2. The method requires the user to provide the derivatives of each function with respect to each variable. Therefore one must evaluate the n functions and the n^2 derivatives at each iteration. So solving systems of nonlinear equations is a difficult task. For systems of nonlinear equations that have analytical partial derivatives, Newton's method can be used; otherwise, multi-dimensional minimization techniques should be used.

Procedure 2.5 (Newton's Method for Two Nonlinear Equations)

- 1. Choose the initial guess for the roots of the system, so that the determinant of the Jacobian matrix is not zero.
- 2. Establish Tolerance $\epsilon(> 0)$.
- 3. Evaluate the Jacobian at initial approximations and then find inverse of Jacobian.
- 4. Compute new approximation to the roots by using iterative formula (2.51).
- 5. Check tolerance limit. If $||(x_n, y_n) (x_{n-1}, y_{n-1})|| \le \epsilon$, for $n \ge 0$, then end; otherwise, go back to step 3, and repeat the process.

2.9 Exercises

- 1. Find the root of $f(x) = e^x 2 x$ in the interval [-2.4, -1.6] accurate to 10^{-4} using bisection method.
- 2. Use bisection method to find solutions accurate to within 10⁻⁴ on the interval [-5,5] of the following functions:
 (a) f(x) = x⁵ − 10x³ − 4, (b) f(x) = 2x² + ln(x) − 3, (c) f(x) = ln(x) + 30e^{-x} − 3.
- 3. The following equations have a root in the interval [0, 1.6]. Determine these with an error less than 10^{-4} using bisection method.
 - (a) $2x e^{-x} = 0;$ (b) $e^{-3x} + 2x 2 = 0.$
- 4. Estimate the number of iterations needed to achieve an approximation with accuracy 10^{-4} to the solution of $f(x) = x^3 + 4x^2 + 4x 4$ lying in the interval [0, 1] using bisection method.
- 5. Use the bisection method for $f(x) = x^3 3x + 1$ in [1,3] to find:
 - (a) The first eight approximation to the root of the given equation.
 - (b) Find an error estimate $|\alpha x_8|$.
- 6. The cubic equation $x^3 3x 20 = 0$ can be written as

(a)
$$x = \frac{(x^3 - 20)}{3}$$
, (b) $x = \frac{3}{(x^3 - 3)}$, (c) $x = (3x + 20)^{1/3}$.

Choose the form which satisfies the condition |g'(x)| < 1 on [3, 4] and then find third approximation x_3 when $x_0 = 3.5$.

Chapter Two Solution of Nonlinear Equations

- 7. Consider the nonlinear equation $g(x) = \frac{1}{2}e^{0.5x}$ defined on the interval [0, 1]. Then
 - (a) Show that there exists a unique fixed-point for g in [0, 1].
 - (b) Use fixed-point iterative method to compute x_3 , set $x_0 = 0$.
 - (c) Compute an error bound for your approximation in part (b).
- 8. An equation $x^3 2 = 0$ can be written in form x = g(x) in two ways:

(a) $x = g_1(x) = x^3 + x - 2$, (b) $x = g_2(x) = \frac{(2 + 5x - x^3)}{5}$ Generate first four approximations from $x_{n+1} = g_i(x_n)$, i = 1, 2 by using $x_0 = 1.2$. Show which sequence converge to $2^{1/3}$ and why?

- 9. Find value of k such that the iterative scheme $x_{n+1} = \frac{x_n^2 4kx_n + 7}{4}$, $n \ge 0$ converges to 1. Also, find the rate of convergence of the iterative scheme.
- 10. Write the equation $x^2 6x + 5 = 0$ in the form x = g(x), where $x \in [0, 2]$, so that the iteration $x_{n+1} = g(x_n)$ will converge to the root of the given equation for any initial approximation $x_0 \in [0, 2]$.
- 11. Which of the following iterations

(a)
$$x_{n+1} = \frac{1}{4} \left(x_n^2 + \frac{6}{x_n} \right),$$
 (b) $x_{n+1} = \left(4 - \frac{6}{x_n^2} \right)$

is suitable to find a root of the equation $x^3 = 4x^2 - 6$ in the interval [3,4]? Estimate the number of iterations required to achieve 10^{-3} accuracy, starting from $x_0 = 3$.

