2. The method requires the user to provide the derivatives of each function with respect to each variable. Therefore one must evaluate the n functions and the n^{2} derivatives at each iteration. So solving systems of nonlinear equations is a difficult task. For systems of nonlinear equations that have analytical partial derivatives, Newton's method can be used; otherwise, multi-dimensional minimization techniques should be used.

Procedure 2.5 (Newton's Method for Two Nonlinear Equations)

1. Choose the initial guess for the roots of the system, so that the determinant of the Jacobian matrix is not zero.
2. Establish Tolerance $\epsilon(>0)$.
3. Evaluate the Jacobian at initial approximations and then find inverse of Jacobian.
4. Compute new approximation to the roots by using iterative formula (2.51).
5. Check tolerance limit. If $\left\|\left(x_{n}, y_{n}\right)-\left(x_{n-1}, y_{n-1}\right)\right\| \leq \epsilon$, for $n \geq 0$, then end; otherwise, go back to step 3, and repeat the process.

2.9 Exercises

1. Find the root of $f(x)=e^{x}-2-x$ in the interval $[-2.4,-1.6]$ accurate to 10^{-4} using bisection method.
2. Use bisection method to find solutions accurate to within 10^{-4} on the interval $[-5,5]$ of the following functions:
(a) $f(x)=x^{5}-10 x^{3}-4$,
(b) $f(x)=2 x^{2}+\ln (x)-3$,
(c) $f(x)=\ln (x)+30 e^{-x}-3$.
3. The following equations have a root in the interval $[0,1.6]$. Determine these with an error less than 10^{-4} using bisection method.
(a) $2 x-e^{-x}=0$;
(b) $e^{-3 x}+2 x-2=0$.
4. Estimate the number of iterations needed to achieve an approximation with accuracy 10^{-4} to the solution of $f(x)=x^{3}+4 x^{2}+4 x-4$ lying in the interval $[0,1]$ using bisection method.
5. Use the bisection method for $f(x)=x^{3}-3 x+1$ in $[1,3]$ to find:
(a) The first eight approximation to the root of the given equation.
(b) Find an error estimate $\left|\alpha-x_{8}\right|$.
6. The cubic equation $x^{3}-3 x-20=0$ can be written as
(a) $x=\frac{\left(x^{3}-20\right)}{3}, \quad$ (b) $x=\frac{3}{\left(x^{3}-3\right)}, \quad$ (c) $\quad x=(3 x+20)^{1 / 3}$.

Choose the form which satisfies the condition $\left|g^{\prime}(x)\right|<1$ on $[3,4]$ and then find third approximation x_{3} when $x_{0}=3.5$.
7. Consider the nonlinear equation $g(x)=\frac{1}{2} e^{0.5 x}$ defined on the interval $[0,1]$. Then
(a) Show that there exists a unique fixed-point for g in $[0,1]$.
(b) Use fixed-point iterative method to compute x_{3}, set $x_{0}=0$.
(c) Compute an error bound for your approximation in part (b).
8. An equation $x^{3}-2=0$ can be written in form $x=g(x)$ in two ways:
(a) $x=g_{1}(x)=x^{3}+x-2$,
(b) $x=g_{2}(x)=\frac{\left(2+5 x-x^{3}\right)}{5}$

