4. The summation formula found in the example in Sec. 52 can be written

$$\sum_{n=1}^{\infty} z^n = \frac{z}{1-z} \quad \text{when} \quad |z| < 1.$$

If we put $z = re^{i\theta}$, where 0 < r < 1, the left-hand side becomes

$$\sum_{n=1}^{\infty} (re^{i\theta})^n = \sum_{n=1}^{\infty} r^n e^{in\theta} = \sum_{n=1}^{\infty} r^n \cos n\theta + i \sum_{n=1}^{\infty} r^n \sin n\theta;$$

and the right-hand side takes the form

$$\frac{re^{i\theta}}{1 - re^{i\theta}} \cdot \frac{1 - re^{-i\theta}}{1 - re^{-i\theta}} = \frac{re^{i\theta} - r^2}{1 - r(e^{i\theta} + e^{-i\theta}) + r^2} = \frac{r\cos\theta - r^2 + ir\sin\theta}{1 - 2r\cos\theta + r^2}.$$

Thus

$$\sum_{n=1}^{\infty} r^n \cos n\theta + i \sum_{n=1}^{\infty} r^n \sin n\theta = \frac{r \cos \theta - r^2}{1 - 2r \cos \theta + r^2} + i \frac{r \sin \theta}{1 - 2r \cos \theta + r^2}.$$

Equating the real parts on each side here and then the imaginary parts, we arrive at the summation formulas

$$\sum_{n=1}^{\infty} r^n \cos n\theta = \frac{r\cos\theta - r^2}{1 - 2r\cos\theta + r^2} \quad \text{and} \quad \sum_{n=1}^{\infty} r^n \sin n\theta = \frac{r\sin\theta}{1 - 2r\cos\theta + r^2},$$

where 0 < r < 1. These formulas clearly hold when r = 0 too.

SECTION 54

1. Replace z by z^2 in the known series

$$\cosh z = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!} \tag{|z| < \infty}$$

to get

$$\cosh(z^2) = \sum_{n=0}^{\infty} \frac{z^{4n}}{(2n)!}$$
 (|z|<\iiii).

Then, multiplying through this last equation by z, we have the desired result:

$$z\cosh(z^2) = \sum_{n=0}^{\infty} \frac{z^{4n+1}}{(2n)!}$$
 (|z|<\iiii).

2. (b) Replacing z by z-1 in the known expansion

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

we have

$$e^{z-1} = \sum_{n=0}^{\infty} \frac{(z-1)^n}{n!}$$

So

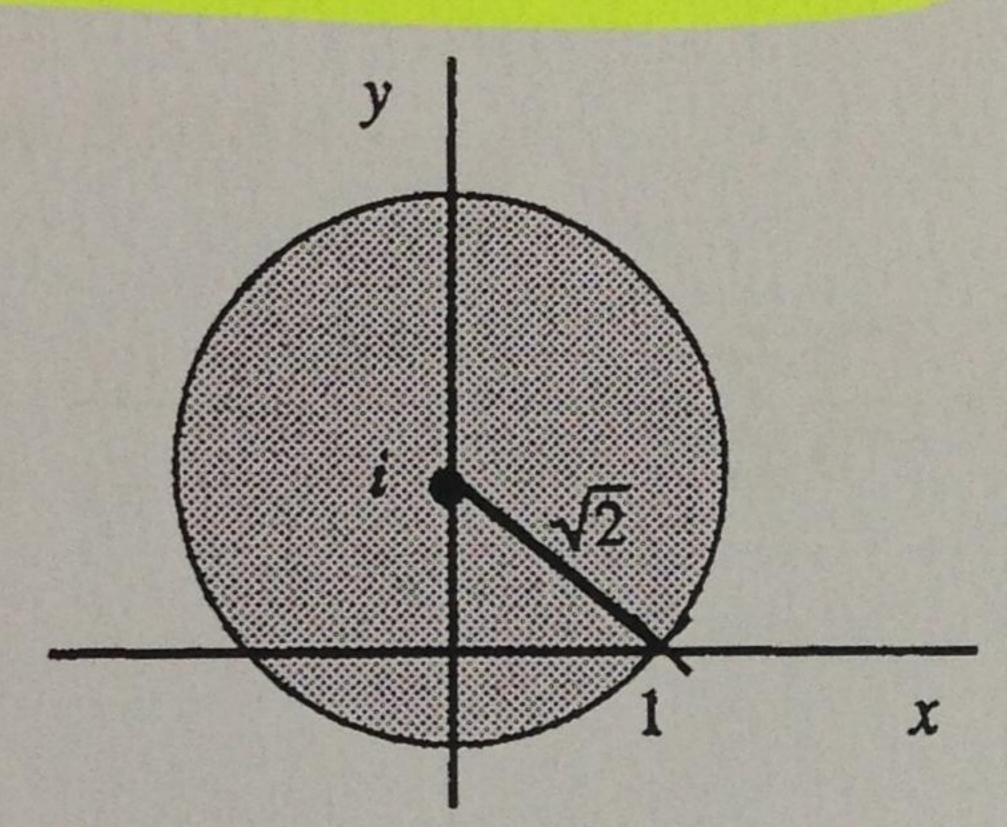
$$e^{z} = e^{z-1}e = e^{\sum_{n=0}^{\infty} \frac{(z-1)^n}{n!}}$$

(|z|<∞),

(|z|<∞).

(|z|<∞).

7. The function $\frac{1}{1-z}$ has a singularity at z=1. So the Taylor series about z=i is valid when $|z-i| < \sqrt{2}$, as indicated in the figure below.



To find the series, we start by writing

$$\frac{1}{1-z} = \frac{1}{(1-i)-(z-i)} = \frac{1}{1-i} \cdot \frac{1}{1-(z-i)/(1-i)}.$$

This suggests that we replace z by (z-i)/(1-i) in the known expansion

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$$
 (|z|<1)

and then multiply through by $\frac{1}{1-i}$. The desired Taylor series is then obtained:

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} \frac{(z-i)^n}{(1-i)^{n+1}}$$
 (|z-i| < \sqrt{2}).

$$\frac{4z}{4} = \frac{1-z}{4} + \frac{4z}{4} = \frac{1}{4z} + \frac{1}{4z} = \frac{1}{4z} + \frac{1}{4z} = \frac{1}{4z}$$

SECTION 56

1. We may use the expansion

$$\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$

to see that when $0 < |z| < \infty$,

$$z^{2} \sin\left(\frac{1}{z^{2}}\right) = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!} \cdot \frac{1}{z^{4n}} = 1 + \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2n+1)!} \cdot \frac{1}{z^{4n}}.$$

3. Suppose that $1 < |z| < \infty$ and recall the Maclaurin series representation

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$$

This enables us to write

$$\frac{1}{1+z} = \frac{1}{z} \cdot \frac{1}{1+\frac{1}{z}} = \frac{1}{z} \sum_{n=0}^{\infty} \left(-\frac{1}{z}\right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{z^{n+1}}$$