- 12. An equation $e^x = 4x^2$ has a root in [4,5]. Show that we cannot find that root using $x = g(x) = \frac{1}{2}e^{x/2}$ for the fixed-point iteration method. Can you find another iterative formula which will locate that root ? If yes, then find third iterations with $x_0 = 4.5$. Also find the error bound.
- 13. Let $f(x) = e^x + 3x^2$. Find Newton's formula $g(x_k)$. Start with $x_0 = 4$ and $x_0 = -0.5$, compute x_4 .
- 14. Use Newton's formula for the reciprocal of square root of a number 15 and then find the 3rd approximation of number, with $x_0 = 0.05$.
- 15. Use Newton's method to find solution accurate to within 10^{-4} of the equation $\tan(x) 7x = 0$, with initial approximation $x_0 = 4$.
- 16. Find Newton's formula for $f(x) = x^3 3x + 1$ in [1,3] to calculate x_3 , if $x_0 = 1.5$. Also, find the rate of convergence of the method.
- 17. Rewrite the nonlinear equation $g(x) = \frac{1}{2}e^{0.5x}$ which defined in the interval [0, 1] in the equivalent form f(x) = 0 and then use the Newton's method with $x_0 = 0.5$ to find third approximation x_3 .
- 18. Given the iterative scheme $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$, $n \ge 0$ with $f(\alpha) = f'(\alpha) = 0$ and $f''(\alpha) \ne 0$. Find the rate of convergence for this scheme.

2.10 Exercises

- 19. Find x_4 for $x^3 2x 5 = 0$ by secant method using $x_0 = 2$ and $x_1 = 3$.
- 20. Solve the equation $e^{-x} x = 0$ by secant method, using $x_0 = 0$ and $x_1 = 1$, accurate to 10^{-4} .
- 21. Use secant method to find a solution accurate to within 10^{-4} for $\ln(x) + x 5 = 0$ on [3, 4].
- 22. Find the root of multiplicity of the function $f(x) = (x-1)^2 \ln(x)$ at $\alpha = 1$.
- 23. Show that if f(x) has a root of multiplicity m at $x = \alpha$, then

$$f^{(n)}(x) = 0, \qquad n = 1, 2, \dots, m - 1.$$

24. Show that the root of multiplicity of the function f(x) = x⁴ - x³ - 3x² + 5x - 2 is 3 at α = 1. Estimate the number of iterations required to solve the problem with accuracy 10⁻⁴, start with the starting value x₀ = 0.5 by using:
(a) Newton's method; (b) First modified Newton's method; (c) Second modified Newton's

(a) Newton's method; (b) First modified Newton's method; (c) Second modified Newton's method

25. If f(x), f'(x) and f''(x) are continuous and bounded on a certain interval containing $x = \alpha$ and if both $f(\alpha) = 0$ and $f'(\alpha) = 0$ but $f''(\alpha) \neq 0$, show that

$$x_{n+1} = x_n - 2\frac{f(x_n)}{f'(x_n)}$$

will converge quadratically if x_n is in the interval.

- 26. Show that iterative scheme $x_{n+1} = 1 + x_n \frac{x_n^2}{2}$, $n \ge 0$ converges to $\sqrt{2}$. Find the rate of convergence of the sequence.
- 27. Let α be the exact solution of the function f(x) = 0 such that $f'(\alpha) \neq 0$, $f''(\alpha) \neq 0$, then find the conditions on the constant K under which the rate of convergence of the sequence $x_{n+1} = x_n^2 - Kf(x_n), n = 0, 1, 2, \ldots$ is quadratic.
- 28. Solve the following system using the Newton's method:

$$\begin{array}{rcrcrcr} 4x^3 & +y & = & 6\\ & x^2y & = & 1 \end{array}$$

Start with initial approximation $x_0 = y_0 = 1$. Stop when successive iterates differ by less than 10^{-7} .

29. Solve the following system using the Newton's method:

$$\begin{array}{rcl} x & + e^y & = & 68.1\\ \sin x & - y & = & -3.6 \end{array}$$

Start with initial approximation $x_0 = 2.5$, $y_0 = 4$, compute the first three approximations.