v(x,y) = 2arctan
y
x

Notice that u is defined on C\{0} and v is not defined if x = 0. �

2. Suppose that U solves a Neumann problem for Laplace’s equation on a domain Ω.
Show that U + c also solves this problem for any c ∈ R. Does the same result hold
for the corresponding Dirichlet problem?

Proof. Let n be the external unit normal to Ω. If U solves a Neumann problem then
U satisfies the following conditions∆U = 0, in Ω;

dU
dn

= g, on ∂Ω

Considering U + c, we have

∆(U + c) = ∆U = 0.

So U + c satisfies Laplace’s equation in ∂Ω. Furthermore,

d
dn

(U + c) = ∇(U + c) ·n = ∇U ·n =
dU
dn

= g

Then U + c also satisfies the boundary condition on Ω. Therefore, U + c solves the
Neumann problem.
On the other hand, if U solves a Dirichlet problem, it satisfies the conditions{

∆U = 0, in Ω;
U = α, on ∂Ω

where α ∈ R. Certainly, U + c satisfies Laplace’s equation for any c ∈ R. However,
U + c satisfies the second condition only when c = 0. Hence, U + c does not solve a
Dirichlet problem. �

3. Let Λ be the domain {w| Imw < π}. Denote the two components of the boundary
of Λ by Γ1 = {w| Imw = 0} and Γ2 = {w| Imw = π}. Let C be an arbitrary real
constant.
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(a) Verify that the function

T = Im
(w

π
+C coshw

)
is harmonic on Λ, and satisfies the Dirichlet boundary conditions

T
∣∣∣
Γ1

= 0, T
∣∣∣
Γ2

= 1.

(b) For what values (if any) of C is T a bounded function on Λ, i.e. for what values
of C does there exist an M > 0 such that |T (w)| ≤M for all w ∈ Λ?

Solution. (a) Let w = u+ iv, then we have

T = Im
(w

π
+C coshw

)
=

v
π
+C sinhusinv.

Then

Tu =C coshusinv, Tv =
1
π
+C sinhucosv

Tuu =C sinhusinv, Tvv =−C sinhusinv

Thus
∆T = Tuu +Tvv =C sinhusinv+(−C sinhusinv) = 0.

Hence, T is harmonic on Λ.
Notice that on Γ1, we have that v = 0 and so T = 0. Finally, on Γ2 we have that
v = π , then T =

π

π
+0 = 1.

(b) If C = 0, the solution is
v
π

and |T | < 1 on Λ. If C 6= 0, considering the point

w0 = µ +
π

2
i, we have

T (w0) =
1
2
+C sinh µ

=
1
2
(
1+Ceµ +Ce−µ

)
For a function µ sufficiently large

|T (w0)|>
|C|
2

eµ ,

which tends to ∞ as µ → ∞. Therefore, T is unbounded on Λ. �



3. Complex Integrals

3.1 Contour integrals

1. Evaluate the following integrals:

(a)
∫ 2

1

(
t2 + i

)2
dt;

(b)
∫

π/4

0
e−2itdt;

(c)
∫

∞

0
teztdt when Re(z)< 0.

Solution.
(a)

∫ 2

1

(
t2 + i

)2
dt =

∫ 2

1
(t4 +2it2 + i2)dt

=
t5

5
+

2it3

3
− t
∣∣∣∣2
1
=

26
5
+

14
3

i

(b)

∫
π/4

0
e−2itdt =− e−2it

2i

∣∣∣∣π/4

0

=
1+ i

2i
=

1
2
− i

2
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(c) ∫
∞

0
teztdt =

1
z

∫
∞

0
td(ezt)

=
1
z

(
tezt∣∣∞

0 −
∫

∞

0
eztdt

)
=

1
z

(
lim
t→∞

tezt− 1
z

(
lim
t→∞

ezt−1
))

=
1
z2

where

lim
t→∞

tezt = lim
t→∞

ezt = 0

because

lim
t→∞
|tezt |= lim

t→∞
tet Re(z) = lim

t→∞

t
e−xt =− lim

t→∞

1
xe−xt = 0

by L’Hospital (see Problem 8 in section 2.2), and

lim
t→∞
|ezt |= lim

t→∞
et Re(z) = lim

t→∞

1
e−xt = 0

as x = Re(z)< 0.

2. Find the contour integral
∫

γ
zdz for

(a) γ is the triangle ABC oriented counterclockwise, where A = 0, B = 1+ i and
C =−2;

(b) γ is the circle |z− i|= 2 oriented counterclockwise.

Solution. (a)∫
γ

zdz =
∫

AB
zdz+

∫
BC

zdz+
∫

CA
zdz

=
∫ 1

0
t(1+ i)d(t(1+ i))

+
∫ 1

0
(1− t)(1+ i)−2td((1− t)(1+ i)−2t)

+
∫ 1

0
−2(1− t)d(−2(1− t))

=
∫ 1

0
2tdt +

∫ 1

0
((2i−4)+10t)dt +

∫ 1

0
4(t−1)dt

= 1+(2i−4)+5−2 = 2i

(b) ∫ 2π

0
i+2eitd(i+2eit) =

∫ 2π

0
2i(−i+2e−it)eitdt = 8πi.

�
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3. Compute the following contour integral∫
L

zdz,

where L is the boundary of the triangle ABC with A = 0, B = 1 and C = i, oriented
counter-clockwise.

Solution.∫
L

zdz =
∫

AB
zdz+

∫
BC

zdz+
∫

CA
zdz

=
∫ 1

0
tdt +

∫ 1

0
(1− t)+ tid((1− t)+ ti)

+
∫ 1

0
(1− t)id((1− t)i)

=
∫ 1

0
tdt +(−1+ i)

∫ 1

0
((1− t)− ti)dt−

∫ 1

0
(1− t)dt = i

�

4. Evaluate the contour integral∫
C

f (z)dz

using the parametric representations for C, where

f (z) =
z2−1

z

and the curve C is
(a) the semicircle z = 2eiθ (0≤ θ ≤ π);
(b) the semicircle z = 2eiθ (π ≤ θ ≤ 2π);
(c) the circle z = 2eiθ (0≤ θ ≤ 2π).

Solution.
(a)

∫
C

f (z)dz =
∫

π

0

4e2iθ −1
2eiθ d(2eiθ ) = (2e2iθ − i)

∣∣π
0 =−πi

(b)

∫
C

f (z)dz =
∫ 2π

π

4e2iθ −1
2eiθ d(2eiθ ) = (2e2iθ − i)

∣∣2π

π
=−πi

(c) Adding (a) and (b), we have −2πi.



52 Chapter 3. Complex Integrals

5. Redo previous Problem 4 using an antiderivative of f (z).

Solution. For (a),

∫
C

f (z)dz =
z2

2

∣∣∣∣−2

2
−

(
lim
z→−2

Im(z)>0

Log(z)−Log(2)

)
=−(ln2+πi− ln2) =−πi.

For (b),

∫
C

f (z)dz =
z2

2

∣∣∣∣2
−2
−

(
Log(2)− lim

z→−2
Im(z)<0

Log(z)

)
=−(ln2− (ln2−πi)) =−πi.

6. Let CR be the circle |z|= R (R > 1) oriented counterclockwise. Show that∣∣∣∣∫CR

Log(z2)

z2 dz
∣∣∣∣< 4π

(
π + lnR

R

)
and then

lim
R→∞

∫
CR

Log(z2)

z2 dz = 0.

Proof. Using expression (1.1) in Problem 5, we have

|Log(z2)| ≤
∣∣ ln |z2|

∣∣+π = 2lnR+π

for |z|= R > 1. Therefore,∣∣∣∣∫CR

Log(z2)

z2 dz
∣∣∣∣≤ 2πR

(
π +2lnR

R2

)
= 4π

(
π/2+ lnR

R

)
< 4π

(
π + lnR

R

)
.

And since

lim
R→∞

4π

(
π + lnR

R

)
= 4π lim

R→∞

1
R
= 0

by L’Hospital (see Problem 8 in section 2.2),

lim
R→∞

∫
CR

Log(z2)

z2 dz = 0.

�
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7. Without evaluating the integral, show that∣∣∣∣∫C

dz
z2 + z+1

∣∣∣∣≤ 9π

16

where C is the arc of the circle |z|= 3 from z = 3 to z = 3i lying in the first quadrant.

Proof. Since

|z2 + z+1| ≥ |z2|− |z|−1 = |z|2−|z|−1 = 5

for |z|= 3,∣∣∣∣ 1
z2 + z+1

∣∣∣∣≤ 1
5
.

Therefore,∣∣∣∣∫C

dz
z2 + z+1

∣∣∣∣≤ 6π

4

(
1
5

)
=

3π

10
<

9π

16
.

�

8. Evaluate the integral
∫

C Re(z)dz for the following contours C from −4 to 4:
(a) The line segments from −4 to −4−4i to 4−4i to 4;
(b) the lower half of the circle with radius 4, centre 0;
(c) the upper half of the circle with radius 4, centre 0.
(d) What conclusions (if any) can you draw about the function f (z) = Re(z) from

this?

Solution. (a) Notice that the contour C consists of three contours:
i. C1 defined by z(t) =−4−4it, with 0≤ t ≤ 1, followed by

ii. C2 defined by z(t) =−4(1−2t)−4i, with 0≤ t ≤ 1, and finally
iii. C3 defined by z(t) = 4−4i(1− t), with 0≤ t ≤ 1

Thus ∫
C

f (z)dz =
∫

C1+C2+C3

f (z)dz =
∫

C1

f (z)dz+
∫

C2

f (z)dz+
∫

C3

f (z)dz (3.1)

where f (z) = Re(z). Recall also that
∫

C f (z)dz =
∫ b

a f (z(t))z′(t)dt.
Now, for C1 we have that z′(t) =−4i. Then∫

C1

f (z)dz =
∫ 1

0
(−4)(−4i)dt = 16i

∫ 1

0
dt = 16it

∣∣∣1
0
= 16i.

For C2 we have that z′(t) = 8, then∫
C2

f (z)dz =
∫ 1

0
[−4(1−2t)] (8)dt

=
∫ 1

0
(64t−32)dt

= 64
∫ 1

0
tdt−32

∫ 1

0
dt

= 64
t2

2

∣∣∣1
0
−32t

∣∣∣1
0

= 32−32 = 0
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Finally for C3 we have that z′(t) = 4i, then∫
C3

f (z)dz =
∫ 1

0
(4)(4i)dt = 16i

∫ 1

0
dt = 16it

∣∣∣1
0
= 16i.