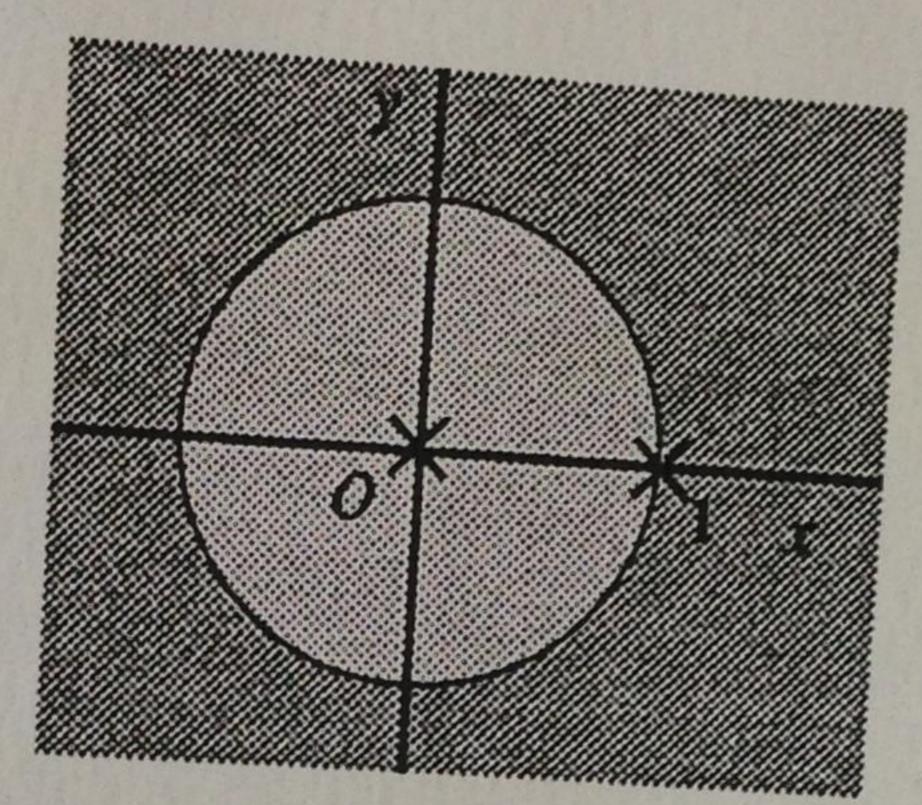
Replacing n by n-1 in this last series and then noting that

$$(-1)^{n-1} = (-1)^{n-1}(-1)^2 = (-1)^{n+1},$$

we arrive at the desired expansion:

$$\frac{1}{1+z} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{z^n}$$
(1 < |z| < \infty).

4. The singularities of the function $f(z) = \frac{1}{z^2(1-z)}$ are at the points z=0 and z=1. Hence figure below).



To find the series when 0 < |z| < 1, recall that $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$ (|z| < 1) and write

$$f(z) = \frac{1}{z^2} \cdot \frac{1}{1-z} = \frac{1}{z^2} \sum_{n=0}^{\infty} z^n = \sum_{n=0}^{\infty} z^{n-2} = \frac{1}{z^2} + \frac{1}{z} + \sum_{n=2}^{\infty} z^{n-2} = \sum_{n=0}^{\infty} z^n + \frac{1}{z} + \frac{1}{z^2}.$$

As for the domain $1 < |z| < \infty$, note that |1/z| < 1 and write

$$f(z) = -\frac{1}{z^3} \cdot \frac{1}{1 - (1/z)} = -\frac{1}{z^3} \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n = -\sum_{n=0}^{\infty} \frac{1}{z^{n+3}} = -\sum_{n=3}^{\infty} \frac{1}{z^n}.$$

(b) To find the Laurent series for the same function when $1 < |z| < \infty$, we recall the Maclaurin series for $\frac{1}{1-z}$ that was used in part (a). Since $\left|\frac{1}{z}\right| < 1$ here, we may write

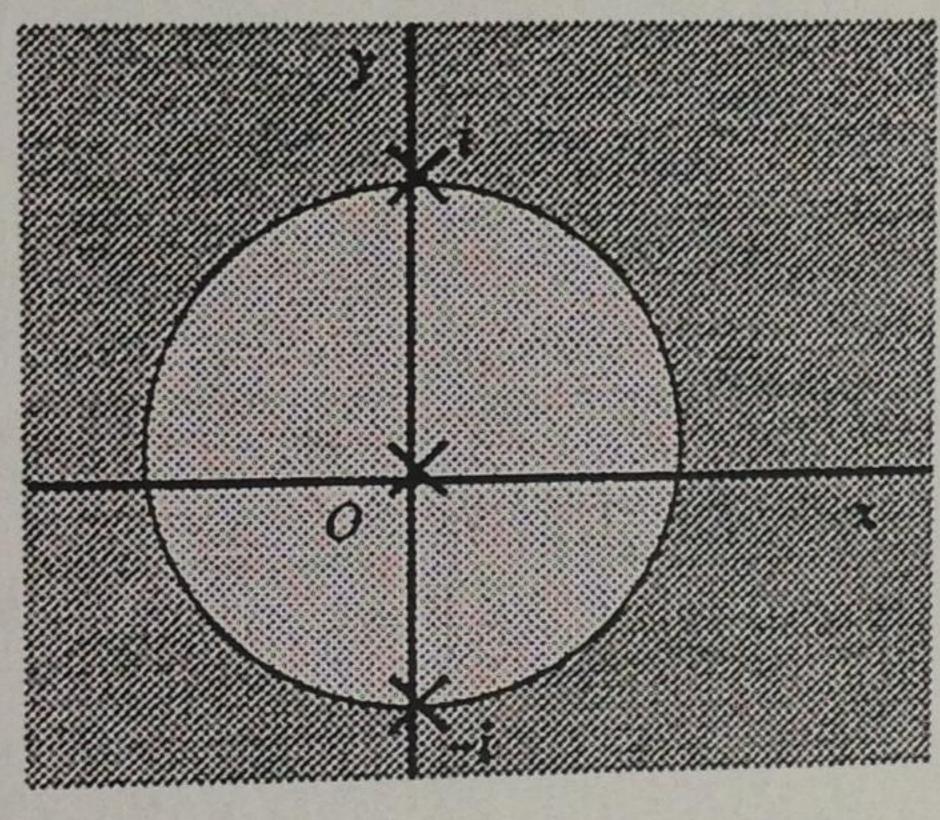
$$\frac{z+1}{z-1} = \frac{1+\frac{1}{z}}{1-\frac{1}{z}} = \left(1+\frac{1}{z}\right)\frac{1}{1-\frac{1}{z}} = \left(1+\frac{1}{z}\right)\sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n = \sum_{n=0}^{\infty} \frac{1}{z^n} + \sum_{n=0}^{\infty} \frac{1}{z^{n+1}}$$

$$= \sum_{n=0}^{\infty} \frac{1}{z^n} + \sum_{n=1}^{\infty} \frac{1}{z^n} = 1 + 2\sum_{n=1}^{\infty} \frac{1}{z^n}$$

$$(1 < |z| < \infty).$$

7. The function $f(z) = \frac{1}{z(1+z^2)}$ has isolated singularities at z = 0 and $z = \pm i$, as indicated in

the figure below. Hence there is a Laurent series representation for the domain 0 < |z| < 1 and also one for the domain $1 < |z| < \infty$, which is exterior to the circle |z| = 1.



