Linear Predictors

Linear Predictors

* The simplest yet most practical tool

* Cover both
* classification and
* regression and
* are examples of reflex models.

* by formulating an optimization problem based on the loss
minimization framework.

* Finally, we will discuss gradient descent, an efficient algorithm for
optimizing (that is, minimizing) the loss that’s tailored for machine
learning

Roadmap

Linear predictors

L oss minimization

Stochastic gradient descent

Application: spam classification

Input: * = email message

From: pliang@cs.stanford.edu From: a9k62nChotmail.com

Date: September 25, 2018 Date: BSeptember 25, 2019

Subject: C5221 announcement Subject: URGENT

Hello students, Dear Sir or maDam:

Welcome to CS5221! Here’s what... my friend left sum of 10m dollars...

Output: y € {spam, not-spam}

Objective: obtain a predictor f

 — | | —

A predictor is a function f that maps an input x to an output y (also called a model or a
hypothesis).

Types of prediction tasks

Binary classification (e.g., email = spam/not spam):

g —| f | — o L] —1}

Regression (e.g., location, year = housing price):

o e | [| e g € R

Types of prediction tasks

Multiclass classification: ¥y is a category

Structured prediction: y is an object which is built from parts

la casa bluy —

f

- the blue house

Framework

D;iain == | Learner

(E —| e | — R

Training Data (D

train)

* The starting point of machine learning is the data.
 supervised learning, in which our data provides both inputs and outputs,

* in contrast to unsupervised learning, which only provides inputs.
e Clustering
* Association Rules

* A (supervised) example (also called a data point or instance) is simply an

input-output pair (x, y), which specifies that y is the ground-truth output
for x.

* The training data D,,;, is @ multiset of examples that forms a partial
specification of the desired behavior of a predictor.

* Learning is about
* taking the training data D,,,;, and
* producing a predictor f, which is a function that takes inputs x and tries to
map them to outputs y = f(x).
* We want the predictor to approximately work even for examples that

we have not seenin D ;.

* We will first focus on examining what f is, independent of how the
learning works.

* Then we will come back to learning f based on data.

O\ Feature extraction

Example task: predict y, whether a string = is an email address

Question: what properties of z might be relevant for predicting y?

Feature extractor: Given input x, output a set of (feature name, feature

value) pairs.

length>10 1
feature extractor fracOfAlpha :0.85
“abc@gmail.com” =—————- | contains_©@ 1
arbitrary! endsWith_.com : 1
endsWith_.org : 0

Feature extraction

* We will consider predictors f based on feature extractors.

* a bit of an art that requires intuition about both
* the task (what we are trying to learn) and also
 what machine learning algorithms are capable of.

* The general principle is that features should represent properties of x
which might be relevant for predicting y.

* |t is okay to add features which turn out to be irrelevant, since the
learning algorithm can sort it out (not all algorithms, NB and kNN do not)

e But it might require more data to do so.

Feature vector notation

Mathematically, feature vector doesn’t need feature names:

length>10 :1 1
fracOfAlpha :0.85 0.85
contains_@ -1 -]
endsWith_.com : 1 1
endsWith_.org :0 0
—% Definition: feature vector
For an input z, its feature vector is:
o(x) = [¢1(),..., Pa(z)]

Think of ¢(x) € R? as a point in a high-dimensional space.

12

Weight vector

Weight vector: for each feature j, have real number w; representing
contribution of feature to prediction

length>10 -1.2
fracOfAlpha :0.6
contains_Q :3

endsWith_.com:2.2
endsWith_.org :1.4

13

e So far, we have defined
 a feature extractor ¢ that maps each input x to the feature vector ¢(x).

* A weight vector w=[w,, ..., w,] (also called a parameter vector or weights)
specifies the contributions of each feature vector to the prediction.

* In the context of binary classification with binary features (¢,(x) € {0,
1}), the weights w; € R have an intuitive interpretation.
* If w; is positive, then the presence of feature j (¢,(x) = 1) favors a positive
classification.

* Conversely, if w; is negative, then the presence of feature j favors a negative
classification.

Linear predictors

Weight vector w € R? Feature vector ¢(z) € R?
length>10 -1.2 length>10 1
fracOfAlpha :0.6 fracOfAlpha :0.85
contains_Q@ :3 contains_@ 1
endsWith_.com:2.2 endsWith_.com:1
endsWith_.org :1.4 endsWith_.org :0

Score: weighted combination of features

w - o(x) = ijl w;i(T);

Example: —1.2(1) 4+ 0.6(0.85) + 3(1) + 2.2(1) 4+ 1.4(0) = 4.51

Linear predictors

Weight vector w € R?
Feature vector ¢(z) € R?