Therefore, using expression 3.1, we obtain∫
C

Re(z)dz = 32i

(b) In this case, the contour C is defined by

z(t) = 4eit = 4cos t +4isin t,

with π ≤ t ≤ 2π . Here we have z′(t) = 4ieit .
Thus ∫

C
Re(z)dz =

∫ 2π

π

(4cos t)(4ieit)dt

= 16i
∫ 2π

π

cos teitdt

= 16i
∫ 2π

π

cos2 tdt−16
∫ 2π

π

cos t sin tdt

= 8i
∫ 2π

π

[1+ cos(2t)]dt−16 · sin2 t
2

∣∣∣∣∣
2π

π

= 8i
[

t +
sin(2t)

2

]∣∣∣∣∣
2π

π

−0 = 8π i

(c) Finally, in this case, the contour C is defined by

z(t) =−4e−it =−4cos t +4isin t,

with 0≤ t ≤ π . Here we have z′(t) = 4ie−it .
Thus ∫

C
Re(z)dz =

∫
π

0
(−4cos t)(4ie−it)dt

= −16i
∫

π

0
cos te−itdt

= −16i
∫

π

0
cos2 tdt +16

∫
π

0
cos t sin tdt

= −8i
∫

π

0
[1+ cos(2t)]dt +16 · sin2 t

2

∣∣∣∣∣
π

0

= −8i
[

t +
sin(2t)

2

]∣∣∣∣∣
π

0

+0 =−8π i

(d) We have seen that the integral along each contour has a different value.
The reason is that the function f (z) = Re(z) is not analytic on any domain containing
any of the contours discussed in parts (a), (b) and (c). In fact, this function is nowhere
analytic.

�



3.2 Cauchy Integral Theorem and Cauchy Integral Formula 55

3.2 Cauchy Integral Theorem and Cauchy Integral Formula
1. Evaluate the following integrals, justifying your procedures. For c) and d) you

should also state why the integral is well defined (i.e., independent of the path taken).

(a)
∫

C

2dz
z2−1

, where C is the circle with radius 1/2, centre 1, positively oriented;

(b)
∫

C

(
ez +

1
z

)
dz, where C is the lower half of the circle with radius 1, centre 0,

negatively oriented;

(c)
∫

C
zez2

dz;

(d)
∫

C
coshzdz.

Solution. (a) Notice that
2

z2−1
=

1
z−1

− 1
z+1

.

Thus ∫
C

2
z2−1

dz =
∫

C

1
z−1

dz−
∫

C

1
z+1

dz.

On the one hand, ∫
C

1
z−1

dz = 2πi

by Cauchy integral formula, f (z0) =
1

2πi
∫

C
f (z)

z−z0
dz.

On the other hand, since 1/(z+1) is analytic on and inside C, then∫
C

1
z+1

dz = 0

by Cauchy’s Theorem. Therefore,∫
C

2
z2−1

dz = 2πi.

(b) Notice that the integrand f (z) = ez−1/z is analytic on C. The function

F(z) = ez−Log z

serves as an antiderivative of f (z). Here Logz is a branch of the logarithm chosen
with the branch cut on the positive imaginary axis. That is,

Logz = lnr+ iθ ,
(

r > 0,
π

2
< θ <

5π

2

)
.

Thus ∫
C

(
ez− 1

z

)
dz = (ez−Logz)

∣∣∣∣∣
−1

1

=
1
e
−πi− e+2πi =

1
e
− e+πi.
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(c) Since the integrand f (z) = zez2
is analytic, the integral is path independent. An

antiderivative of f (z) is

F(z) =
ez2

2
.

Thus

∫
C

zez2
dz =

ez2

2

∣∣∣∣∣
i

0

=
1
2e
− 1

2
.

(d) Since the integrand f (z) = coshz is analytic, the integral is path independent. An
antiderivative of f (z) is

F(z) = sinhz.

Thus ∫
C

coshzdz = sinhz
∣∣∣2πi

πi
= sinh(2πi)− sinh(πi) = 0.

�

2. Let CR be the circle with radius R, centre 0, positively oriented. Show that

lim
R→∞

∫
CR

z2 +4z+7
(z2 +4)(z2 +2z+2)

dz = 0.

Use this fact to prove that∫
C

z2 +4z+7
(z2 +4)(z2 +2z+2)

dz = 0.

where C is the circle with radius 5, centre 2, positively oriented.

Solution. Recall that for a contour C of length L and a piecewise continuous f (z) on
C, if M is a nonnegative constant such that | f (z)|< M for all points z on C at which
f (z) is defined, then ∣∣∣∣∫C

f (z)dz
∣∣∣∣< ML.

Now, consider the function

f (z) =
z2 +4z+7

(z2 +4)(z2 +2z+2)
.

For |z| large, we have that

| f (z)|=

∣∣∣1+ 4
z +

7
z2

∣∣∣∣∣∣1+ 4
z2

∣∣∣ |z2 +2z+2|
≈ 1
|z|2
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On the circle CR we have that |z|= R. Thus, for R large we have that

| f (z)|< 2
R2

Since the length of CR is 2πR, then∣∣∣∣∫CR

f (z)dz
∣∣∣∣< ML =

2
R2 2πR =

4π

R

which tends to 0 as R→ ∞.
On the other hand, notice that he singularities

z1 = 2i, z2 =−2i, z3 =−1+ i, and z4 =−1− i

of the function

f (z) =
z2 +4z+7

(z2 +4)(z2 +2z+2)

are inside C and since f (z) is analytic on the annulus defined by C and CR with
R > 7, then ∫

C
f (z)dz =

∫
CR

f (z)dz.

Thus
lim

R→∞

∫
C

f (z)dz = lim
R→∞

∫
CR

f (z)dz = 0.

Hence ∫
C

f (z)dz = 0.

�

3. Evaluate ∫
C

sinz
(z+1)7 dz,

where C is the circle of radius 5, centre 0, positively oriented.

Solution. Recall the extension of the Cauchy integral formula:

f (n)(z0) =
n!

2πi

∫
C

f (z)
(z− z0)n+1 dz.

Considering the function f (z) = sinz, which is analytic on C, we have

f (6)(−1) =
6!

2πi

∫
C

sinz
(z− (−1))6+1 =

6!
2πi

∫
C

sinz
(z+1)7 .

Since f (6)(z) =−sinz, then∫
C

sinz
(z+1)7 =

∫
C

sinz
(z− (−1))6+1 =−2πi

6!
sin(−1) =

2π sin(1)
6!

i

�
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4. Let C be the boundary of the triangle with vertices at the points 0, 3i and−4 oriented
counterclockwise. Compute the contour integral∫

C
(ez− z)dz.

Solution. By Cauchy Integral Theorem,
∫

C ezdz = 0 since C is closed and ez is entire.
Therefore,∫

C
(ez− z)dz =−

∫
C

zdz =−
∫

p1 p2

zdz−
∫

p2 p3

zdz−
∫

p3 p1

zdz

=−
∫ 1

0
(−3it)d(3it)−

∫ 1

0
(−3i(1− t)−4t)d(3i(1− t)−4t)

−
∫ 1

0
(−4)(1− t)d((−4)(1− t))

=−9
2
− 7

2
−12i+8 =−12i

where p1 = 0, p2 = 3i and p3 =−4. �

5. Compute∫ 1

−1
zidz

where the integrand denote the principal branch

zi = exp(iLogz)

of zi and where the path of integration is any continuous curve from z =−1 to z = 1
that, except for its starting and ending points, lies below the real axis.

Solution. Note that zi+1/(i+1) is an anti-derivative of zi outside the branch locus
(−∞,0]. So∫ 1

−1
zidz =

zi+1

i+1

∣∣∣∣
1
− lim

z→−1
Im(z)<0

zi+1

i+1

=
1

i+1
− exp((i+1)(−πi))

i+1

=
1+ eπ

i+1
=

1+ eπ

2
(1− i)

�
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6. Apply Cauchy Integral Theorem to show that∫
C

f (z)dz = 0

when C is the unit circle |z|= 1, in either direction, and when

(a) f (z) =
z3

z2 +5z+6
;

(b) f (z) = etanz;
(c) f (z) = Log(z+3i).

Solution. By Cauchy Integral Theorem,
∫
|z|=1 f (z)dz = 0 if f (z) is analytic on and

inside the circle |z|= 1. Hence it is enough to show that f (z) is analytic in {|z| ≤ 1}.
(a) f (z) is analytic in {z 6=−2,−3} and hence analytic in {|z| ≤ 1}.
(b) f (z) is analytic in {z : cosz = 0}= {z = nπ +π/2,n∈Z}. Since |nπ +π/2|>

1 for all integers n, f (z) is analytic in {|z| ≤ 1}.
(c) Log(z) is analytic in C\(−∞,0] and hence Log(z+ 3i) is analytic in C\{z :

z = x− 3i,x ∈ (−∞,0]}. Since |x− 3i| > 1 for all x real, f (z) is analytic in
{|z| ≤ 1}.

�

7. Let C1 denote the positively oriented boundary of the curve given by |x|+ |y|= 2
and C2 be the positively oriented circle |z|= 4. Apply Cauchy Integral Theorem to
show that∫

C1

f (z)dz =
∫

C2

f (z)dz

when
(a) f (z) =

z+1
z2 +1

;

(b) f (z) =
z+2

sin(z/2)
;

(c) f (z) =
sin(z)

z2 +6z+5
.

Solution. By Cauchy Integral Theorem,
∫

C1
f (z)dz =

∫
C2

f (z)dz if f (z) is analytic
on and between C1 and C2. Hence it is enough to show that f (z) is analytic in
{|x|+ |y| ≥ 2, |z| ≤ 4}.

(a) f (z) is analytic in {z 6= ±i}. Since ±i ∈ {|x|+ |y| < 2}, f (z) is analytic in
{|x|+ |y| ≥ 2, |z| ≤ 4}.

(b) f (z) is analytic in {z : sin(z/2) 6= 0}= {z 6= 2nπ : n ∈ Z}. Since 2nπ ∈ {|x|+
|y| < 2} for n = 0 and |2nπ| > 4 for n 6= 0 and n ∈ Z, f (z) is analytic in
{|x|+ |y| ≥ 2, |z| ≤ 4}.

(c) f (z) is analytic in {z 6= −1,−5}. Since −1 ∈ {|x|+ |y| < 2} for n = 0 and
|−5|> 4, f (z) is analytic in {|x|+ |y| ≥ 2, |z| ≤ 4}.