To find each of these Laurent series, we recall the Maclaurin series representation

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$$
 (|z|<1).

For the domain 0 < |z| < 1, we have

$$f(z) = \frac{1}{z} \cdot \frac{1}{1+z^2} = \frac{1}{z} \sum_{n=0}^{\infty} (-z^2)^n = \sum_{n=0}^{\infty} (-1)^n z^{2n-1} = \frac{1}{z} + \sum_{n=1}^{\infty} (-1)^n z^{2n-1} = \sum_{n=0}^{\infty} (-1)^{n+1} z^{2n+1} + \frac{1}{z}.$$

On the other hand, when $1 < |z| < \infty$,

On the other hand, when
$$1 < 1 < r$$
, $f(z) = \frac{1}{z^3} \cdot \frac{1}{1 + \frac{1}{z^2}} = \frac{1}{z^3} \sum_{n=0}^{\infty} \left(-\frac{1}{z^2} \right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{z^{2n+3}} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{z^{2n+1}}.$
In this second expansion, we have used the fact that $(-1)^{n-1} = (-1)^{n-1}(-1)^2 = (-1)^{n+1}$.

8. (a) Let a denote a real number, where -1 < a < 1. Recalling that

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n \qquad (|z| \leqslant 1)$$

enables us to write

$$\frac{a}{z-a} = \frac{a}{z} \cdot \frac{1}{1-(a/z)} = \sum_{n=0}^{\infty} \frac{a^{n+1}}{z^{n+1}},$$

 α

$$\frac{a}{z-a} = \sum_{n=1}^{\infty} \frac{a^n}{z^n}$$
 (|a| < |z| < \infty).

(b) Putting $z = e^{i\theta}$ on each side of the final result in part (a), we have

$$\frac{a}{e^{i\theta}-a}=\sum_{n=1}^{\infty}a^ne^{-in\theta}.$$

But

$$\frac{a}{e^{i\theta}-a} = \frac{a}{(\cos\theta-a)+i\sin\theta} \cdot \frac{(\cos\theta-a)-i\sin\theta}{(\cos\theta-a)-i\sin\theta} = \frac{a\cos\theta-a^2-ia\sin\theta}{1-2a\cos\theta+a^2}$$

and

$$\sum_{n=1}^{\infty} a^n e^{-in\theta} = \sum_{n=1}^{\infty} a^n \cos n\theta - i \sum_{n=1}^{\infty} a^n \sin n\theta.$$

Consequently,

$$\sum_{n=1}^{\infty} a^n \cos n\theta = \frac{a\cos\theta - a^2}{1 - 2a\cos\theta + a^2} \quad \text{and} \quad \sum_{n=1}^{\infty} a^n \sin n\theta = \frac{a\sin\theta}{1 - 2a\cos\theta + a^2}$$

when -1 < a < 1.

$$\int_{0}^{z} \sin\left(\frac{z}{z^{2}}\right) = z^{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!} z^{-4n-2} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!} \frac{1}{z^{4n}}$$
for $0 < |z| < \infty$ by substitut:

for $0 < |z| < \infty$ by substituting z^{-2} for z.

(6) Derive the Laurent series representation

$$\frac{e^{z}}{(z+1)^{2}} = \frac{1}{e} \left(\sum_{n=0}^{\infty} \frac{(z+1)^{n}}{(n+2)!} + \frac{1}{z+1} + \frac{1}{(z+1)^{2}} \right) \text{ for } 0 < |z+1| < \infty$$
Solution. Given

Solution. Since

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

for $|z| < \infty$, we have

$$e^{z+1} = \sum_{n=0}^{\infty} \frac{z+1^n}{n!}$$

for $|z+1| < \infty$ by substituting z+1 for z. Therefore,

$$\frac{e^{z}}{e^{z}} = \frac{e^{z}}{(z+1)^{2}} = \frac{e^{z+1}}{e(z+1)^{2}} = \sum_{n=0}^{\infty} \frac{(z+1)^{n-2}}{e(n!)}$$

$$= \frac{1}{e} \left(\frac{1}{(z+1)^{2}} + \frac{1}{z+1} + \sum_{n=2}^{\infty} \frac{(z+1)^{n-2}}{n!} \right)$$

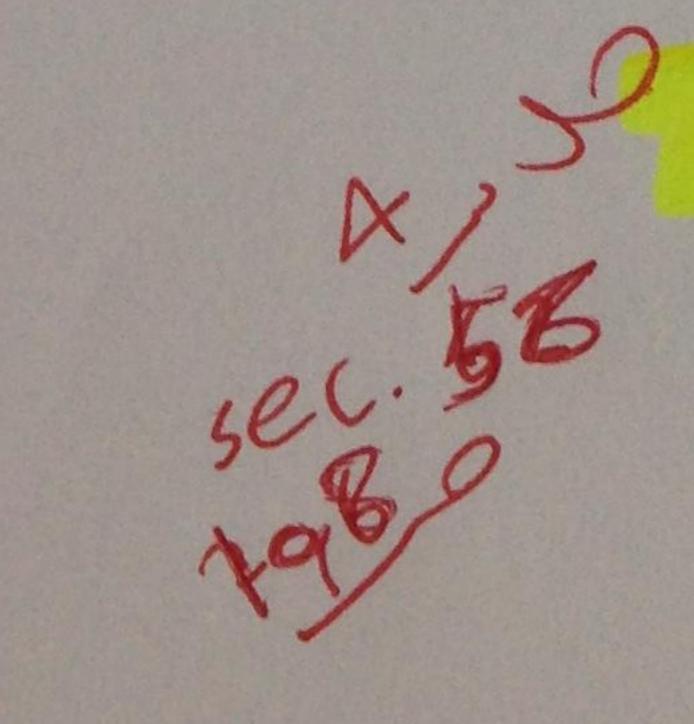
$$= \frac{1}{e} \left(\frac{1}{(z+1)^{2}} + \frac{1}{z+1} + \sum_{n=0}^{\infty} \frac{(z+1)^{n}}{(n+2)!} \right)$$

for $0 < |z + 1| < \infty$.

(7) Give two Laurent Series expansions in powers of z for the func-

$$f(z) = \frac{1}{z^2(1-z)}$$

and specify the regions in which those expansions are valid.



