Chemical Engineering Department College of Engineering
 King Saud University
 ChE 201 - ChE Principles I

Time $=90$ minutes
Test \# 2
26/1/1431
Answer ALL questions

Question 1 (4 points)

It is required to produce a 15 mass $\%$ sugar solution from a 30 mass $\%$ sugar solution by adding pure water. Calculate the mass ratio of pure water to the 30% sugar solution.

Question 2 (10 points)
$500 \mathrm{~kg} / \mathrm{s}$ of a mixture (stream 1) containing A (50\%), B (30\%) and C (20% by weight) is separated in a distillation column to two streams. The top stream (stream 2) contains $\mathbf{A}(90 \%)$ and \mathbf{B} and the bottom stream (stream 3) contains A, B and \mathbf{C}. The bottom stream is further separated in another distillation column to give: (a) a top stream (stream 4) rich in $\mathbf{B}(90 \%)$ and $\mathbf{A}(10 \%)$ and (b) a bottom stream (stream 5) rich in \mathbf{C} (95%) and B.
(see the diagram below).

Calculate the flow rate AND composition of stream 3.

Question 3 (6 points)

The following reaction takes place in isothermal reactor:

$$
\mathrm{C}_{4} \mathrm{H}_{10} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}
$$

The feed to reactor contains: Butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)=90 \%$ and Inert $(\mathrm{I})=10 \% \mathrm{~mol} .80 \%$ conversion of butane is achieved in the reactor. If the feed rate is $500 \mathrm{~mol} / \mathrm{s}$, calculate the molar composition of the product.