�
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8. Let C denote the positively oriented boundary of the square whose sides lie along
the lines x =±2 and y =±2. Evaluate each of these integrals

(a)
∫

C

zdz
z+1

;

(b)
∫

C

coshz
z2 + z

dz;

(c)
∫

C

tan(z/2)
z−π/2

dz.

Solution. (a) By Cauchy Integral Formula,∫
C

zdz
z+1

= 2πi(−1) =−2πi.

(b) By Cauchy Integral Theorem,∫
C

coshz
z2 + z

dz =
∫
|z|=r

coshz
z2 + z

dz+
∫
|z+1|=r

coshz
z2 + z

dz

for r = 1/2. By Cauchy Integral Formula,∫
|z|=r

coshz
z2 + z

dz = 2πi
cosh(z)

z+1

∣∣∣∣
z=0

= 2πi

and ∫
|z+1|=r

coshz
z2 + z

dz = 2πi
coshz

z

∣∣∣∣
z=−1

=−2πicosh(−1).

Hence∫
C

coshz
z2 + z

dz = 2πi(1− cosh(−1)).

(c) Note that tan(z/2) is analytic in {z 6= (2n+ 1)π : n ∈ Z} and hence analytic
inside C. Therefore,∫

C

tan(z/2)
z−π/2

dz = 2πi tan(π/4) = 2πi

by Cauchy Integral Formula.
�

9. Find the value of the integral g(z) around the circle |z− i|= 2 oriented counterclock-
wise when

(a) g(z) =
1

z2 +4
;

(b) g(z) =
1

z(z2 +4)
.
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Solution. (a) Since −2i 6∈ {|z− i| ≤ 2} and 2i ∈ {|z− i| ≤ 2},∫
|z−i|=2

g(z)dz =
∫
|z−i|=2

(z+2i)−1

z−2i
dz = 2πi(2i+2i)−1 =

π

2

by Cauchy Integral Formula.
(b) By Cauchy Integral Theorem,∫

|z−i|=2
g(z)dz =

∫
|z|=r

g(z)dz+
∫
|z−2i|=r

g(z)dz

for r < 1/2. Since∫
|z|=r

g(z)dz = 2πi
1

z2 +4

∣∣∣∣
z=0

=
πi
2

and ∫
|z−2i|=r

g(z)dz = 2πi
1

z(z+2i)

∣∣∣∣
z=2i

=−πi
4

by Cauchy Integral Formula,∫
|z−i|=2

g(z)dz =
πi
4

�

10. Compute the integrals of the following functions along the curves C1 = {|z|= 1}
and C2 = {|z−2|= 1}, both oriented counterclockwise:

(a)
1

2z− z2 ;

(b)
sinhz

(2z− z2)2 .

Solution. (a)∫
|z|=1

dz
2z− z2 =

∫
|z|=1

(2− z)−1

z
dz = 2πi(2−0)−1 = πi

(b) ∫
|z|=1

sinhz
(2z− z2)2 dz =

∫
|z|=1

(sinhz)(2− z)−2

z2 dz

= 2πi((sinhz)(2− z)−2)′
∣∣∣∣
z=0

=
πi
2

�
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11. Show that if f is analytic inside and on a simple closed curve C and z0 is not on C,
then

(n−1)!
∫

C

f (m)(z)
(z− z0)n dz = (m+n−1)!

∫
C

f (z)
(z− z0)m+n dz

for all positive integers m and n.

Proof. If z0 lies outside C, then∫
C

f (m)(z)
(z− z0)n dz =

∫
C

f (z)
(z− z0)m+n dz = 0

by Cauchy Integral Theorem, since f (m)z/(z−z0)
n and f (z)/(z−z0)

m+n are analytic
on and inside C.
If z0 lies inside C, then

(n−1)!
∫

C

f (m)(z)
(z− z0)n dz = ( f (m)(z))(n−1)∣∣

z=z0
= f (m+n−1)(z0)

and

(m+n−1)!
∫

C

f (z)
(z− z0)m+n dz = f (m+n−1)(z0)

by Cauchy Integral Formula. Therefore,

(n−1)!
∫

C

f (m)(z)
(z− z0)n dz = (m+n−1)!

∫
C

f (z)
(z− z0)m+n dz.

�

12. Let f (z) be an entire function. Show that f (z) is a constant if | f (z)| ≤ ln(|z|+1) for
all z ∈ C.

Proof. For every z0 ∈ C, we have

f ′(z0) =
1

2πi

∫
|z−z0|=R

f (z)
(z− z0)2 dz

for all R > 0. Since∣∣∣∣ f (z)
(z− z0)2

∣∣∣∣≤ ln(|z|+1)
R2 ≤ ln(R+ |z0|+1)

R2

for |z− z0|= R,

| f ′(z0)|=
∣∣∣∣ 1
2πi

∫
|z−z0|=R

f (z)
(z− z0)2 dz

∣∣∣∣≤ ln(R+ |z0|)+1
R

.

And since

lim
R→∞

ln(R+ |z0|+1)
R

= lim
R→∞

1
R+ |z0|+1

= 0,

by L’Hospital (see Problem 8, section 2.2), we conclude that | f ′(z0)|= 0 and hence
f ′(z0) = 0 for every z0 ∈ C. Therefore, f (z) is a constant. �
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13. Let CN be the boundary of the square

{|x| ≤ Nπ, |y| ≤ Nπ},

where N is a positive integer. Show that

lim
N→∞

∫
CN

dz
z3 cosz

= 0

Proof. When z = x+ yi ∈CN , either x =±Nπ or y =±Nπ . When x =±Nπ ,

|cosz|2 = (cosx)2 +(sinhy)2 ≥ (cosx)2 = (cos(Nπ))2 = 1

When y =±Nπ ,

|cosz|2 = (cosx)2 +(sinhy)2 ≥ (sinhy)2 = (sinh(Nπ))2 > 1

Therefore, |cosz| ≥ 1 when z ∈CN . We also have |z| ≥ Nπ when z ∈CN . Therefore,∣∣∣∣ 1
z3 cosz

∣∣∣∣≤ 1
N3π3

and ∣∣∣∣∫CN

dz
z3 cosz

∣∣∣∣≤ 1
N3π3

∫
CN

|dz|= 8Nπ

N3π3 =
8

N2π2

Since

lim
N→∞

8
N2π2 = 0

we conclude

lim
N→∞

∫
CN

dz
z3 cosz

= 0

�

14. Let CN be the boundary of the square{
|x| ≤ Nπ +

π

2
, |y| ≤ Nπ +

π

2

}
oriented counterclockwise, where N is a positive integer. Show that

lim
N→∞

∫
CN

dz
z2 sinz

= 0.

[Refer to: problem 6 in section 4.3]
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Proof. When z = x+yi ∈CN , either x =±(Nπ +π/2) or y =±(Nπ +π/2). When
x =±(Nπ +π/2),

|sinz|2 = (sinx)2 +(sinhy)2 ≥ (sinx)2 = (sin(Nπ +π/2))2 = 1

When y =±(Nπ +π/2),

|sinz|2 = (sinx)2 +(sinhy)2 ≥ (sinhy)2

= (sinh(Nπ +π/2))2 ≥ (sinh(3π/2))2 > 1.

Therefore, |sinz| ≥ 1 when z ∈ CN . We also have |z| ≥ Nπ + π/2 when z ∈ CN .
Consequently,∣∣∣∣ 1

z2 sinz

∣∣∣∣≤ 1
(N +1/2)2π2

and ∣∣∣∣∫CN

dz
z2 sinz

∣∣∣∣≤ 1
(N +1/2)2π2

∫
CN

|dz|= 8(N +1/2)π
(N +1/2)2π2 =

8
(N +1/2)π

.

And since

lim
N→∞

8
(N +1/2)π

= 0

we conclude

lim
N→∞

∫
CN

dz
z2 sinz

= 0

�

15. Compute the contour integral∫
C

z2011

z2011 + z2010 + z2009 +1
dz,

where C is the circle |z|= 2 oriented counter-clockwise.

Solution. First, we show that all roots of

z2011 + z2010 + z2009 +1 = 0

lie inside |z|< 2. Otherwise, suppose that

z2011 + z2010 + z2009 +1 = 0

for some |z| ≥ 2. Then

1+
1
z
+

1
z2 +

1
z2011 = 0
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and hence

1 =

∣∣∣∣−1
z
− 1

z2 −
1

z2011

∣∣∣∣≤ 1
|z|

+
1
|z|2

+
1
|z|2011 .

When |z| ≥ 2,

1
|z|

+
1
|z|2

+
1
|z|2011 ≤

1
2
+

1
4
+

1
22011 < 1.

This is a contradiction. Therefore, all roots of

z2011 + z2010 + z2009 +1 = 0

lie inside |z|< 2. It follows that∫
C

z2011

z2011 + z2010 + z2009 +1
dz =

∫
|z|=R

z2011

z2011 + z2010 + z2009 +1
dz

for all R > 2 by CIT.
We have

z2011

z2011 + z2010 + z2009 +1
= 1− 1

z
+

z2009− z+1
z(z2011 + z2010 + z2009 +1)

.

Since ∣∣∣∣ z2009− z+1
z(z2011 + z2010 + z2009 +1)

∣∣∣∣≤ R2009 +R+1
R(R2011−R2010−R2009−1)

for |z|= R,∣∣∣∣∫|z|=R

z2009− z+1
z(z2011 + z2010 + z2009 +1)

dz
∣∣∣∣≤ 2π(R2009 +R+1)

R2011−R2010−R2009−1

and hence

lim
R→∞

∫
|z|=R

z2009− z+1
z(z2011 + z2010 + z2009 +1)

dz = 0.

And we have∫
|z|=R

dz = 0 and
∫
|z|=R

dz
z
= 2πi.

Therefore,∫
C

z2011

z2011 + z2010 + z2009 +1
dz =−2πi.

�
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16. Calculate∫
C

z2008

z2009 + z+1
dz

where C is the circle |z|= 2 oriented counter-clockwise.

Solution. First, we prove that all zeroes of z2009 + z+1 lie inside the circle |z|= 2.
Otherwise, z2009 + z+1 = 0 for some |z| ≥ 2. Then

z2009 + z+1 = 0⇒ 1+
1

z2008 +
1

z2009 = 0

On the other hand,∣∣∣∣1+ 1
z2008 +

1
z2009

∣∣∣∣≥ 1− 1
|z|2008 −

1
|z|2009 ≥ 1− 1

22008 −
1

22009 > 0

for |z| ≥ 2. Contradiction. So all zeroes of z2009 + z+1 lie inside the circle |z|= 2
and hence z2008/(z2009 + z+1) is analytic in |z| ≥ 2. Therefore,∫

|z|=2

z2008

z2009 + z+1
dz =

∫
|z|=R

z2008

z2009 + z+1
dz

for all R > 2 by Cauchy Integral Theorem.
We observe that

z2008

z2009 + z+1
− 1

z
=− z+1

z(z2009 + z+1)
.