For binary classification:

fw(x) = sign(w - &(x)) = 4

-% Definition: (binary) linear classifier

(411 ifw-d(z) >0
1 ifw-d(z) <0

7 ifw-g(x)=0

\

The case of f,(x) =? is a boundary case that isn’t so important.
We can just predict +1 arbitrarily as a matter of convention.

16

Framework

D;iain == | Learner

(CE — e | f—

-Learner

Optimization problem =

17

Learning as Optimization

* So far we have talked about linear predictors f, which are based on a
feature extractor ¢ and a weight vector w.

* Now we turn to the problem of estimating w from training data
* also known as fitting or learning.

* The loss minimization framework is to cast learning as an optimization
problem.

* Note the theme of separating our problem into
* a model (optimization problem) and
* an algorithm (optimization algorithm).

| oss functions

—% Definition: loss function

A loss function Loss(x, y, w) quantifies how unhappy you would be
If you used w to make a prediction on = when the correct output
Is 1. It i1s the object we want to minimize.

19

Score and margin

Correct label: y
Predicted label: y' = fy (x) = sign(w - ¢(x))
Example: w = [2, —1],¢(z) = [2,0],y = —1

.
Fo

—% Definition: score

The score on an example (z,y) is w - ¢(z), how confident we are
in predicting +1.

—% Definition: margin

The margin on an example (z,y) is (w - ¢(x))y, how correct we
are.

20

Margin

e Suppose the correct label isy € {-1, +1}.

* The margin of an input x is w- ¢(x) y

* measures how correct the prediction that w makes is.

* The larger the margin the better,

e and non-positive margins correspond to classification errors.

Binary classification

Example: w = [2,—1],¢(x) = [2,0],y = —1
Recall the binary classifier:

fw(z) = sign(w - ¢(z))

—e Definition: zero-one loss
I—OSSO—I ('CC? Y, W) — 1[fW (117) 7& y}

— 1[(w - ¢(a))y < O

W

margin

22

Binary classification

Loss(x,y, w)
[

3 2 1 0 1 2 3

margin (W - ¢())y

Lossp.1(x,y, w) = 1[(w - ¢(x))y < 0]

We can plot the loss as a function of the margin. From the graph, it is clear that the loss
is 1 when the margin is negative and 0 when it is positive.

23

Regression

* Now let’s turn for a moment to regression, where the outputy is a
real number rather than {-1, +1}.

* Here, the zero-one loss doesn’t make sense, because it’s unlikely that
we’re going to predict y exactly.

* Let’s instead define the residual to measure how close the prediction
f,(x) is to the correct y.

* The residual will play the analogous role of the margin for
classification and will let us craft an appropriate loss function.

24

Linear regression

fw(z) =W ¢()

? (@().y)
residual w - ¢(z) — vy

w - ¢(x)

-% Definition: residual

The residual is (w - ¢(x)) — y, the amount by which prediction
fw(x) = w - ¢(x) overshoots the target y.

Here, the zero-one loss doesn’t make sense, because it’s unlikely that we’re going to
predict y exactly. So we will use a function based on residuals instead.

25

Linear regression

fw(z) =W ¢(x)

-e Definition: squared loss

Losssquared (m: Y, W) — (sz (‘I’) o %)2

»
T

residual

Example:

Losssquared (:1:’ Y, W) =25

26

Regression loss functions

Loss(x, y, w)

residual (w - ¢(x)) —y
LOSSsquared (SC, Y, W) — (W ' QD(:B) - y)2

Lossabsdev(ma Y, W) — |W) QD(:C) o yl

A popular and convenient loss
function to use in linear regression is
the squared loss, which penalizes the
residual of the prediction
guadratically.

If the predictor is off by a residual of
10, then the loss will be 100.

An alternative to the squared loss is
the absolute deviation loss, which
simply takes the absolute value of the
residual.

27

| oss minimization framework

So far: one example, Loss(z,y, w) is easy to minimize.

A 1r
—‘Q Key idea: minimize training loss

1
TrainLoss(w) = Z Loss(x,y, W)
|Dtrain| (@) EDra E

min TrainLoss(w)
weRd

Key: need to set w to make global tradeoffs — not every example can
be happy.

* Note that on one example, both the squared and absolute deviation loss
functions have the same minimum,

e so we cannot really appreciate the differences here.

 However, we are learning w based on a whole training set D
one example.

We typically minimize the training loss also known as
* the training error or
e empirical risk.

which is the average loss over all the training examples.

Importantly, such an optimization problem requires making trade offs
across all the examples.

. :.e. \)Ne won’t be able to set w to a single value that makes every example have low
0SS).

not just

train’

Learning as optimization

-Learner

Optimization problem -

The problem becomes a Local Search in Continuous Spaces
=» The Gradient Descent algorithm can be used.