(8) Show that when 0 < |z - 1| < 2,

$$\frac{z}{(z-1)(z-3)} = -3\sum_{n=0}^{\infty} \frac{(z-1)^n}{2^{n+2}} - \frac{1}{2(z-1)}.$$

Solution. We first write z/((z-1)(z-3)) as a sum of partial fractions:

$$\frac{z}{(z-1)(z-3)} = \frac{1}{2} \left(-\frac{1}{z-1} + \frac{3}{z-3} \right)$$

When 0 < |z - 1| < 2, |(z - 1)/2| < 1 and hence

$$\frac{1}{z-3} = -\frac{1}{2-(z-1)} = -\frac{1}{2} \frac{1}{1-(z-1)/2}$$
$$= -\frac{1}{2} \sum_{n=0}^{\infty} \frac{(z-1)^n}{2^n} = -\sum_{n=0}^{\infty} \frac{(z-1)^n}{2^{n+1}}$$

Therefore,

$$\frac{z}{(z-1)(z-3)} = \frac{1}{2} \left(-\frac{1}{z-1} + \frac{3}{z-3} \right)$$

$$= -\frac{3}{2} \sum_{n=0}^{\infty} \frac{(z-1)^n}{2^{n+1}} - \frac{1}{2(z-1)}$$

$$= -3 \sum_{n=0}^{\infty} \frac{(z-1)^n}{2^{n+2}} - \frac{1}{2(z-1)}$$

1. Differentiating each side of the representation

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$$
 (|z|<1),

we find that

$$\frac{1}{(1-z)^2} = \frac{d}{dz} \sum_{n=0}^{\infty} z^n = \sum_{n=0}^{\infty} \frac{d}{dz} z^n = \sum_{n=1}^{\infty} nz^{n-1} = \sum_{n=0}^{\infty} (n+1)z^n$$
 (|z|<1).

Another differentiation gives

$$\frac{2}{(1-z)^3} = \frac{d}{dz} \sum_{n=0}^{\infty} (n+1)z^n = \sum_{n=0}^{\infty} (n+1)\frac{d}{dz}z^n = \sum_{n=1}^{\infty} n(n+1)z^{n-1} = \sum_{n=0}^{\infty} (n+1)(n+2)z^n \quad (|z|<1).$$

2. Replace z by 1/(1-z) on each side of the Maclaurin series representation (Exercise 1)

$$\frac{1}{(1-z)^2} = \sum_{n=0}^{\infty} (n+1)z^n$$
 (|z|<1),

as well as in its condition of validity. This yields the Laurent series representation

$$\frac{1}{z^2} = \sum_{n=2}^{\infty} \frac{(-1)^n (n-1)}{(z-1)^n}$$
 (1<|z-1|<\iii).

(a) Let us write

$$\frac{1}{z+z^2} = \frac{1}{z} \cdot \frac{1}{1+z} = \frac{1}{z} (1-z+z^2-z^3+\cdots) = \frac{1}{z} - 1+z-z^2+\cdots$$

(0 < |z| < 1)

The residue at z = 0, which is the coefficient of $\frac{1}{z}$, is clearly 1.

(b) We may use the expansion

$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots$$
 (|z|<\infty)

to write

$$z\cos\left(\frac{1}{z}\right) = z\left(1 - \frac{1}{2!} \cdot \frac{1}{z^2} + \frac{1}{4!} \cdot \frac{1}{z^4} - \frac{1}{6!} \cdot \frac{1}{z^6} + \cdots\right) = z - \frac{1}{2!} \cdot \frac{1}{z} + \frac{1}{4!} \cdot \frac{1}{z^3} - \frac{1}{6!} \cdot \frac{1}{z^5} + \cdots$$

(0 < |z| < ∞).

The residue at z = 0, or coefficient of $\frac{1}{z}$, is now seen to be $-\frac{1}{2}$.

(c) Observe that

$$\frac{z - \sin z}{z} = \frac{1}{z}(z - \sin z) = \frac{1}{z} \left[z - \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \cdots \right) \right] = \frac{z^2}{3!} - \frac{z^4}{5!} + \cdots$$
 (0 < |z| < \infty)

Since the coefficient of $\frac{1}{z}$ in this Laurent series is 0, the residue at z = 0 is 0.

(d) Write

$$\frac{\cot z}{z^4} = \frac{1}{z^4} \cdot \frac{\cos z}{\sin z}$$

and recall that

$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots = 1 - \frac{z^2}{2} + \frac{z^4}{24} - \dots$$
 (|z|<\iii)

and $\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots = z - \frac{z^3}{6} + \frac{z^5}{120} - \dots$ (|z|<\iiii).

Dividing the series for sinz into the one for cosz, we find that

$$\frac{\cos z}{\sin z} = \frac{1}{z} - \frac{z}{3} - \frac{z^3}{45} + \dots$$
 (0 < |z| < \pi).

Thus

$$\frac{\cot z}{z^4} = \frac{1}{z^4} \left(\frac{1}{z} - \frac{z}{3} - \frac{z^3}{45} + \cdots \right) = \frac{1}{z^5} - \frac{1}{3} \cdot \frac{1}{z^3} - \frac{1}{45} \cdot \frac{1}{z} + \cdots$$
 (0 < |z| < \pi).

Note that the condition of validity for this series is due to the fact that $\sin z = 0$ when $z = n\pi$ $(n = 0, \pm 1, \pm 2,...)$. It is now evident that $\frac{\cot z}{z^4}$ has residue $-\frac{1}{45}$ at z = 0.

(e) Recall that

$$sinh z = z + \frac{z^3}{3!} + \frac{z^5}{5!} + \cdots$$
(|z|<\iiii)

and

$$\frac{1}{1-z} = 1+z+z^2+\cdots \qquad (|z|<\infty).$$

(0 < |z| < 1).

There is a Laurent series for the function

$$\frac{\sinh z}{z^4 \left(1-z^2\right)} = \frac{1}{z^4} \cdot \left(\sinh z\right) \left(\frac{1}{1-z^2}\right)$$

that is valid for 0 < |z| < 1. To find it, we first multiply the Maclaurin series for $\sinh z$ and $\frac{1}{1-z^2}$:

$$(\sinh z) \left(\frac{1}{1-z^2}\right) = \left(z + \frac{1}{6}z^3 + \frac{1}{120}z^5 + \cdots\right) \left(1 + z^2 + z^4 + \cdots\right)$$

$$= z + \frac{1}{6}z^3 + \frac{1}{120}z^5 + \cdots$$

$$z^3 + \frac{1}{6}z^5 + \cdots$$

$$z^5 + \cdots$$

$$= z + \frac{7}{6}z^3 + \cdots$$

We then see that

$$\frac{\sinh z}{z^4 (1-z^2)} = \frac{1}{z^3} + \frac{7}{6} \cdot \frac{1}{z} + \cdots$$
 (0 < |z| < 1).

This shows that the residue of $\frac{\sinh z}{z^4(1-z^2)}$ at z=0 is $\frac{7}{6}$.