For |z|= R > 2,∣∣∣∣ z+1
z(z2009 + z+1)

∣∣∣∣≤ R+1
R(R2009−R−1)

and hence∣∣∣∣∫|z|=R

z+1
z2009 + z+1

dz
∣∣∣∣≤ 2π(R+1)

R2009−R−1
.

It follows that

lim
R→∞

∫
|z|=R

z+1
z2009 + z+1

dz = 0.

Therefore,∫
|z|=2

z2008

z2009 + z+1
dz = lim

R→∞

∫
|z|=R

z2008

z2009 + z+1
dz

= lim
R→∞

∫
|z|=R

dz
z
= 2πi.

�
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17. Let C be the circle |z|= 1 oriented counter-clockwise.

(a) Compute∫
C

1
z2−8z+1

dz

(b) Use or not use part (a) to compute∫
π

0

1
4− cosθ

dθ

Solution. The function

1
z2−8z+1

=
1

(z−4−
√

15)(z−4+
√

15)

has a singularity in |z|< 1 at z = 4−
√

15. Therefore,∫
C

1
z2−8z+1

dz = 2πi lim
z=4−

√
15

1
(z−4−

√
15)(z−4+

√
15)

= 2πi
(

1
z−4−

√
15

)∣∣∣∣
z=4−

√
15

=− πi√
15

That is,∫
C

1
z2−8z+1

dz =
∫

π

−π

deiθ

e2iθ −8eiθ +1

= i
∫

π

−π

eiθ

e2iθ −8eiθ +1
dθ

= i
∫

π

−π

1
eiθ + e−iθ −8

dθ

=− i
2

∫
π

−π

1
4− cosθ

dθ

=−i
∫

π

0

1
4− cosθ

dθ

Therefore,∫
π

0

1
4− cosθ

dθ =
π√
15

�

18. Compute the integral∫
π

−π

dx
2− (cosx+ sinx)

.
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Solution. Let z = eix. Then dz = ieixdx, dx =−idz/z and hence∫
π

−π

dx
2− (cosx+ sinx)

=
∫

π

−π

dx
2− (eix + e−ix)/2− (eix− e−ix)/(2i)

=
∫
|z|=1

−idz
2z− (z2 +1)/2− (z2−1)/(2i)

= (i−1)
∫
|z|=1

dz
z2−2(1+ i)z+ i

= (i−1)
∫
|z|=1

dz
(z− z1)(z− z2)

=
2πi(i−1)

z2− z1
=
√

2π

where z1 = (1+
√

2/2)+(1+
√

2/2)i and z2 = (1−
√

2/2)+(1−
√

2/2)i.
�

19. Let f (z) be an entire function satisfying

| f (z1 + z2)| ≤ | f (z1)|+ | f (z2)|

for all complex numbers z1 and z2. Show that f (z) is a polynomial of degree at most
1.

Proof. We have

n

∑
k=1

f (zk) = f (z1)+ f (z2)+
n

∑
k=3

f (zk)

= f (z1 + z2)+
n

∑
k=3

f (zk)

= f (z1 + z2)+ f (z3)+
n

∑
k=4

f (zk)

= f (z1 + z2 + z3)+
n

∑
k=4

f (zk)

= . . .= f (z1 + z2 + . . .+ zn) = f

(
n

∑
k=1

xk

)
.

Therefore,

n

∑
k=1

f (zk) = f (z1)+ f (z2)+ . . .+ f (zn) = f (z1 + z2 + . . .+ zn) = f

(
n

∑
k=1

xk

)
for all complex numbers z1,z2, . . . ,zn. Particularly, this holds for z1 = z2 = . . . =
zn = z/n:

n f
( z

n

)
= f (z)
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for all z ∈ C and all positive integer n. Let M be the maximum of | f (z)| for |z|= 1.
Then

| f (z)|= n
∣∣∣ f ( z

n

)∣∣∣≤ nM

for all z satisfying |z|= n.
By Cauchy Integral Formula,

f ′′(z0) =
1
πi

∫
|z|=n

f (z)
(z− z0)3 dz

for |z0|< n. Since∣∣∣∣ f (z)
(z− z0)3

∣∣∣∣= | f (z)|
|z− z0|3

≤ nM
(n−|z0|)3

for |z|= n and |z0|< n,∣∣∣∣ 1
πi

∫
|z|=n

f (z)
(z− z0)3 dz

∣∣∣∣≤ 2n2M
(n−|z0|)3 .

And since

lim
n→∞

2n2M
(n−|z0|)3 = lim

n→∞

2M/n
(1−|z0|/n)3 = 0,

we conclude that f ′′(z0) = 0 for all z0. Therefore, f ′(z) ≡ a is a constant and
f (z) = az+b is a polynomial of degree at most 1. �

20. Let f (z) be an entire function satisfying that | f (z)| ≤ |z|2 for all z. Show that
f (z)≡ az2 for some constant a satisfying |a| ≤ 1.

Proof. For every z0 ∈ C, we have

f ′′′(z0) =
3!

2πi

∫
|z−z0|=R

f (z)
(z− z0)4 dz

for all R > 0. Since∣∣∣∣ f (z)
(z− z0)4

∣∣∣∣≤ |z|2R4 ≤
(R+ |z0|)2

R4

for |z− z0|= R,

| f ′′′(z0)|=
∣∣∣∣ 3!
2πi

∫
|z−z0|=R

f (z)
(z− z0)4 dz

∣∣∣∣≤ 6(R+ |z0|)2

R3 .

And since

lim
R→∞

6(R+ |z0|)2

R3 = lim
R→∞

6
R

(
1+
|z0|
R

)2

= 0,
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we conclude that | f ′′′(z0)|= 0 and hence f ′′′(z0) = 0 for every z0 ∈ C. Therefore,
f ′′′(z)≡ 0, f ′′(z)≡ 2a, f ′(z)≡ 2az+b and f (z)≡ az2 +bz+ c for some constants
a,b and c.
Since | f (z)| ≤ |z|2, |az2 +bz+ c| ≤ |z|2 for all z. Take z = 0 and we obtain |c| ≤ 0.
Hence c = 0. Therefore, |az2 + bz| ≤ |z|2 and hence |az+ b| ≤ |z| for all z. Take
z = 0 again and we obtain |b| ≤ 0. Hence b = 0. So |az2| ≤ |z|2 and hence |a| ≤ 1.
In conclusion, f (z) = az2 with a satisfying |a| ≤ 1. �

21. Let f (z) be a complex polynomial of degree at least 2 and R be a positive number
such that f (z) 6= 0 for all |z| ≥ R. Show that∫

|z|=R

dz
f (z)

= 0.

[Refer to: problem 5 in section 4.3]

Proof. Let f (z) = a0+a1z+ · · ·+anzn, where an 6= 0 and n = deg f . Since f (z) 6= 0
for |z| ≥ R, 1/ f (z) is analytic in |z| ≥ R. Hence∫

|z|=R

dz
f (z)

=
∫
|z|=r

dz
f (z)

for all r ≥ R by Cauchy Integral Theorem.
Since

| f (z)| ≥ |an||z|n−|an−1||z|n−1−·· ·− |a0|

we have∣∣∣∣ 1
f (z)

∣∣∣∣≤ 1
|an|rn−|an−1|rn−1−·· ·− |a0|

for |z|= r sufficiently large. It follows that∣∣∣∣∫|z|=r

dz
f (z)

∣∣∣∣≤ 2πr
|an|rn−|an−1|rn−1−·· ·− |a0|

And since n≥ 2,

lim
r→∞

2πr
|an|rn−|an−1|rn−1−·· ·− |a0|

= lim
r→∞

2π

n|an|rn−1− (n−1)|an−1|rn−1−·· ·− |a1|
= 0

by L’Hospital. Hence∫
|z|=R

dz
f (z)

= lim
r→∞

∫
|z|=r

dz
f (z)

= 0.

�
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3.3 Improper integrals
1. Compute the integral∫

∞

0

xdx
x3 +1

.

Solution. Consider the contour integral of z/(z3 +1) along LR = [0,R], CR = {z =
Reit : 0≤ t ≤ 2π/3} and MR = {te2πi/3 : 0≤ t ≤ R}. By Cauchy Integral Formula,∫

LR

zdz
z3 +1

+
∫

CR

zdz
z3 +1

−
∫

MR

zdz
z3 +1

=
∫
|z−eπi/3|=1/2

zdz
z3 +1

By Cauchy Integral Formula,∫
|z−eπi/3|=1/2

zdz
z3 +1

=
2πiexp(πi/3)

(exp(πi/3)+1)(exp(πi/3)− exp(−πi/3))

=
2π exp(πi/3)

(exp(πi/3)+1)
√

3
.

For z lying on CR,∣∣∣∣ z
z3 +1

∣∣∣∣≤ R
R3−1

and hence∣∣∣∣∫CR

zdz
z3 +1

∣∣∣∣≤ 2πR
3(R3−1)

It follows that

lim
R→∞

∫
CR

zdz
z3 +1

= 0

And ∫
MR

zdz
z3 +1

= exp(4πi/3)
∫ R

0

xdx
x3 +1

Therefore, we have

(1− exp(4πi/3))
∫

∞

0

xdx
x3 +1

=
2π exp(πi/3)

(exp(πi/3)+1)
√

3

and hence∫
∞

0

xdx
x3 +1

=
2π

3
√

3
.

�
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2. Compute the integral∫
∞

0

cosx
x4 +1

dx.

Solution. Since cosx/(x4 +1) is even,∫
∞

0

cosx
x4 +1

dx =
1
2

∫
∞

−∞

cosx
x4 +1

dx.

Actually, we have∫
∞

0

cosx
x4 +1

dx =
1
2

∫
∞

−∞

eix

x4 +1
dx

since eix = cosx+ isinx.
Consider the contour integral of eiz/(z4 +1) along the path LR = [−R,R] and CR =
{|z|= R, Im(z)≥ 0}, oriented counterclockwise. By Cauchy Integral Theorem, we
have ∫

LR

eiz

z4 +1
dz+

∫
CR

eiz

z4 +1
dz

=
∫
|z−eπi/4|=1/2

eiz

z4 +1
dz+

∫
|z−e3πi/4|=1/2

eiz

z4 +1
dz

By Cauchy Integral Formula,∫
|z−eπi/4|=1/2

eiz

z4 +1
dz =

2πiei(
√

2+i
√

2)/2

(eπi/4− e3πi/4)(eπi/4− e−πi/4)(eπi/4− e−3πi/4)

=
π(1− i)exp((−

√
2+ i
√

2)/2)
2
√

2

and similarly,∫
|z−e3πi/4|=1/2

eiz

z4 +1
dz =

π(1+ i)exp((−
√

2− i
√

2)/2)
2
√

2

Therefore,∫
LR

eiz

z4 +1
dz+

∫
CR

eiz

z4 +1
dz =

πe−
√

2/2
√

2
(cos(

√
2/2)+ sin(

√
2/2)).

