5.3 Inner Product

= Inner product:

Let u, v, and w be vectors in a vector space V, and let ¢ be
any scalar. An inner product on V is a function that associates

a real number <u, v> with each pair of vectors u and v and
satisfies the following axioms.

1) u,v=Kv,w

2) Cu,v+w)=Cu,v)+<{u,w)

(3) c¢ {u,v)=Lcu,v)

@) <v,v2 20 (and) =0 if and only if
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= Note:

u - v = dot product (Euclidean inner product for R")
<u, Vv >=general inner product for vector spaceV

= Note:

A vector space V with an inner product is called an inner
product space.

Vector space: (V, s 0)

Inner product space:  (V, +, o, <,>)
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« EX 1: (The Euclidean inner product for R")

Show that the dot product in R" satisfies the four axioms
of an inner product.

Sol:
u=(u,,uU,,-,u) , v=(v,V,, V)

U,v)=u-v=uV, +UV, +---+UV,

By Theorem 5.3, this dot product satisfies the required four axioms.
Thus it is an inner product on R".
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= Ex 2: (A different inner product for R")

Show that the function defines an inner product on R?,
where U= (U, ,u,)and v=(v,,V,) .

(u, v) =uyv, +2u,V,
Sol:

(@) <u,v)=uyv,+2u,v, =V,u, +2v,u, = {v, uy
(0) w=(w,,w,)
= U, v+w) =u, (v, +W,) +2u, (v, + W,)
=u,V, +uw, +2u,V, + 2U,w,
= (uv, +2u,v, )+ (u,w, + 2u,w,)
=<u, v) +<u,w)
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(c) c<u,v) =c(uy, +2u,v,) = (cu,)Vv, +2(cu,)v, = {cu, v)
(d) (v, v)=v, +2v,°>0

v, V)=0=v°+2v,°=0 = v, =v,=0 (v=0)
= Note: (An inner product on R")

U, V) =cUV, +C,U,V, +---+CUV G0

n-"n-"n ! |
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= EX 3: (A function that is not an inner product)

Show that the following function is not an inner product on R,
(U-Vv) =u,v; —2U,V, +U,V,
Sol:
Let v=(1,2,1)
Then <v,v>=01-2(2)(2)+(1)@1)=-6<0
Axiom 4 is not satisfied.

Thus this function is not an inner product on R3,
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- Thm 5.7: (Properties of inner products)

Let u, v, and w be vectors in an inner product space V, and
let ¢ be any real number.

(1) O,v)=<{v,0 =0
2) Cu+v,w)=<Cu,w) +<{v,w)
(3) Cu,cv)=c{u, V)

= Norm (length) of u:

Jul|=+/<u, up

= Note:

lull=<u, uy

7/45



= Distance between u and v:

d(u, v) =lu-vil= Ju—v,u-vy

= Angle between two nonzero vectors u and v:

IR

— ,0<0<
fullivli

cosé

= Orthogonal: (u L v)

uand v are orthogonal if {u,v) =0 .
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= Notes:

(1) If ||v||=1, then v is called a unit vector.

(2) HVH?&l normalizing .Y (the unit vector in the
v 20 . |v|| direction of v)

not a unit vector
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DEFINITION 3 If V is an inner product space, then the set of points in V that satisfy
[ul| =1

is called the unit sphere or sometimes the unit circle in V.

A B

ar Jul = 1
Nz

(a) The unit circle using
the standard Euclidean
inner product.
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« EX 6: (FInding inner product)
(p,q)=ab,+ab,+ -+ +a,b, isan inner product
Let p(x) =1-2x%, q(X) =4—-2x+x* be polynomialsin P,(x)
@ p,a>=? (b) lla=? (c) d(p,q)="?
Sol:
@ <p,a? =04 +(0)(-2)+(-2)1) =2
(b) llall=+<a,q) =4* +(-2)° +1* =21
() - p—q=-3+2x—3x°
~d(p,a)=llp-qll=(p-a,p-0a)
=J(-3)2+2% +(-3)? =22
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> The Standard Inner Product on M,
If u = U and v = V are matrices in the vector space M,,,, then the formula
(u,v) = tr(U'V) (8)

defines an inner product on M, called the standard inner product on that space (see
Definition 8 of Section 1.3 for a definition of trace). This can be proved by confirming
that the four inner product space axioms are satisfied, but we can see why this is so by
computing (8) for the 2 x 2 matrices

U:["’” ”2] and V:[UI ”2]
Us Ug V3 V4

(ll, V) = tI'(UTV) = U1V + UV + U3V3 + U4V4

This yields

12/45



which is just the dot product of the corresponding entries in the two matrices. And it

follows from this that

]l = +/(u,u) = Vtr(UTU) = \Ju?} + u3 + u? + u}

N 2 I T B¢
U=V=13 4| Y=V F 3

(u,v) = tr(UTV) = 1(=1) + 2(0) + 3(3) + 4(2) =

For example, if

then

and

lull = Tu,u) = Vtr(UTU) = ~/12 + 22 + 32 + 42 = /30

vl = /v, ¥) = Vtr(VIV) = /(=12 + 02+ 32 422 =

Jia
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= Properties of norm:
(1) lull=0
(2) llull=0ifandonlyif u=0
(3) lleull=[c|]lul

= Properties of distance:
(1) d(u,v)=0
(2)d(u,v)=0ifandonlyif u=v
(3) d(u,v)=d(v,u)
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« Thm5.8
Let u and v be vectors in an inner product space V.
(1) Cauchy-Schwarz inequality:
|[<u, v2 [ < Jull v Theorem 5.4
(2) Triangle inequality:
lu -+ v||<||ul|+]|v]| Theorem 5.5
(3) Pythagorean theorem :

u and v are orthogonal if and only if

U+ V)= |ull* + || v]] Theorem 5.6
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= Orthogonal projections in inner product spaces:

Let u and v be two vectors in an inner product space V,
such that v = Q. Then the orthogonal projection of u
onto Vv Is given by

(u,v)

(V, V)

proj,u = Y
= Note:
If v is a init vector, then (v, v) =||v|]’=1

The formula for the orthogonal projection of u onto v
takes the following simpler form.

proj,u={u, v)v
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« Ex 10: (Finding an orthogonal projection in R3)

Use the Euclidean inner product in R3 to find the

orthogonal projection of u=(6, 2, 4) onto v=(1, 2, 0).

Sol:
(U, v) =(6)1) +(2)(2) +(4)(0) =10

(V,V)=1°+2°+0% =5

projvu:%v:%(l,2,0):(2,4,0)

= Note:

u-—proju=(6,2,4)—-(2,4,0)=(4,—2,4)isorthogonal tov = (1,2,0).
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= Thm 5.9: (Orthogonal projection and distance)

Let u and v be two vectors in an inner product space V,
such that v 0. Then

(u, v)

d(u,proj,u)<d(u,cv), c=#
(V, V)
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