- 2. In each part, C denotes the positively oriented circle |z|=3.
 - (a) To evaluate $\int_C \frac{\exp(-z)}{z^2} dz$, we need the residue of the integrand at z = 0. From the Laurent series

$$\frac{\exp(-z)}{z^2} = \frac{1}{z^2} \left(1 - \frac{z}{1!} + \frac{z^2}{2!} - \frac{z^3}{3!} + \cdots \right) = \frac{1}{z^2} - \frac{1}{1!} \cdot \frac{1}{z} + \frac{1}{2!} - \frac{z}{3!} + \cdots$$
 (0 < |z| < \infty),

we see that the required residue is -1. Thus

$$\int_C \frac{\exp(-z)}{z^2} dz = 2\pi i (-1) = -2\pi i.$$

(c) Likewise, to evaluate the integral $\int_C z^2 \exp\left(\frac{1}{z}\right) dz$, we must find the residue of the integrand at z = 0. The Laurent series

$$z^{2} \exp\left(\frac{1}{z}\right) = z^{2} \left(1 + \frac{1}{1!} \cdot \frac{1}{z} + \frac{1}{2!} \cdot \frac{1}{z^{2}} + \frac{1}{3!} \cdot \frac{1}{z^{3}} + \frac{1}{4!} \cdot \frac{1}{z^{4}} + \cdots\right)$$

$$= z^{2} + \frac{z}{1!} + \frac{1}{2!} + \frac{1}{3!} \cdot \frac{1}{z} + \frac{1}{4!} \cdot \frac{1}{z^{2}} + \cdots,$$

which is valid for $0 < |z| < \infty$, tells us that the needed residue is $\frac{1}{6}$. Hence

$$\int_C z^2 \exp\left(\frac{1}{z}\right) dz = 2\pi i \left(\frac{1}{6}\right) = \frac{\pi i}{3}.$$

(d) As for the integral $\int_C \frac{z+1}{z^2-2z} dz$, we need the two residues of

$$\frac{z+1}{z^2-2z} = \frac{z+1}{z(z-2)},$$

one at z = 0 and one at z = 2. The residue at z = 0 can be found by writing

$$\frac{z+1}{z(z-2)} = \left(\frac{z+1}{z}\right)\left(\frac{1}{z-2}\right) = \left(-\frac{1}{2}\right)\left(1+\frac{1}{z}\right) \cdot \frac{1}{1-(z/2)}$$

$$= \left(-\frac{1}{2} - \frac{1}{2} \cdot \frac{1}{z}\right) \left(1 + \frac{z}{2} + \frac{z^2}{2^2} + \cdots\right),$$

which is valid when 0 < |z| < 2, and observing that the coefficient of $\frac{1}{z}$ in this last product is $-\frac{1}{2}$. To obtain the residue at z = 2, we write

$$\frac{z+1}{z(z-2)} = \frac{(z-2)+3}{z-2} \cdot \frac{1}{2+(z-2)} = \frac{1}{2} \left(1 + \frac{3}{z-2}\right) \cdot \frac{1}{1+(z-2)/2}$$

$$=\frac{1}{2}\left(1+\frac{3}{z-2}\right)\left[1-\frac{z-2}{2}+\frac{(z-2)^2}{2^2}-\cdots\right],$$

which is valid when 0 < |z-2| < 2, and note that the coefficient of $\frac{1}{z-2}$ in this product is $\frac{3}{2}$. Finally, then, by the residue theorem,

$$\int_C \frac{z+1}{z^2-2z} dz = 2\pi i \left(-\frac{1}{2} + \frac{3}{2}\right) = 2\pi i.$$

3. In each part of this problem, C is the positively oriented circle |z|=2.

 $\frac{z^3}{z^{3}}$ (a) If $f(z) = \frac{z^5}{1-z^3}$, then sec. 7 (a)

$$\frac{1}{z^2}f\left(\frac{1}{z}\right) = \frac{1}{z^7 - z^4} = -\frac{1}{z^4} \cdot \frac{1}{1 - z^3} = -\frac{1}{z^4} \left(1 + z^3 + z^6 + \cdots\right) = -\frac{1}{z^4} - \frac{1}{z} - z^2 - \cdots$$

when 0 < |z| < 1. This tells us that

$$\int_{C} f(z) dz = 2\pi i \operatorname{Res}_{z=0} \frac{1}{z^{2}} f\left(\frac{1}{z}\right) = 2\pi i (-1) = -2\pi i.$$

When
$$f(z) = \frac{1}{1+z^2}$$
, we have

$$\frac{1}{z^2}f\left(\frac{1}{z}\right) = \frac{1}{1+z^2} = \frac{1}{1-(-z^2)} = 1-z^2+z^4-\cdots$$

Thus

$$\int_{C} f(z) dz = 2\pi i \operatorname{Res}_{z=0} \frac{1}{z^{2}} f\left(\frac{1}{z}\right) = 2\pi i(0) = 0.$$

(c) If
$$f(z) = \frac{1}{z}$$
, it follows that $\frac{1}{z^2} f(\frac{1}{z}) = \frac{1}{z}$. Evidently, then,

$$\int_{C} f(z) dz = 2\pi i \operatorname{Res}_{z=0} \frac{1}{z^{2}} f\left(\frac{1}{z}\right) = 2\pi i(1) = 2\pi i.$$

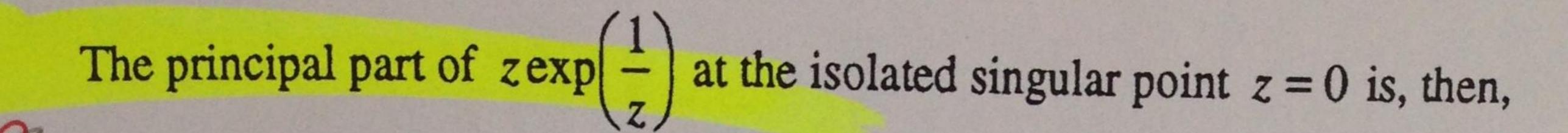
(0 < |z| < 1).

SECTION 65

1. (a) From the expansion

we see that
$$e^{z} = 1 + \frac{z}{1!} + \frac{z}{1!}$$

$$z \exp\left(\frac{1}{z}\right) = z + 1 + \frac{1}{2!} \cdot \frac{1}{z} + \frac{1}{3!} \cdot \frac{1}{z^2} + \cdots$$



$$\frac{1}{2!} \cdot \frac{1}{z} + \frac{1}{3!} \cdot \frac{1}{z^2} + \cdots;$$

and z = 0 is an essential singular point of that function.

(b) The isolated singular point of $\frac{z^2}{1+z}$ is at z=-1. Since the principal part at z=-1 involves powers of z+1, we begin by observing that

$$z^{2} = (z+1)^{2} - 2z - 1 = (z+1)^{2} - 2(z+1) + 1.$$

This enables us to write

$$\frac{z^2}{1+z} = \frac{(z+1)^2 - 2(z+1) + 1}{z+1} = (z+1) - 2 + \frac{1}{z+1}.$$

Since the principal part is $\frac{1}{z+1}$, the point z=-1 is a (simple) pole.

(c) The point z = 0 is the isolated singular point of $\frac{\sin z}{z}$, and we can write

$$\frac{\sin z}{z} = \frac{1}{z} \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots \right) = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \dots$$
 (0 < |z| < \infty).

The principal part here is evidently 0, and so z = 0 is a removable singular point of the function $\frac{\sin z}{z}$.

(d) The isolated singular point of $\frac{\cos z}{z}$ is z = 0. Since

$$\frac{\cos z}{z} = \frac{1}{z} \left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots \right) = \frac{1}{z} - \frac{z}{2!} + \frac{z^3}{4!} - \dots$$
 (0 < |z| < \infty),

the principal part is $\frac{1}{z}$. This means that z = 0 is a (simple) pole of $\frac{\cos z}{z}$.

(e) Upon writing $\frac{1}{(2-z)^3} = \frac{-1}{(z-2)^3}$, we find that the principal part of $\frac{1}{(2-z)^3}$ at its isolated singular point z=2 is simply the function itself. That point is evidently a pole (of order 3).