For z lying on CR, y = Im(z)≥ 0 and hence |eiz|= e−y ≤ 1. Hence∣∣∣∣ eiz

z4 +1

∣∣∣∣≤ 1
R4−1

and it follows that∣∣∣∣∫CR

eiz

z4 +1
dz
∣∣∣∣≤ πR

R4−1
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Since

lim
R→∞

πR
R4−1

= 0,

we conclude that

lim
R→∞

∫
CR

eiz

z4 +1
dz = 0.

Therefore,∫
∞

0

cosx
x4 +1

dx =
1
2

∫
∞

−∞

eix

x4 +1
dx

=
1
2

lim
R→∞

∫
LR

eiz

z4 +1
dz

=
πe−

√
2/2

2
√

2

(
cos

(√
2

2

)
+ sin

(√
2

2

))
.

�





4. Series

4.1 Taylor and Laurent series
1. Find the Taylor series of the following functions and their radii of convergence:

(a) zsinh(z2) at z = 0;

(b) ez at z = 2;

(c)
z2 + z
(1− z)2 at z =−1.

Solution. (a) Since ez = ∑
∞
n=0 zn/n!,

zsinh(z2) = z

(
ez2− e−z2

2

)

=
z
2

(
∞

∑
n=0

z2n

n!
−

∞

∑
n=0

(−1)n z2n

n!

)

=
∞

∑
n=0

1− (−1)n

2
z2n+1

n!

=
∞

∑
m=0

z4m+3

(2m+1)!

where we observe that (1−(−1)n)/2 = 0 if n = 2m is even and 1 if n = 2m+1
is odd. Since f (z) is entire, the radius of convergence is ∞.
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(b) Let w = z−2. Then z = w+2 and

ez = ew+2 = e2ew = e2
∞

∑
n=0

wn

n!
=

∞

∑
n=0

e2(z−2)n

n!
.

Since f (z) is entire, the radius of convergence is ∞.
(c) Let w = z+1. Then

z2 + z
(1− z)2 =

w2−w
(2−w)2 = 1− 3

2−w
+

2
(2−w)2 .

We have

− 3
2−w

=−3
2

1
1− (w/2)

=−3
2

∞

∑
n=0

wn

2n =−
∞

∑
n=0

3wn

2n+1

and

2
(2−w)2 =

(
2

2−w

)′
=

(
1

1− (w/2)

)′
=

(
∞

∑
n=0

wn

2n

)′
=

∞

∑
n=0

nwn−1

2n

=
∞

∑
n=0

(n+1)wn

2n+1 .

Therefore,

z2 + z
(1− z)2 = 1−

∞

∑
n=0

3wn

2n+1 +
∞

∑
n=0

(n+1)wn

2n+1 .

=
∞

∑
n=1

(n−2)(z+1)n

2n+1 .

Since f (z) is analytic in |z+1|< 2 and has a singularity at z = 1, the radius of
convergence is 2.

�

2. Find the Taylor series of (cosz)2 at z = π .

Solution. Let w = z−π . Then

(cosz)2 = (cos(z+π))2 = (cosw)2

=

(
eiw + e−iw

2

)2

=
1
4
(e2iw + e−2iw +2)

=
1
4

∞

∑
n=0

(2i)nwn

n!
+

1
4

∞

∑
n=0

(−2i)nwn

n!
+

1
2

=
1
2
+

1
2

∞

∑
n=0

(2i)2nw2n

(2n)!
=

1
2
+

∞

∑
n=0

(−1)n22n−1w2n

(2n)!

= 1+
∞

∑
n=1

(−1)n22n−1w2n

(2n)!
= 1+

∞

∑
n=1

(−1)n22n−1(z−π)2n

(2n)!

�
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3. Let f (z) be a function analytic at 0 and g(z) = f (z2). Show that g(2n−1)(0) = 0 for
all positive integers n.

Proof. Since f (z) is analytic at 0, f (z) = ∑
∞
n=0 anzn in some disk |z|< r. Therefore,

g(z) = f (z2) = ∑
∞
n=0 anz2n in |z|<

√
r and hence

∞

∑
m=0

g(m)(0)
m!

zm =
∞

∑
n=0

anz2n

And since the power series representation of an analytic function is unique, we must
have g(m)(0) = 0 for m is odd, i.e., m = 2n−1 for all positive integers n. �

4. Find a power-series expansion of the function f (z) =
1

3− z
about the point 4i, and

calculate the radius of convergence.

Solution. Notice that
1

3− z
=

1
(3−4iz)− (z−4i)

=
1

3−4i
· 1

1− z−4i
3−4i

=
1

3−4i

∞

∑
n=0

(
z−4i
3−4i

)n

for
∣∣∣∣ z−4i
3−4i

∣∣∣∣< 1

That is, for |z−4i|< |3−4i|< 5. Thus

1
3− z

=
∞

∑
n=0

(z−4i)n

(3−4i)n+1

with radius of convergence 5. �

5. Find a Laurent-series expansion of the function f (z) = z−1 sinh(z−1) about the point
0, and classify the singularity at 0.

Solution. For g(z) = sinhz we know that

g(n)(z) =

{
sinhz, when n is even;
coshz, when n is odd

Thus

g(n)(0) =

{
sinh(0) = 0, when n is even;
cosh(0) = 1, when n is odd

In this case, the Maclaurin series for g(z) = sinhz is:

z+
z3

3!
+

z5

5!
+ · · ·
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The Laurent series for g(z−1) = sinhz−1 is:

1
z
+

1
3!z3 +

1
5!z5 + · · ·

Thus Laurent series for f (z) = z−1g(z−1) = z−1 sinhz−1 is

1
z2 +

1
3!z4 +

1
5!z6 + · · ·

Notice that f (z) = z−1 sinhz−1 is analytic for z 6= 0, which means that z = 0 is an
isolated singularity and is, in fact, an essential singularity.

�

6. Consider the function
f (z) =

sinz
cos(z3)−1

.

Classify the singularity at z = 0 and calculate the residue.

Solution. Notice that f has an isolated singularity at z = 0. Thus, expanding numer-
ator and denominator in Taylor series we have

f (z) =
z− z3

3!
+

z5

5!
− z7

7!
+ · · ·

−z6

2!
+

z12

4!
− z18

6!
· · ·

=

z
(

1− z2

3!
+

z4

5!
− z6

7!
+ · · ·

)
−z6

2!

(
1− 2z6

4!
+

2z12

6!
−·· ·

)

=
−2
z5 ·

1− z2

3!
+

z4

5!
− z6

7!
+ · · ·

1− 2z6

4!
+

2z12

6!
−·· ·

=
−2
z5

(
1− z2

3!
+

z4

5!
− z6

7!
+ · · ·

)
· 1

1− 2z6

4!
+

2z12

6!
−·· ·

Let

g(z) =
2
4!
− 2z6

6!
+

2z12

8!
−·· ·

Thus we have

f (z) =
−2
z5

(
1− z2

3!
+

z4

5!
− z6

7!
+ · · ·

)
· 1

1− z6g(z)
(4.1)

where g(z) is analytic and nonzero at z = 0, in fact, g(0) = 1/12. So for ε sufficiently
small, if |z|< ε , then |g(z)|< 1. Thus for |z|< min{ε,1}, we can expand

1
1− z6g(z)
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in a geometric series. Hence

f (z) =
−2
z5

(
1− z2

3!
+

z4

5!
− z6

7!
+ · · ·

)(
1+ z6g(z)+ z12 (g(z))2 + · · ·

)
=

(
−2
z5 +

2
3!z3 −

2
5!z

+
2z
7!

+ · · ·
)(

1+ z6g(z)+ z12 (g(z))2 + · · ·
)

So the residue of f at z = 0 is
−2
5!

=
−1
60

. �

7. Prove that the coefficients cn in the expansion

1
1− z− z2 =

∞

∑
n=0

cnzn

satisfy the recurrence relation c0 = c1 = 1, cn = cn−1 + cn−2 for n≥ 2. What is the
radius of convergence of the series? What would be a good name for the cn’s?

Solution. Let S =
∞

∑
n=0

cnzn for z such that the series converges.

Thus

zS =
∞

∑
n=0

cnzn+1 =
∞

∑
n=1

cn−1zn

and

z2S =
∞

∑
n=0

cnzn+2 =
∞

∑
n=2

cn−2zn

Then we have

S− zS− z2S =
∞

∑
n=0

cnzn−
∞

∑
n=1

cn−1zn−
∞

∑
n=2

cn−2zn

= c0 + c1z+
∞

∑
n=2

cnzn− c0z−
∞

∑
n=2

cn−1zn−
∞

∑
n=2

cn−2zn

= c0 +(c1− c0)z+
∞

∑
n=2

(cn− cn−1− cn−2)zn

Now, we know that
1

1− z− z2 =
∞

∑
n=0

cnzn = S

then

S− zS− z2S = 1

Thus
c0 = 1, c1− c0 = 0, and cn− cn−1− cn−2 = 0 for n≥ 2.

Therefore c0 = c1 = 1, and cn = cn−1 + cn−2 for n≥ 2. �
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8. Find the Laurent series of the function

f (z) =
z+4

z2(z2 +3z+2)

in

(a) 0 < |z|< 1;
(b) 1 < |z|< 2;
(c) |z|> 2;
(d) 0 < |z+1|< 1.

Solution. We write f (z) as a sum of partial fractions:

z+4
z2(z2 +3z+2)

=− 5
2z

+
2
z2 +

3
z+1

− 1
2(z+2)

.

For 0 < |z|< 1,

3
z+1

= 3
∞

∑
n=0

(−1)nzn

and

− 1
2(z+2)

=−1
4

1
1+(z/2)

=−1
4

∞

∑
n=0

(−1)nzn

2n .

