
1

 There are five types of operators
o Assignment

o Arithmetic

o Increment/Decrement
o Relational

o Logical

2

 When a variable is declared, a memory space is allocated for it according
to its type.

3

 However, it does NOT have a value yet.

 Assignment operators are used to “assign” (give) values to variables.

variable = literal;SYNTAX

Example 1 x = 10; // x is previously declared

variable1 = variable2;SYNTAX

Example 2 x = 10; // x is previously declared
y = 15; // y is previouslydeclared
x = y; // x=15 y=15

variable = expression;SYNTAX

Example 3 x = 10; // x is previously declared
y = 15; // y is previously declared
x = x * y; // x=10*15  x=150

4

public class AssignmentOperator
{
public static void main (String[] args)

{
// Declaration section: to declare needed variables

int counter;
// Input section: to enter values of used variables

counter = 0;
// Processing section: processing statements

counter = counter + 1;
// Output section: display program output

System.out.println (“counter= “ + counter);
} // end main

} // end class

1
2
3
4
5
6
7
8
9

10
11
12
13
14

PROGRAM

 What is the memory state of the following program:

5

int counter;6

PROGRAM - SOLUTION

32 bits

Undefined Valuecounter

counter = 0;8

32 bits

0counter

counter = counter + 1; // update the value of counter10

32 bits

1counter UPDATED

6

 There are 5 arithmetic operators in Java
o Addition (+)

o Subtraction (-)

o Multiplication (*)
o Division (/)

o Modulus (%)

variable = operand1 operator operand2;SYNTAX

Example 1 x = 10 + 5; // 10 and 5 are called operands

Example 2 x = 10;
y = x * 10; // x and 10 are the operands

Example 3 x = 10;
y = x * 10 + 5; // x and 10 are the operands of *

// x*10 and 5 are the operands of +

7

Example 1 int x = 15;
int y = 2;
int z = x / y; // z = 7 (the decimal part is truncated)

DIVISION

The division of two integers truncate the decimal part of the result

Example 2 int x = 15;
int y = 2;
double z = x / y; // z = 7.0 (since x & y are integers)

Example 3 int x = 15;
double y = 2.0;
double z = x / y; // z = 7.5 (since y is double)

Example 4 double x = 15.0;
double y = 2.0;
double z = x / y; // z = 7.5 (since x & y are double)

8

 Modulus is the remainder of the division of two numbers

Example 1 x = 5 % 2; // x = 1 (1 < 2)

Example 2 x = 24 % 2; // x = 0 (0 < 2)

MODULUS

Example 3 x = 21 % 7; // x = 0 (0 < 7)

Example 4 x = 8 % 3; // x = 2 (2 < 3)

The operands of a mod operator must be of integer type

9

ORDER OF PRECEDENCE

 The order of precedence of the arithmetic operators is as follows:
o Parenthesis have the highest priority: they are evaluated from inside to outside.
o Multiplication, Division, and Modulus have the same priority rules. They are

evaluated from left to right.
o Addition and Subtraction have the same priority rules. They are evaluated from

left to right.

Example 1
3 * 7 – 6 + 2 * 5 / 4 + 6

No parenthesis, look for * / %

Step 1
3 * 7 – 6 + 2 * 5 / 4 + 6

Evaluate from left to right

Step 2 21 – 6 + 10 / 4 + 6 This is an integer division

Step 3 21 – 6 + 2 + 6 Evaluate from left to right

Step 4 15 + 2 + 6 Evaluate from left to right

Step 5 17 + 6 Evaluate from left to right

Step 6 23 Final result

This is equivalent to: (((3*7)-6)+((2*5)/4))+6

1
0

ORDER OF PRECEDENCE

Example 2 3 *(7 – 6) + 2 * 5 / (4 + 6) Evaluate parenthesis first

Step 1 3 * 1 + 2 * 5 / 10 Look for * / %

Step 2 3 * 1 + 2 * 5 / 10 Evaluate from left to right

Step 3 3 + 10 / 10 Evaluate division

Step 4 3 + 1 Evaluate addition

Step 5 4 Final result

This is equivalent to: (3*(7-6))+((2*5)/(4+6))

1
1

 Java provides five compound operators:
o += (x += y equivalent to x = x + y)

o -= (x -= y equivalent to x = x - y)

o *= (x *= y equivalent to x = x * y)

o /= (x /= y equivalent to x = x / y)

o %= (x %= y equivalent to x = x % y)

Example 1 int x = 10;
int y = 5;
x*= y; //x = x * y

32 bits

10x

32 bits

5y

32 bits

50xUPDATED

32 bits

5y Unchanged

1
2

Example 2 int x = 10;
int y = 5;
x*= y + 7; //x = x * (y + 7)