This enables us to write

$$f(z) = \frac{1}{(z-ai)^3} \left[-a^2i - \frac{a}{2}(z-ai) - \frac{i}{2}(z-ai)^2 + \cdots \right] \qquad (0 < |z-ai| < 2a).$$

The principal part of f at the point z = ai is, then,

$$\frac{-i/2}{z-ai} - \frac{a/2}{(z-ai)^2} - \frac{a^2i}{(z-ai)^3}$$

SECTION 67

- 1. (a) The function $f(z) = \frac{z^2 + 2}{z 1}$ has an isolated singular point at z = 1. Writing $f(z) = \frac{\phi(z)}{z 1}$, where $\phi(z) = z^2 + 2$, and observing that $\phi(z)$ is analytic and nonzero at z = 1, we see that z = 1 is a pole of order m = 1 and that the residue there is $B = \phi(1) = 3$.
 - (b) If we write

$$f(z) = \left(\frac{z}{2z+1}\right)^3 = \frac{\phi(z)}{\left[z - \left(-\frac{1}{2}\right)\right]^3}, \text{ where } \phi(z) = \frac{z^3}{8},$$

we see that $z = -\frac{1}{2}$ is a singular point of f. Since $\phi(z)$ is analytic and nonzero at that point, f has a pole of order m = 3 there. The residue is

$$B = \frac{\phi''(-1/2)}{2!} = -\frac{3}{16}.$$

(c) The function

$$\frac{\exp z}{z^2 + \pi^2} = \frac{\exp z}{(z - \pi i)(z + \pi i)}$$

has poles of order m=1 at the two points $z=\pm \pi i$. The residue at $z=\pi i$ is

$$B_1 = \frac{\exp \pi i}{2\pi i} = \frac{-1}{2\pi i} = \frac{i}{2\pi i}$$

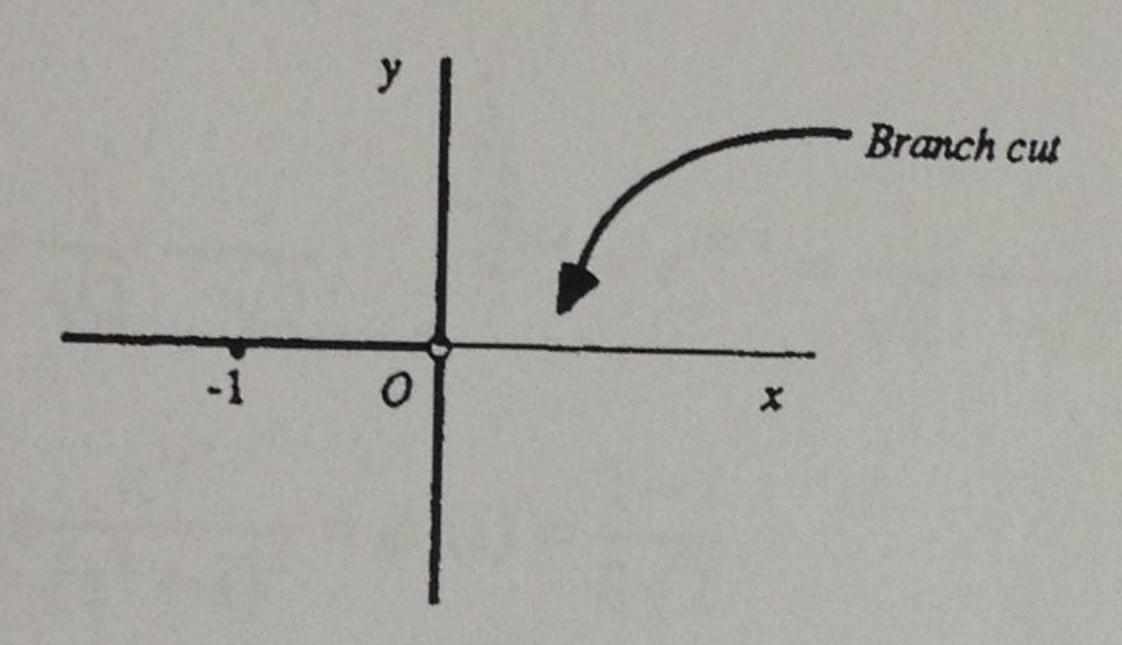
and the one at $z = -\pi i$ is

$$B_2 = \frac{\exp(-\pi i)}{-2\pi i} = \frac{-1}{-2\pi i} = -\frac{i}{2\pi}.$$

2. (a) Write the function
$$f(z) = \frac{z^{1/4}}{z+1}$$
 ($|z| > 0$, $0 < \arg z < 2\pi$) as

$$f(z) = \frac{\phi(z)}{z+1}$$
, where $\phi(z) = z^{1/4} = e^{\frac{1}{4}\log z}$ ($|z| > 0$, $0 < \arg z < 2\pi$).

The function $\phi(z)$ is analytic throughout its domain of definition, indicated in the figure below.



Also,

$$\phi(-1) = (-1)^{1/4} = e^{\frac{1}{4}\log(-1)} = e^{\frac{1}{4}(\ln 1 + i\pi)} = e^{i\pi/4} = \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} = \frac{1+i}{\sqrt{2}} \neq 0.$$

This shows that the function f has a pole of order m = 1 at z = -1, the residue there being

$$B = \phi(-1) = \frac{1+i}{\sqrt{2}}.$$

(b) Write the function $f(z) = \frac{\text{Log } z}{(z^2 + 1)^2}$ as

$$f(z) = \frac{\phi(z)}{(z-i)^2} \quad \text{where} \quad \phi(z) = \frac{\text{Log } z}{(z+i)^2}.$$

From this, it is clear that f(z) has a pole of order m=2 at z=i. Straightforward differentiation then reveals that

Res_{z=i}
$$\frac{\text{Log }z}{(z^2+1)^2} = \phi'(i) = \frac{\pi+2i}{8}$$
.

$$f(z) = \frac{z^{1/2}}{(z^2 + 1)^2}$$

 $(|z| > 0, 0 < \arg z < 2\pi)$

as

$$f(z) = \frac{\phi(z)}{(z-i)^2}$$
 where $\phi(z) = \frac{z^{1/2}}{(z+i)^2}$.