Therefore,

f (z) =− 5
2z

+
2
z2 +3

∞

∑
n=0

(−1)nzn− 1
4

∞

∑
n=0

(−1)nzn

2n

=
2
z2 −

5
2z

+
∞

∑
n=0

(−1)n(3−2−n−2)zn

For 1 < |z|< 2,

3
z+1

=
3
z

1
1+(1/z)

=
3
z

∞

∑
n=0

(−1)n

zn

and

− 1
2(z+2)

=−1
4

1
1+(z/2)

=−1
4

∞

∑
n=0

(−1)nzn

2n .

Therefore,

f (z) =− 5
2z

+
2
z2 +

3
z

∞

∑
n=0

(−1)n

zn − 1
4

∞

∑
n=0

(−1)nzn

2n

=
∞

∑
n=2

3(−1)n

zn+1 −
1
z2 +

1
2z
−

∞

∑
n=0

(−1)n2−n−2zn.
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For 2 < |z|< ∞,

3
z+1

=
3
z

1
1+(1/z)

=
3
z

∞

∑
n=0

(−1)n

zn

and

− 1
2(z+2)

=− 1
2z

1
1+(2/z)

=− 1
2z

∞

∑
n=0

(−1)n2n

zn .

Therefore,

f (z) =− 5
2z

+
2
z2 +

3
z

∞

∑
n=0

(−1)n

zn − 1
2z

∞

∑
n=0

(−1)n2n

zn

=
∞

∑
n=3

(−1)n+1(3−2n−2)

zn .

For 0 < |z+1|< 1, we let w = z+1 and then

z+4
z2(z2 +3z+2)

=
5

2(1−w)
+

2
(1−w)2 +

3
w
− 1

2(w+1)
.

For 0 < |w|< 1,

5
2(1−w)

=
5
2

∞

∑
n=0

wn,

2
(1−w)2 =

(
2

1−w

)′
=

(
∞

∑
n=0

2wn

)
=

∞

∑
n=0

2(n+1)wn

and

− 1
2(w+1)

=−1
2

∞

∑
n=0

(−1)nwn.

Therefore,

f (z) =
3
w
+

∞

∑
n=0

(
2n+

9
2
− (−1)n

2

)
wn

=
3

z+1
+

∞

∑
n=0

(
2n+

9
2
− (−1)n

2

)
(z+1)n.

�
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9. Write the two Laurent series in powers of z that represent the function

f (z) =
1

z(1+ z2)

in certain domains and specify these domains.

Solution. Since f (z) is analytic at z 6= 0,±i, it is analytic in 0 < |z| < 1 and 1 <
|z|< ∞.
For 0 < |z|< 1,

f (z) =
1

z(1+ z2)
=

1
z

(
1

1− (−z2)

)
=

1
z

∞

∑
n=0

(−1)nz2n =
∞

∑
n=0

(−1)nz2n−1

and for 1 < |z|< ∞,

f (z) =
1

z(1+ z2)
=

1
z3

(
1

1− (−z−2)

)
=

1
z3

∞

∑
n=0

(−1)nz−2n =
∞

∑
n=0

(−1)nz−2n−3

�

10. Let

f (z) =
z2

z2−3z+2

Find the Laurent series of f (z) in each of the following domains:

(a) 1 < |z|< 2
(b) 1 < |z−3|< 2

Solution. First, we write f (z) as a sum of partial fractions:

z2

z2−3z+2
= 1+

3z−2
(z−2)(z−1)

= 1+
4

z−2
− 1

z−1

In 1 < |z|< 2,

z2

z2−3z+2
= 1− 2

1− z/2
− 1

z
1

1−1/z

= 1−2
∞

∑
n=0

2−nzn− 1
z

∞

∑
n=0

z−n

=−1−
∞

∑
n=1

21−nzn−
∞

∑
n=1

z−n
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In 1 < |z−3|< 2,

z2

z2−3z+2
= 1+

4
(z−3)+1

− 1
2+(z−3)

= 1+
4

z−3

(
1

1+1/(z−3)

)
− 1

2

(
1

1+(z−3)/2

)
= 1+

4
z−3

∞

∑
n=0

(−1)n(z−3)−n− 1
2

∞

∑
n=0

(−1)n2−n(z−3)n

=
1
2
+4

∞

∑
n=1

(−1)n+1(z−3)−n−
∞

∑
n=1

(−1)n2−n−1(z−3)n

�

11. Let

f (z) =
z2

z2− z−2

Find the Laurent series of f (z) in each of the following domains:

(a) 1 < |z|< 2
(b) 0 < |z−2|< 1

Solution. First, we write f (z) as a sum of partial fractions:

z2

z2− z−2
= 1+

z+2
(z−2)(z+1)

= 1+
4

3(z−2)
− 1

3(z+1)

In 1 < |z|< 2,

z2

z2− z−2
= 1− 2

3
1

1− z/2
− 1

3z
1

1+1/z

= 1− 2
3

∞

∑
n=0

2−nzn− 1
3z

∞

∑
n=0

(−1)nz−n

=
1
3
− 1

3

∞

∑
n=1

21−nzn +
1
3

∞

∑
n=1

(−1)nz−n

In 0 < |z−2|< 1,

z2

z2− z−2
= 1+

4
3(z−2)

− 1
3

1
3+(z−2)

= 1+
4

3(z−2)
− 1

9
1

1+(z−2)/3

= 1+
4

3(z−2)
− 1

9

∞

∑
n=0

(−1)n3−n(z−2)n

=
8
9
+

4
3(z−2)

+
∞

∑
n=1

(−1)n+13−n−2(z−2)n

�



84 Chapter 4. Series

12. Find the Laurent series of
1

ez2−1

in z up to z6 and show the series converges in 0 < |z|<
√

2π .

Solution. Let f (z) = 1/(ez−1). Since

ez−1 =
∞

∑
n=0

zn

n!
−1 =

∞

∑
n=1

zn

n!
= z

∞

∑
n=0

zn

(n+1)!

ez−1 has a zero at 0 of multiplicity one and hence f (z) has pole at 0 of order 1. So
the Laurent series of f (z) is given by

f (z) =
∞

∑
n=−1

anzn =
a−1

z
+a0 +a1z+a2z2 +a3z3 + ∑

n≥4
anzn

in 0 < |z|< r for some r > 0.
Since (ez−1) f (z) = 1, we have

1 =

(
a−1 +a0z+a1z2 +a2z3 +a3z4 + ∑

n≥5
an−1zn

)
(

1+
z
2
+

z2

6
+

z3

24
+

z4

120
+ ∑

n≥5

zn

(n+1)!

)
.

Comparing the coefficients of 1, z, z2, z3 and z4 on both sides, we obtain

a−1 = 1

a0 +
a−1

2
= 0

a1 +
a0

2
+

a−1

6
= 0

a2 +
a1

2
+

a0

6
+

a−1

24
= 0

a3 +
a2

2
+

a1

6
+

a0

24
+

a−1

120
= 0

Solving it, we have a−1 = 1, a0 = −1/2, a1 = 1/12, a2 = 0 and a3 = −1/720.
Hence

f (z) =
1
z
− 1

2
+

z
12
− z3

720
+ ∑

n≥4
anzn

and

1
ez2−1

= f (z2) =
1
z2 −

1
2
+

z2

12
− z6

720
+ ∑

n≥4
anz2n.

Note that f (z) is analytic in {z : ez− 1 6= 0} = {z 6= 2nπi}. So it is analytic in
0 < |z|< 2π . Therefore, f (z2) is analytic in 0 < |z2|< 2π , i.e., 0 < |z|<

√
2π . So

the series converges in 0 < |z|<
√

2π . �
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4.2 Classification of singularities
1. For each of the following complex functions, do the following:

• find all its singularities in C;
• write the principal part of the function at each singularity;
• for each singularity, determine whether it is a pole, a removable singularity, or

an essential singularity;
• compute the residue of the function at each singularity.

(a) f (z) =
1

(cosz)2

Solution. f (z) is singular at cosz= 0, i.e., z= nπ+π/2. Let w= z−nπ−π/2.
Then

1
(cosz)2 =

1
(cos(w+nπ +π/2))2 =

1
(sinw)2 .

Since sinw has a zero of multiplicity one at w = 0, f (z) has a pole of order 2
at z = nπ +π/2. So

1
(sinw)2 =

a−2

w2 +
a−1

w
+ ∑

n≥0
anwn.

Since

(sinw)2 =

(
∞

∑
n=0

(−1)nw2n+1

(2n+1)!

)2

= w2 +
∞

∑
n=4

bnwn

we have

1 =

(
a−2

w2 +
a−1

w
+ ∑

n≥0
anwn

)(
w2 +

∞

∑
n=4

bnwn

)
.

Comparing the coefficients of 1 and w on both sides, we obtain a−2 = 1 and
a−1 = 0. So the principal part of f (z) at z = nπ +π/2 is

1
(z−nπ−π/2)2

with residue 0. �



86 Chapter 4. Series

(b) f (z) = (1− z3)exp
(

1
z

)
Solution. Since ez = ∑

∞
n=0 zn/n!,

(1− z3)exp
(

1
z

)
= (1− z3)

∞

∑
n=0

1
n!zn

=
∞

∑
n=0

1
n!zn −

∞

∑
n=0

1
n!zn−3

=
∞

∑
n=0

1
n!zn −

∞

∑
n=4

1
n!zn−3 −

3

∑
n=0

z3−n

n!

= 1+
∞

∑
n=1

1
n!zn −

∞

∑
n=1

1
(n+3)!zn −

3

∑
n=0

z3−n

n!

=
∞

∑
n=1

(
1
n!
− 1

(n+3)!

)
1
zn +1−

3

∑
n=0

z3−n

n!

Therefore, f (z) has an essential singularity at z = 0 with principal part
∞

∑
n=1

(
1
n!
− 1

(n+3)!

)
1
zn

and residue

Res
z=0

f (z) =
1
1!
− 1

4!
=

23
24

.

�

(c) f (z) =
sinz
z2010

Solution. Since

sinz
z2010 =

1
z2010

∞

∑
n=0

(−1)nz2n+1

(2n+1)!

=
∞

∑
n=0

(−1)nz2n−2009

(2n+1)!

=
1004

∑
n=0

(−1)nz2n−2009

(2n+1)!
+

∞

∑
n=1005

(−1)nz2n−2009

(2n+1)!

f (z) has a pole of order 2009 at z = 0 with principal part

1004

∑
n=0

(−1)nz2n−2009

(2n+1)!

and with residue

Res
z=0

sinz
z2010 =

(−1)1004

(2 ·1004+1)!
=

1
2009!

.