Generate first four approximations from $x_{n+1}=g_{i}\left(x_{n}\right), i=1,2$ by using $x_{0}=1.2$. Show which sequence converge to $2^{1 / 3}$ and why?
9. Find value of k such that the iterative scheme $x_{n+1}=\frac{x_{n}^{2}-4 k x_{n}+7}{4}, n \geq 0$ converges to 1 . Also, find the rate of convergence of the iterative scheme.
10. Write the equation $x^{2}-6 x+5=0$ in the form $x=g(x)$, where $x \in[0,2]$, so that the iteration $x_{n+1}=g\left(x_{n}\right)$ will converge to the root of the given equation for any initial approximation $x_{0} \in[0,2]$.
11. Which of the following iterations
(a) $\quad x_{n+1}=\frac{1}{4}\left(x_{n}^{2}+\frac{6}{x_{n}}\right)$,
(b) $\quad x_{n+1}=\left(4-\frac{6}{x_{n}^{2}}\right)$
is suitable to find a root of the equation $x^{3}=4 x^{2}-6$ in the interval [3, 4] ? Estimate the number of iterations required to achieve 10^{-3} accuracy, starting from $x_{0}=3$.
12. An equation $e^{x}=4 x^{2}$ has a root in $[4,5]$. Show that we cannot find that root using $x=$ $g(x)=\frac{1}{2} e^{x / 2}$ for the fixed-point iteration method. Can you find another iterative formula which will locate that root? If yes, then find third iterations with $x_{0}=4.5$. Also find the error bound.
13. Let $f(x)=e^{x}+3 x^{2}$. Find Newton's formula $g\left(x_{k}\right)$. Start with $x_{0}=4$ and $x_{0}=-0.5$, compute x_{4}.
14. Use Newton's formula for the reciprocal of square root of a number 15 and then find the 3rd approximation of number, with $x_{0}=0.05$.
15. Use Newton's method to find solution accurate to within 10^{-4} of the equation $\tan (x)-7 x=0$, with initial approximation $x_{0}=4$.
16. Find Newton's formula for $f(x)=x^{3}-3 x+1$ in $[1,3]$ to calculate x_{3}, if $x_{0}=1.5$. Also, find the rate of convergence of the method.
17. Rewrite the nonlinear equation $g(x)=\frac{1}{2} e^{0.5 x}$ which defined in the interval $[0,1]$ in the equivalent form $f(x)=0$ and then use the Newton's method with $x_{0}=0.5$ to find third approximation x_{3}.
18. Given the iterative scheme $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, n \geq 0$ with $f(\alpha)=f^{\prime}(\alpha)=0$ and $f^{\prime \prime}(\alpha) \neq 0$. Find the rate of convergence for this scheme.
19. Find x_{4} for $x^{3}-2 x-5=0$ by secant method using $x_{0}=2$ and $x_{1}=3$.
20. Solve the equation $e^{-x}-x=0$ by secant method,using $x_{0}=0$ and $x_{1}=1$, accurate to 10^{-4}.
21. Use secant method to find a solution accurate to within 10^{-4} for $\ln (x)+x-5=0$ on $[3,4]$.
22. Find the root of multiplicity of the function $f(x)=(x-1)^{2} \ln (x)$ at $\alpha=1$.
23. Show that if $f(x)$ has a root of multiplicity m at $x=\alpha$, then

$$
f^{(n)}(x)=0, \quad n=1,2, \ldots, m-1
$$

24. Show that the root of multiplicity of the function $f(x)=x^{4}-x^{3}-3 x^{2}+5 x-2$ is 3 at $\alpha=1$. Estimate the number of iterations required to solve the problem with accuracy 10^{-4}, start with the starting value $x_{0}=0.5$ by using:
(a) Newton's method;
(b) First modified Newton's method;
(c) Second modified Newton's method
25. If $f(x), f^{\prime}(x)$ and $f^{\prime \prime}(x)$ are continuous and bounded on a certain interval containing $x=\alpha$ and if both $f(\alpha)=0$ and $f^{\prime}(\alpha)=0$ but $f^{\prime \prime}(\alpha) \neq 0$, show that

$$
x_{n+1}=x_{n}-2 \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

will converge quadratically if x_{n} is in the interval.
26. Show that iterative scheme $x_{n+1}=1+x_{n}-\frac{x_{n}^{2}}{2}, n \geq 0$ converges to $\sqrt{2}$. Find the rate of convergence of the sequence.
27. Let α be the exact solution of the function $f(x)=0$ such that $f^{\prime}(\alpha) \neq 0, f^{\prime \prime}(\alpha) \neq 0$, then find the conditions on the constant K under which the rate of convergence of the sequence $x_{n+1}=x_{n}^{2}-K f\left(x_{n}\right), n=0,1,2, \ldots$ is quadratic.
28. Solve the following system using the Newton's method:

$$
\begin{aligned}
4 x^{3}+y & =6 \\
x^{2} y & =1
\end{aligned}
$$

Start with initial approximation $x_{0}=y_{0}=1$. Stop when successive iterates differ by less than 10^{-7}.
29. Solve the following system using the Newton's method:

$$
\begin{gathered}
x+e^{y}=68.1 \\
\sin x-y=-3.6
\end{gathered}
$$

Start with initial approximation $x_{0}=2.5, y_{0}=4$, compute the first three approximations.