32 bits

10x

32 bits

5y

32 bits

120xUPDATED

32 bits

5y Unchanged

➢ Two increment operators are used
o Pre-increment ++x increment then act

o Post-increment x++ act then increment

13

➢ Two decrement operators are used
o Pre-decrement --x decrement then act

o Post-decrement x-- act then decrement

PRE-INCREMENT (INCREMENT THEN ACT)

++variable;SYNTAX

Example 1 counter = 0; // counter is previously declared
++counter; // counter = counter + 1

// counter should previously have a value

Example 2 x = 3; // x is previously declared
y = ++x; // y is previously declared

// x already has a value

➢ In Example 2, (y = ++x) is equivalent to the following statements in this
order:

x = x + 1; //increment
y = x; //act (assign)

1
2

After this example, counter = 1

After this example, x = 4 and y = 4

14

PRE-INCREMENT (INCREMENT THEN ACT)

Example 3 a = 7; // a is previously declared
System.out.println (++a); //increment then act (print)

➢ In Example 3, System.out.println (++a) is equivalent to the following
two statements in this order:

a = a + 1; //increment
System.out.println (a); //act (print)

1
2

The program output is 8

Example 4 a = 5; // a is previously declared
b = ++a % 2; // b is previously declared

// a has already a value

➢ In Example 4, b = ++a % 2 is equivalent to the following two
statements in this order:

After this example, a = 6 and b = 0
15

a = a + 1; //increment
b = a % 2; //act (mod)

1
2

POST-INCREMENT (ACT THEN INCREMENT)

variable++;SYNTAX

Example 1 counter = 0; // counter is previously declared
counter++; // counter = counter + 1

// counter should previously have a value

Example 2 x = 3; // x is previously declared
y = x++; // y is previously declared

// x already has a value

➢ In Example 2, (y = x++) is equivalent to the following statements in this
order:

y = x; //act (assign)
x = x + 1; //increment

1
2

After this example, counter = 1

After this example, x = 4 and y = 3

16

POST-INCREMENT (ACT THEN INCREMENT)

Example 3 a = 7; // a is previously declared
System.out.println (a++); //act (print) then increment

➢ In Example 3, System.out.println (a++) is equivalent to the following
two statements in this order:

System.out.println (a); //act (print)
a = a + 1;

1
2

The program output is 7

Example 4 a = 5; // a is previously declared
b = a++ % 2; // b is previously declared

// a already has a value

➢ In Example 4, b = a++ % 2 is equivalent to the following two
statements in this order:

After this example, a = 6 and b = 1

b = a % 2; //act (mod)
a = a + 1; //increment

1
2

17

NOTES

➢ When a variable is used by itself, there is no difference between the
post-increment and the pre-increment:
o counter++;

o ++counter;

➢ The following statements have all the same effect:
o counter = counter + 1;
o counter++;
o ++counter;
o counter +=1;

18

➢ The same rules of the increment operator. However, it decrements
rather than increments.

19

--variable; SYNTAX

Example 1 x = 3; // x is previously declared
y = --x; // y is previously declared

// x already has a value

➢ In Example 2, (y = --x) is equivalent to the following statements in this
order:

x = x - 1; //decrement
y = x; //act (assign)

1
2

After this example, x = 2 and y = 2

PRE-DECREMENT (DECREMENT THEN ACT)

20

variable--; SYNTAX

Example 1 x = 3; // x is previously declared
y = x--; // y is previously declared

// x already has a value

➢ In Example 2, (y = x--) is equivalent to the following statements in this
order:

y = x; //act (assign)
x = x -1; //decrement

1
2

After this example, x = 2 and y = 3

POST-DECREMENT (ACT THEN DECREMENT)

NOTES

➢ When a variable is used by itself, there is no difference between the
post-increment and the pre-increment:
o counter--;

o --counter;

➢ The following statements have all the same effect:
o counter = counter – 1;
o counter--;
o --counter;
o counter -=1;

21

➢ Relational operators are used to compare items.

22

➢ Java uses the following relational operators:
o == equal to

o != not equal to

o < less than

o <= less than or equal

o > greater than

o >= greater than or equal

➢ Logical expressions use relational operators.

➢ Logical expressions evaluate to either true or false.

int x = 10, y = 15, z = 10;
char ch1 = ‘a’, ch2 = ‘z’; //Unicode(‘a’) = 97, Unicode(‘z’) = 122
boolean result;
result = (x < y); //result = true
result = (x <= y); //result = true
result = (ch1 >= ch2); //result = false since Unicode of ‘a’ is less
result = (x != z); //result = false
result = (x > y); //result = false

1
2
3
4
5
6
7
8

➢ The result of a logical expression is stored in a variable of type boolean.