�
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(d) f (z) =
ez

1− z2

Solution. Since 1− z2 = (1− z)(1+ z), f (z) has poles of order 1 at 1 and −1.
Therefore,

Res
z=1

ez

1− z2 =
ez

(1− z2)′

∣∣∣∣
z=1

=−e
2

and

Res
z=−1

ez

1− z2 =
ez

(1− z2)′

∣∣∣∣
z=−1

=
1
2e

.

And the principal parts of f (z) at z = 1 and z =−1 are

− e
2(z−1)

and
1

2e(z+1)

respectively.
�

(e) f (z) = (1− z2)exp
(

1
z

)
Solution. The function has a singularity at 0 where

(1− z2)exp
(

1
z

)
= (1− z2)

∞

∑
n=0

1
(n!)zn

=
∞

∑
n=0

1
(n!)zn −

∞

∑
n=0

1
(n!)zn−2

= 1+
∞

∑
n=1

1
(n!)zn −

∞

∑
n=3

1
(n!)zn−2 − (z2 + z+

1
2
)

=−z2− z+
1
2
+

∞

∑
n=1

1
(n!)zn −

∞

∑
n=1

1
(n+2)!zn

=−z2− z+
1
2
+

∞

∑
n=1

(
1
n!
− 1

(n+2)!

)
z−n

So the principal part is

∞

∑
n=1

(
1
n!
− 1

(n+2)!

)
z−n

the function has an essential singularity at 0 and

Res
z=0

f (z) =
1
1!
− 1

3!
=

5
6

�
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(f) f (z) =
1

(sinz)2

Solution. The function has singularities at kπ for k ∈ Z. At z = kπ , we let
w = z− kπ and then

1
(sinz)2 =

1
(sinw)2 =

(
∞

∑
n=0

(−1)nw2n+1

(2n+1)!

)−1

=
1

w2

(
∞

∑
n=0

(−1)nw2n

(2n+1)!

)−1

=
1

w2

(
1−

∞

∑
n=1

(−1)n+1w2n

(2n+1)!

)−1

=
1

w2

∞

∑
m=0

(
∞

∑
n=1

(−1)n+1w2n

(2n+1)!

)m

=
1

w2

(
1+

∞

∑
n=2

anwn

)

So the principal part at kπ is

1
(z− kπ)2

the function has a pole of order 2 at kπ and

Res
z=kπ

f (z) = 0

�

(g) f (z) =
1− cosz

z2

Solution. The function has a singularity at 0 where

1− cosz
z2 =

1
z2

(
1−

∞

∑
n=0

(−1)nz2n

(2n)!

)
=

1
z2

∞

∑
n=1

(−1)n+1z2n

(2n)!

=
∞

∑
n=1

(−1)n+1z2n−2

(2n)!

So the principal part is 0, the function has a removable singularity at 0 and

Res
z=0

f (z) = 0

�



4.2 Classification of singularities 89

(h) f (z) =
ez

z(z−1)2

Solution. The function has two singularities at 0 and 1. At z = 0,

ez

z(z−1)2 =
1
z

(
∞

∑
n=0

zn

n!

)(
∞

∑
n=0

(n+1)zn

)

=
1
z

(
1+

∞

∑
n=1

anzn

)
So the principal part at 0 is 1/z, the function has a pole of order 1 at 0 and

Res
z=0

f (z) = 1

At z = 1, we let w = z−1 and then

ez

z(z−1)2 =
e1+w

(1+w)w2 =
e

w2

(
∞

∑
n=0

wn

n!

)(
∞

∑
n=0

(−1)nwn

)

=
e

w2

(
1+w+

∞

∑
n=2

wn

n!

)(
1−w+

∞

∑
n=2

(−1)nwn

)

=
e

w2

(
1+

∞

∑
n=2

anwn

)
So the principal part at 1 is

e
(z−1)2

the function has a pole of order 2 at 1 and

Res
z=1

f (z) = 0

�

(i) f (z) = tanz

Solution. The function has singularities at {cosz= 0}= {z= kπ+π/2 : k ∈Z.
At z = kπ +π/2, we let w = z− kπ−π/2 and then

tanz = tan
(

w+ kπ +
π

2

)
= tan

(
w+

π

2

)
=−cosw

sinw
Since sinw has a zero of multiplicity 1 at w = 0, tanz has a pole of order 1 at
z = kπ +π/2. Therefore

Res
z=kπ+π/2

tanz = Res
w=0

(
−cosw

sinw

)
=− cosw

(sinw)′

∣∣∣∣
w=0

=−1

and the principal part of tanz at z = kπ +π/2 is

− 1
w
=− 1

z− kπ−π/2
.

�
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(j) f (z) = (1− z2)sin
(

1
z

)
Solution. The function has a singularity at 0 where

(1− z2)sin
(

1
z

)
= (1− z2)

∞

∑
n=0

(−1)n

((2n+1)!)z2n+1

=
∞

∑
n=0

(−1)n

((2n+1)!)z2n+1 −
∞

∑
n=0

(−1)n

((2n+1)!)z2n−1

=−z+
∞

∑
n=0

(−1)n

((2n+1)!)z2n+1 −
∞

∑
n=1

(−1)n

(2n+1)!)z2n−1

=−z+
∞

∑
n=0

(−1)n

((2n+1)!)z2n+1 −
∞

∑
n=0

(−1)n+1

((2n+3)!)z2n+1

=−z+
∞

∑
n=0

(−1)n
(

1
(2n+1)!

+
1

(2n+3)!

)
z−2n−1

So the principal part is

∞

∑
n=0

(−1)n
(

1
(2n+1)!

+
1

(2n+3)!

)
z−2n−1.

Therefore, the function has an essential singularity at 0 and

Res
z=0

f (z) =
1
1!

+
1
3!

=
7
6
.

�

(k) f (z) =
ez

z2011

Solution. The function has a singularity at 0 where

ez

z2011 =
1

z2011

∞

∑
n=0

zn

n!

=
∞

∑
n=0

zn−2011

n!
=

2010

∑
n=0

zn−2011

n!
+

∞

∑
n=2011

zn−2011

n!

Therefore, the principal part of f (z) at z = 0 is

2010

∑
n=0

zn−2011

n!

and f (z) has a pole of order 2011 and residue

Res
z=0

f (z) =
1

2010!

at z = 0. �
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(l) f (z) =
cosz

z2− z3

Solution. The function has singularities at {z2− z3 = 0} = {z = 0,1}. At
z = 0, z2− z3 has a zero of multiplicity 2 and hence f (z) has a pole of order 2.
Suppose that the Laurent series of f (z) at z = 0 is given by

cosz
z2− z3 =

a−2

z2 +
a−1

z
+ ∑

n≥0
anzn.

Hence

(z2− z3)

(
a−2

z2 +
a−1

z
+ ∑

n≥0
anzn

)
= cosz = 1+

∞

∑
n=1

(−1)nz2n

(2n)!
.

Comparing the coefficients of 1 and z on both sides, we obtain that a−2 = 1
and a−1−a−2 = 0 and hence a−1 = a−2 = 1. So the principal part of f (z) at
z = 0 is

1
z2 +

1
z

with residue

Res
z=0

f (z) = 1.

At z = 1, z2− z3 has a zero of multiplicity 1 and hence f (z) has a pole of order
1. Hence

Res
z=1

cosz
z2− z3 =

cosz
(z2− z3)′

∣∣∣∣
z=1

=−cos(1)

and the principal part of f (z) at z = 1 is

−cos(1)
z−1

.

�

4.3 Applications of residues
1. Calculate ∫

C

8− z
z(4− z)

dz,

where C is the circle of radius 7, centre 0, negatively oriented.

Solution. Observe that

f (z) =
8− z

z(4− z)
=

8−2z+ z
z(4− z)

=
2
z
+

1
(4− z)

=
2
z
− 1

(z−4)
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The function f has two singularities on C, z = 0 and z = 4. Both are inside C. At
z = 4, −1/(z−4) is analytic and then

Res
z=0

f (z) = 2

Similarly, since 2/z is analytic at z = 4,

Res
z=4

f (z) =−1

From Cauchy’s residue theorem, and considering that C is negatively oriented, we
have that∫

C

8− z
z(4− z)

dz = −2πi
(

Res
z=0

f (z)+Res
z=4

f (z)
)

= −2πi(2−1) =−2πi

�

2. Compute the integral∫
π

0

dθ

2− cosθ
.

Solution. Since 1/(2− cosθ) is even,∫
π

0

dθ

2− cosθ
=

1
2

∫
π

−π

dθ

2− cosθ
.

Let z = eiθ . Then cosθ = (z+ z−1)/2 and dθ =−iz−1dz. Hence∫
π

0

dθ

2− cosθ
=

1
2

∫
π

−π

dθ

2− cosθ

=
∫
|z|=1

−idz
2z(2− (z+ z−1)/2)

= i
∫
|z|=1

dz
z2−4z+1

.

The function
1

z2−4z+1
=

1
(z−2−

√
3)(z−2+

√
3)

has a singularity in |z|< 1 at z = 2−
√

3. Therefore,∫
|z|=1

dz
z2−4z+1

= 2πi Res
z=2−

√
3

1
z2−4z+1

= 2πi
1

(z2−4z+1)′

∣∣∣∣
z=2−

√
3
=− πi√

3
.

Therefore,∫
π

0

dθ

2− cosθ
=

π√
3

�
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3. Let a,b ∈ R such that a2 > b2. Calculate the integral∫
π

0

dθ

a+bcosθ
.

Answer:
π√

a2−b2

4. Evaluate the contour integral of the following functions around the circle |z|= 2011
oriented counterclockwise:

(a)
1

sinz
;

(b)
1

e2z− ez .

Solution. (a) f (z) = 1/sinz is analytic in {z 6= nπ : n ∈ Z}. It has a pole of order
one at nπ since (sinz)′|z=nπ = cos(nπ) = (−1)n 6= 0. So

Res
z=nπ

1
sinz

=
1

cos(nπ)
= (−1)n.

Therefore,∫
|z|=2011

dz
sinz

= 2πi ∑
|nπ|<2011

Res
z=nπ

1
sinz

= 2πi ∑
|n|≤640

(−1)n = 2πi.

(b) f (z) = 1/(e2z− ez) is analytic in

{e2z− ez 6= 0}= {ez 6= 1}= {z 6= 2nπi : n ∈ Z}.

Since (e2z− ez)′|z=2nπi = 1 6= 0, f (z) has a pole of order one at 2nπi. So

Res
z=2nπi

1
e2z− ez =

1
2e2z− ez

∣∣∣∣
z=2nπi

= 1.