Since

$$\phi'(z) = \frac{(z+i)z^{-1/2} - 4z^{1/2}}{2(z+i)^3}$$

and

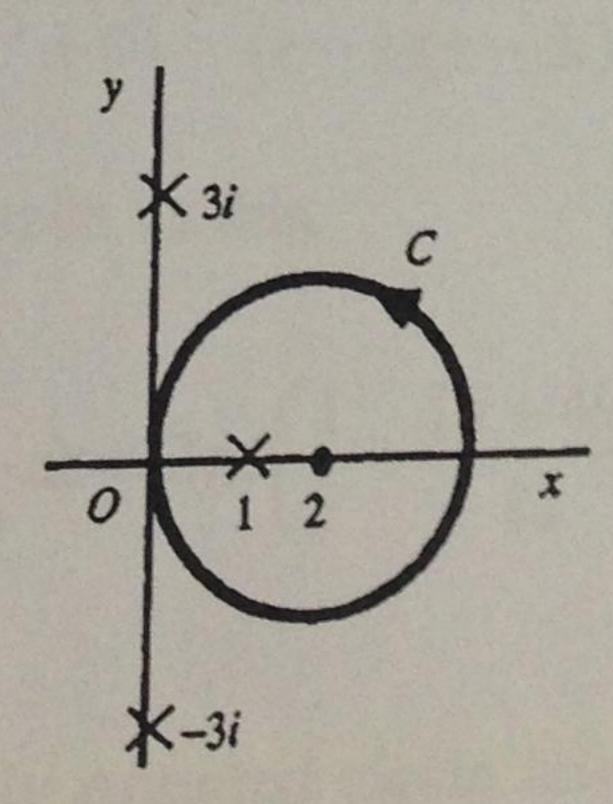
$$i^{-1/2} = e^{-i\pi/4} = \frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}, \qquad i^{1/2} = e^{i\pi/4} = \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}},$$

$$\operatorname{Res}_{z=i} \frac{z^{1/2}}{(z^2+1)^2} = \phi'(i) = \frac{1-i}{8\sqrt{2}}.$$

3. (a) We wish to evaluate the integral

$$\int_{C} \frac{3z^{3}+2}{(z-1)(z^{2}+9)} dz,$$

where C is the circle |z-2|=2, taken in the counterclockwise direction. That circle and the singularities $z=1,\pm 3i$ of the integrand are shown in the figure just below.



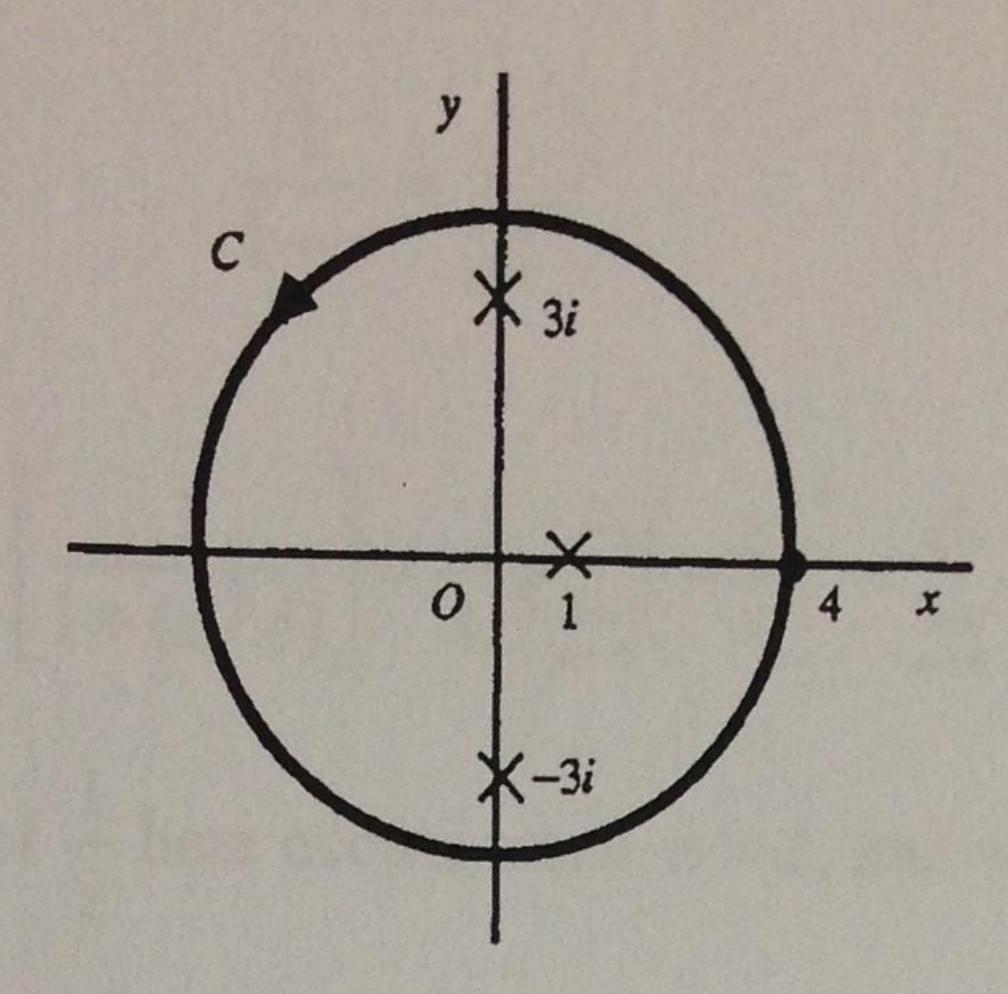
Observe that the point z = 1, which is the only singularity inside C, is a simple pole of the integrand and that

$$\operatorname{Res}_{z=1} \frac{3z^3 + 2}{(z-1)(z^2 + 9)} = \frac{3z^3 + 2}{z^2 + 9} \Big|_{z=1} = \frac{1}{2}.$$

According to the residue theorem, then,

$$\int_{C} \frac{3z^{3}+2}{(z-1)(z^{2}+9)} dz = 2\pi i \left(\frac{1}{2}\right) = \pi i.$$

(b) Let us redo part (a) when C is changed to be the positively oriented circle |z| = 4, shown in the figure below.



In this case, all three singularities $z = 1, \pm 3i$ of the integrand are interior to C. We already know from part (a) that

Res_{z=1}
$$\frac{3z^3 + 2}{(z-1)(z^2+9)} = \frac{1}{2}$$
.

It is, moreover, straightforward to show that

$$\operatorname{Res}_{z=3i} \frac{3z^3 + 2}{(z-1)(z^2 + 9)} = \frac{3z^3 + 2}{(z-1)(z+3i)} \bigg|_{z=3i} = \frac{15 + 49i}{12}$$

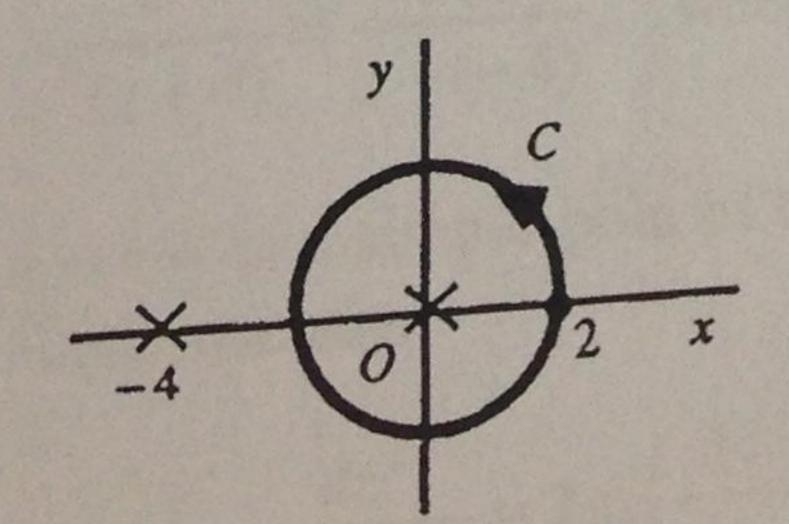
and

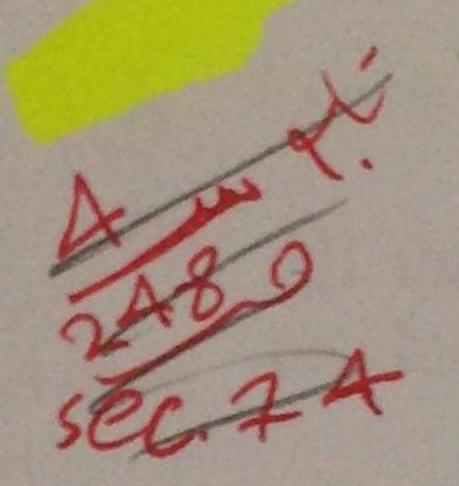
$$\operatorname{Res}_{z=-3i} \frac{3z^3+2}{(z-1)(z^2+9)} = \frac{3z^3+2}{(z-1)(z-3i)} \bigg]_{z=-3i} = \frac{15-49i}{12}.$$