➢ Logical operators are used to construct compound logical expressions.

23

➢ Java uses the following logical operators:
o ! not

o && and

o || or

➢ Logical operators take only boolean values as operands.
➢ The logical expressions evaluate to either true or false according to the

following truth tables:

NOT

Operand Result

true false

false true

AND

Operand1 Operand2

true true

true false

false true

false false

Result

true

false

false

false

OR

Operand1 Operand2

true true

true false

false true

false false

Result

true

true

true

false

24

int x = 24, y = 35, z = 20;
char ch1 = ‘a’; //Unicode (‘a’) = 97
char ch2 = ‘A’; //Unicode (‘A’) = 65
char ch3 = ‘<‘; //Unicode (‘<‘) = 60
char ch4 = ‘5’; //Unicode (‘5’) = 53
boolean result;
result = (x >= y) && (ch1 < ch3);// false && false ➔ result = false
result = (ch2 == ch4) || (x > z); // false || true ➔ result = true
result = !(ch1 < ch2); // !(false) ➔ true

1
2
3
4
5
6
7
8
9

EXAMPLE

The complete Unicode table is in lecture W2.2 Identifiers, slide 11

25

Parenthesis () inside-out

Increment (++), Decrement (--) from left to right

* / % from left to right

+ - from left to right

< > <= >= from left to right

== != from left to right

&& from left to right

|| from left to right

= += -= *= /= %= from left to right

26

➢ Type casting is the conversion from a data type to another.

(dataTypeName) expressionSYNTAX

(int) (7.9); // = 7
(double) (25); // = 25.0
(double) (5 + 3); // = (double) (8) = 8.0
(double) (15) / 2; // = 15.0 / 2 = 7.5
(double) (15 / 2); // = (double) (7) = 7.0
(int) (7.8 + (double) (15) / 2);

//=(int)(7.8+15.0/2)=(int)(7.8+7.5) = 15
(int) (7.8 + (double) (15 / 2)); //(int)(7.8+7.0) = 14

Examples

➢ In Java, arithmetic expressions may have mixed data types. In this
case, Java performs implicit type coercion (automatic casting). However,
implicit type coercion may generate unexpected results.

Avoid using expressions with mixed data types without explicit type coercion
(explicit type casting).

27

char ch = ‘a’; //Unicode of ‘a’ = 97
int unicode;
unicode = (int)(ch); //unicode = 97
System.out.println (unicode);

Examples

97

int x = 98;
char ch;
ch = (char)(x);
System.out.println (ch);

Examples

b

2
8

 What is the memory state of the following program

public class Accumulator
{

public static void main (String[] args)
{

int a, sum;
a = 10;
sum = 0;
sum = sum + a;
System.out.println (“sum = “ + sum);

}
}

1
2
3
4
5
6
7
8
9

10
11

 Evaluate the following expressions:
◦ 23 + 7 % 2 – 3

◦ 15.0 + 3.0 * 2.0 / 5.0

◦ 30.0 % 6 + 1

W2.3 Operators1

2
9

 Given x=5, y=7 and z=10. Evaluate the following expressions:
◦ y *= 2 * x + 5 – z;

◦ z %= x;

 Write a program that exchanges the values of two numbers. (This is
known as swapping). For example, if x = 5 and y = 7; after swapping,
they become x = 7 and y = 5.

W2.3 Operators1

30

 What is the output of the following program

public class Increment
{

public static void main (String[] args)
{

int sum = 7;
System.out.println (sum);
System.out.println (sum++);
System.out.println (sum);
System.out.println (++sum);
System.out.println (sum);

}
}

1
2
3
4
5
6
7
8
9

10
11
12

W3.3 Operators2

31

 Assume x, y, and z are int variables; with x = 9, y = 10, and z = 8.
What are the values of the three values after the execution of each
of the following statements:
◦ x++;

◦ System.out.println (--y);

◦ z *= ++x;

 Assume x = 7 and y = 9, and z = 22.2. Evaluate the following
expressions accordingly:
◦ total = x + y + int(z);

◦ z /= x;

◦ y += (int) z – x;

◦ x *= 2 * y + (int) z;

W3.1 Operators2

32

 Trace the following statements by filling the table below:

public class Trace
{
public static void main (String[] args)

{
int firstNum;
int secondNum;
char ch;
double z;
firstNum = 4;
secondNum = 2 + firstNum * 6;
z = (firstNum + 1) / 2.0;
ch = ‘A’;
firstNum = (int) (z) + 8;
firstNum = secondNum--;

}
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Line firstNum secondNum ch z
W3.1 Operators2