Therefore,∫
|z|=2011

dz
e2z− ez = 2πi ∑

|2nπi|<2011
Res

z=2nπi

1
e2z− ez

= 2πi ∑
|2nπi|<2011

1 = 2πi ∑
|n|≤320

1 = 1282πi.

�
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5. Let

f (z) = (z−a1)(z−a2)...(z−an)

be a complex polynomial with n≥ 2 distinct roots a1,a2, ...,an.
(a) Prove that∫

|z|=R

dz
f (z)

= 2πi
n

∑
k=1

1
∏ j 6=k(ak−a j)

for R > |ak| (k = 1,2, ...,n).

(b) Use (a) and Cauchy Integral Theorem to prove that
n

∑
k=1

1
∏ j 6=k(ak−a j)

= 0

for all distinct complex numbers a1,a2, ...,an.

Proof. By Residue theorem,∫
|z|=R

dz
f (z)

= 2πi
n

∑
k=1

Res
z=ak

1
f (z)

.

At each ak, 1/ f (z) has a pole of order one and

Res
z=ak

1
f (z)

= Res
z=ak

(
∏ j 6=k(z−a j)

)−1

z−ak
=

1
∏ j 6=k(ak−a j)

.

Therefore,∫
|z|=R

dz
f (z)

= 2πi
n

∑
k=1

1
∏ j 6=k(ak−a j)

.

Since deg( f (z)) = n≥ 2,∫
|z|=R

dz
f (z)

= 0

by Problem 21 in Section 3.2. Therefore,
n

∑
k=1

1
∏ j 6=k(ak−a j)

= 0.

�

6. Use Cauchy Integral Theorem or Residue Theorem to show that

1
2πi

∫
CN

dz
z2 sinz

=
1
6
+2

N

∑
n=1

(−1)n

n2π2

and conclude that

π2

12
=

∞

∑
n=1

(−1)n+1

n2 = 1− 1
22 +

1
32 −

1
42 + · · ·
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Solution. The function f (z) = 1/(z2 sinz) has singularities at z = nπ for n ∈ Z. So

1
2πi

∫
CN

dz
z2 sinz

=
n

∑
n=−N

Res
z=nπ

1
z2 sinz

by Residue Theorem.
At z = nπ for a nonzero integer n,

z2
∣∣∣
nπ
6= 0 and (sinz)′

∣∣∣
nπ
6= 0.

Therefore, 1/(z2 sinz) has a pole of order 1 at nπ for n 6= 0. It follows that

Res
z=nπ

1
z2 sinz

=
1

z2(sinz)′

∣∣∣∣
z=nπ

=
1

n2π2 cos(nπ)
=

(−1)n

n2π2

for n 6= 0.
At z = 0, z2 sinz has a zero multiplicity 3 and hence 1/(z2 sinz) has a pole of order
3. Suppose that the Laurent series of f (z) at z = 0 is given by

a−3

z3 +
a−2

z2 +
a−1

z
+ ∑

n≥0
anzn.

Then

z2 sinz

(
a−3

z3 +
a−2

z2 +
a−1

z
+ ∑

n≥0
anzn

)

=

(
1− z2

3!
+ ∑

n≥3
bnzn

)(
a−3 +a−2z+a−1z2 + ∑

n≥3
anzn

)
= 1.

Comparing the coefficients of 1, z and z2 on both sides, we have
a−3 = 1
a−2 = 0

a−1−
a−3

6
= 0

Solving the equation, we obtain a−1 = 1/6, a−2 = 0 and a−3 = 1. So

Res
z=0

1
z2 sinz

=
1
6
.

Therefore,

1
2πi

∫
CN

dz
z2 sinz

=
n

∑
n=−N

Res
z=nπ

1
z2 sinz

=
1
6
+

n=−1

∑
n=−N

(−1)n

n2π2 +
n=N

∑
n=1

(−1)n

n2π2 .
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We observe that

(−1)n

n2π2 =
(−1)−n

(−n)2π2

and hence we obtain

1
2πi

∫
CN

dz
z2 sinz

=
1
6
+2

N

∑
n=1

(−1)n

n2π2 .

By Problem 14 in section 3.2, we have

lim
N→∞

1
2πi

∫
CN

dz
z2 sinz

= 0

Consequently,

1
6
+2

∞

∑
n=1

(−1)n

n2π2 = 0

That is,

π2

12
=−

∞

∑
n=1

(−1)n

n2 =
∞

∑
n=1

(−1)n+1

n2 .

�

4.3.1 Improper integrals

1. Compute the integral
∫

∞

−∞

cosx
x4 + x2 +1

dx

Solution. since eix = cosx+ isinx,∫
∞

−∞

cosx
x4 + x2 +1

dx = Re
(∫

∞

−∞

eix

x4 + x2 +1
dx
)

Actually, we have∫
∞

−∞

cosx
x4 + x2 +1

dx =
∫

∞

−∞

eix

x4 + x2 +1
dx

in this case since sinx/(x4 + x2 +1) is odd.
Consider the contour integral of eiz/(z4 + z2 +1) along the path LR = [−R,R] and
CR = {|z|= R, Im(z)≥ 0}, oriented counterclockwise. By CIT or residue theorem,
we have ∫

LR

eiz

z4 + z2 +1
dz+

∫
CR

eiz

z4 + z2 +1
dz

= 2πi
n

∑
k=1

Res
z=zk

eiz

z4 + z2 +1
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where z1,z2, . . . ,zn are the singularities of eiz/(z4 + z2 +1) inside the region {|z|<
R, Im(z)> 0}.
We find the singularities of eiz/(z4 + z2 +1) by solving z4 + z2 +1 = 0: we observe
that (z2−1)(z4 + z2 +1) = z6−1. So the function has four singularities ±eπi/3 and
±e2πi/3. Two of them eπi/3 and e2πi/3 lie above the real axis. Therefore,∫

LR

eiz

z4 + z2 +1
dz+

∫
CR

eiz

z4 + z2 +1
dz

= 2πi
(

Res
z=eπi/3

eiz

z4 + z2 +1
+ Res

z=e2πi/3

eiz

z4 + z2 +1

)
.

Since all zeros of z4 + z2 +1 have multiplicity one, all poles of

eiz/(z4 + z2 +1)

have order one. Therefore,

Res
z=eπi/3

eiz

z4 + z2 +1
=

eiz

(z4 + z2 +1)′

∣∣∣∣
z=eπi/3

=
exp((−

√
3+ i)/2)√

3i−3

and

Res
z=e2πi/3

eiz

z4 + z2 +1
=

eiz

(z4 + z2 +1)′

∣∣∣∣
z=e2πi/3

=
exp((−

√
3− i)/2)√

3i+3
.

Hence∫
LR

eiz

z4 + z2 +1
dz+

∫
CR

eiz

z4 + z2 +1
dz =

π

3

(√
3cos

(
1
2

)
+3sin

(
1
2

))
.

For z lying on CR, y = Im(z)≥ 0 and hence |eiz|= e−y ≤ 1. Hence∣∣∣∣ eiz

z4 + z2 +1

∣∣∣∣≤ 1
R4−R2−1

and it follows that∣∣∣∣∫CR

eiz

z4 + z2 +1
dz
∣∣∣∣≤ πR

R4−R2−1

Since

lim
R→∞

πR
R4−R2−1

= 0,

we conclude that

lim
R→∞

∫
CR

eiz

z4 + z2 +1
dz = 0.
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Therefore,∫
∞

−∞

cosx
x4 + x2 +1

dx =
∫

∞

−∞

eix

x4 + x2 +1
dx

= lim
R→∞

∫
LR

eiz

z4 + z2 +1
dz

=
π

3

(√
3cos

(
1
2

)
+3sin

(
1
2

))
.

�

2. Compute the integral∫
∞

−∞

sinx
x2 +2x+2

dx.

Solution. since eix = cosx+ isinx,∫
∞

−∞

sinx
x2 +2x2 +2

dx = Im
(∫

∞

−∞

eix

x2 +2x2 +2
dx
)

Consider the contour integral of eiz/(z2 +2z2 +2) along the path LR = [−R,R] and
CR = {|z|= R, Im(z)≥ 0}, oriented counterclockwise.
Since eiz/(z2 + 2z+ 2) has two isolated singularities at −1± i with −1+ i lying
inside the curve LR∪CR, we have∫

LR

eiz

z2 +2z2 +2
dz+

∫
CR

eiz

z2 +2z2 +2
dz

= 2πi Res
z=−1+i

eiz

z2 +2z+2

= 2πi
eiz

(z2 +2z+2)′

∣∣∣∣
z=−1+i

=
2πiexp(−i−1)

2i
=

π

e
(cos(1)− isin(1))

by Cauchy Integral Theorem or residue theorem.
For z lying on CR, y = Im(z)≥ 0 and hence |eiz|= e−y ≤ 1. Hence∣∣∣∣ eiz

z2 +2z2 +2

∣∣∣∣≤ 1
R2−2R2−2

and it follows that∣∣∣∣∫CR

eiz

z2 +2z+2
dz
∣∣∣∣≤ πR

R2−2R2−2

Since

lim
R→∞

πR
R2−2R2−2

= 0,



4.3 Applications of residues 99

we conclude that

lim
R→∞

∫
CR

eiz

z2 +2z2 +2
dz = 0.

Therefore,∫
∞

−∞

sinx
x2 +2x2 +2

dx = Im
(∫

∞

−∞

eix

x2 +2x2 +2
dx
)

= Im
(

lim
R→∞

∫
LR

eiz

z2 +2z2 +2
dz
)

=−π

e
sin(1).

�





Bibliography

[1] Brown, J. W. & Churchill, R. V. (2009). Complex Variables and Applications. 8th
Edition. New York: McGraw-Hill Higher Education.

[2] Needham, T. (1997). Visual Complex Analysis. New York: The Clarendon Press,
Oxford University Press.

[3] Spiegel, M. R. (1981). Theory and problems of Complex variables. Singapore:
McGraw-Hill.

View publication statsView publication stats

https://www.researchgate.net/publication/280722238

	Foreword
	1 Complex Numbers
	1.1 Basic algebraic and geometric properties
	1.2 Modulus
	1.3 Exponential and Polar Form, Complex roots

	2 Functions
	2.1 Basic notions
	2.2 Limits, Continuity and Differentiation
	2.3 Analytic functions
	2.3.1 Harmonic functions


	3 Complex Integrals
	3.1 Contour integrals
	3.2 Cauchy Integral Theorem and Cauchy Integral Formula
	3.3 Improper integrals

	4 Series
	4.1 Taylor and Laurent series
	4.2 Classification of singularities
	4.3 Applications of residues
	4.3.1 Improper integrals


	Bibliography