The residue theorem now tells us that

$$\int_{C} \frac{3z^{3}+2}{(z-1)(z^{2}+9)} dz = 2\pi i \left(\frac{1}{2} + \frac{15+49i}{12} + \frac{15-49i}{12}\right) = 6\pi i.$$

4. (a) Let C denote the positively oriented circle |z|=2, and note that the integrand of the integral $\int_C \frac{dz}{z^3(z+4)}$ has singularities at z=0 and z=-4. (See the figure below.)





To find the residue of the integrand at z = 0, we recall the expansion

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$$
 (|z|<1)

and write

$$\frac{1}{z^{3}(z+4)} = \frac{1}{4z^{3}} \left[\frac{1}{1+(z/4)} \right] = \frac{1}{4z^{3}} \sum_{n=0}^{\infty} \left(-\frac{z}{4} \right)^{n} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{4^{n+1}} z^{n-3} \qquad (0 < |z| < 4).$$

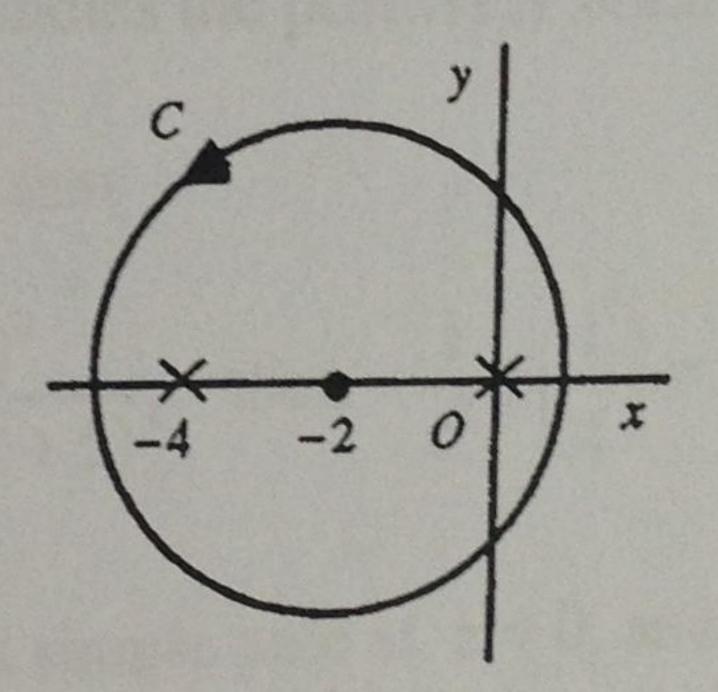
Now the coefficient of $\frac{1}{z}$ here occurs when n = 2, and we see that

Res_{z=0}
$$\frac{1}{z^3(z+4)} = \frac{1}{64}$$
.

Consequently,

$$\int_C \frac{dz}{z^3(z+4)} = 2\pi i \left(\frac{1}{64}\right) = \frac{\pi i}{32}.$$

(b) Let us replace the path C in part (a) by the positively oriented circle |z+2|=3, centered at -2 and with radius 3. It is shown below.



We already know from part (a) that

Res_{z=0}
$$\frac{1}{z^3(z+4)} = \frac{1}{64}$$

To find the residue at -4, we write

$$\frac{1}{z^3(z+4)} = \frac{\phi(z)}{z-(-4)}, \text{ where } \phi(z) = \frac{1}{z^3}.$$

This tells us that z = -4 is a simple pole of the integrand and that the residue there is $\phi(-4) = -1/64$. Consequently,

$$\int_{C} \frac{dz}{z^{3}(z+4)} = 2\pi i \left(\frac{1}{64} - \frac{1}{64}\right) = 0.$$

5. Let us evaluate the integral $\int_C \frac{\cosh \pi z dz}{z(z^2+1)}$, where C is the positively oriented circle |z|=2.

All three isolated singularities $z = 0, \pm i$ of the integrand are interior to C. The desired

$$\operatorname{Res}_{z=0} \frac{\cosh \pi z}{z(z^2+1)} = \frac{\cosh \pi z}{z^2+1} \Big]_{z=0} = 1,$$

$$\operatorname{Res}_{z=i} \frac{\cosh \pi z}{z(z^2+1)} = \frac{\cosh \pi z}{z(z+i)} \bigg]_{z=i} = \frac{1}{2},$$

and

$$\operatorname{Res}_{z=-i} \frac{\cosh \pi z}{z(z^2+1)} = \frac{\cosh \pi z}{z(z-i)} \bigg]_{z=-i} = \frac{1}{2}.$$

Consequently,

$$\int_{C} \frac{\cosh \pi z \, dz}{z(z^2 + 1)} = 2\pi i \left(1 + \frac{1}{2} + \frac{1}{2}\right) = 4\pi i.$$

1. Write

$$\int_{0}^{2\pi} \frac{d\theta}{5 + 4\sin\theta} = \int_{C} \frac{1}{5 + 4\left(\frac{z - z^{-1}}{2i}\right)} \cdot \frac{dz}{iz} = \int_{C} \frac{dz}{2z^{2} + 5iz - 2},$$

where C is the positively oriented unit circle |z|=1. The quadratic formula tells us that the singular points of the integrand on the far right here are z=-i/2 and z=-2i. The point z=-i/2 is a simple pole interior to C; and the point z=-2i is exterior to C. Thus

$$\int_{0}^{2\pi} \frac{d\theta}{5 + 4\sin\theta} = 2\pi i \operatorname{Res}_{z=-i/2} \left[\frac{1}{2z^{2} + 5iz - 2} \right] = 2\pi i \left[\frac{1}{4z + 5i} \right]_{z=-i/2} = 2\pi i \left(\frac{1}{3i} \right) = \frac{2\pi}{3}.$$

2. To evaluate the definite integral in question, write

$$\int_{-\pi}^{\pi} \frac{d\theta}{1 + \sin^2 \theta} = \int_{C} \frac{1}{1 + \left(\frac{z - z^{-1}}{2i}\right)^2} \cdot \frac{dz}{iz} = \int_{C} \frac{4iz \, dz}{z^4 - 6z^2 + 1},$$

where C is the positively oriented unit circle |z|=1. This circle is shown below.