30

TrainLoss(w)

Optimization problem

Objective: min TrainLoss(w)

wcRd

w € R2

[gradient plot]

31

Gradient Descent

25~

s
20 X0
N A
NN uesigatiense!
15+ \\\\\‘Q‘N\\\\\\\\\\\\\\‘\\“\‘“‘“
T A T RSSO
T ol N NI TS KA
B I T RRRRR R e s es
: NN
)

32

lluztration of gradient descent frm)

Gradient Descent: the basic idea

Gradient descent s based on the observation that f the realvalued function F(X) Iz defined and differentiable in a neighborhoad of & point &, then
F(X) decreases fastest if one goes from & in the direction of the negative gradient of 7 at @, —VF(&) It fallows that, if

b=a-7VF(a)

fory > 0 a small enough number, then F(a) > F(b) With this ohsenvation in mind, one starts with a guess X0 for a local minimum of £, and
considers the sequence Xg, X1, X2y .+« « such that

Xpi1 =X, = VF(x,), n20.
e have
Flxo) 2 F(x;) > F(x) 2

50 hapefully the sequence (X () converges to the desired local minimurm. Nate that the value of the step size v i allowed to change at every

iteration.

34

How to optimize?

-% Definition: gradient

The gradient Vy TrainLoss(w) is the direction that increases the
loss the most.

-@ Algorithm: gradient descent—

Initialize w = [0, ..., 0]
Fort=1,...,1"
w <« w— 1 VyTrainLoss(w)
—_ - - 2

step size gradient

35

[terative Optimization

* A general approach is to use iterative optimization,
 Essentially starts at some starting point w (say, all zeros),
* and tries to tweak w so that the objective function value decreases.

* The gradient of the function tells us which direction to move in to
decrease the objective the most.

* The gradient is a valuable piece of information, especially since we
will often be optimizing in high dimensions (d on the order of
thousands).

* This iterative optimization procedure is called gradient descent.

36

Hyperparameters

* Gradient descent has two hyperparameters,

 the step size n (which specifies how aggressively we want to pursue a
direction) and

 the number of iterations T.

37

Step size

ww— 17 Vwloss(z,y, w)

~—~—

step size

Question: what should 7 be?

0

1
conservative, more stable

Strategies:

e Constant: n =0.1

e Decreasing: n = 1/y/# updates made so far

aggressive, faster

38

0.25

Overshoot

39

Least squares regression

Objective function:

p O (weola) —u)?
train (

€T ;’y) Eﬁtrain

TrainLoss(w) =

Gradient (use chain rule):

Vw TrainLoss(w) ! Z 2(}_&' co(x) — g_jj)q;v{x)

p— ID .
| train ‘ (mvy}ep‘crain

W

prediction—target

40

Gradient descent is slow

1
Z Loss(z,y, w)

I tralnl (&",y)EDtrain
Gradient descent:
W — W — 7]

Problem: each iteration requires going over all training examples —
expensive when have lots of datal

If we have one million training examples (which is, by today’s standards, only a modest number),
then each gradient computation requires going through those one million examples, and this must
happen before we can make any progress.

Can we make progress before seeing all the data?

41

B 1
|Dtrain|

Gradient descent (GD):
W4 W — 1)

Stochastic gradient descent (SGD):
For each (z,y) € Diain:

w « w — nVyLoss(x, y, w)

It's not about

—“Q' Key idea: stochastic updates

Stochastic gradient descent

Z Loss(x,y, w)

(may}EDtrain

, it's about quantity.

42

- Algorithm: stochastic gradient descent-

Initialize w = [0, ..., 0]
Fort=1,...,T:
For (x,vy) € Dtrain:
W < W — n; VwLoss(x,y, w)

43

Stochastic Gradient Descent : SGD

* The answer is stochastic gradient descent (SGD). Rather than looping
through all the training examples to compute a single gradient and making
one step,

* SGD loops through the examples (x, y) and updates the weights w based on
each example.

e Each update is not as good
* because we’re only looking at one example rather than all the examples,
* but we can make many more updates this way.

* |n practice, we often find that just performing one pass over the training
examples with SGD, touching each example once, often performs
comparably to taking ten passes over the data with GD.

Other Variants of SGD

* There are other variants of SGD. You can randomize the order in
which you loop over the training data in each iteration, which is
useful.

* Think about what would happen if you had all the positive examples
first and the negative examples after that.

2 Summary so far

Linear predictors:
fw(x) based on score w - ()
Loss minimization: learning as optimization

min TrainLoss(w)

Stochastic gradient descent: optimization algorithm
w « w — nVyLoss(z,y, w)

Done for linear regression; what about classification?

46

Back to classification and the zero-one loss
/ero-one loss
Losso.1(z,y, w) = 1[(w - ¢(z))y < 0]

4

3

2 = Lossp.1

Loss(x, y, W)

-3 -2 -1 0 1 2 3

margin (W - ¢(x))y

Problems:
e Gradient of Lossp.1 i1s 0 everywhere, SGD not applicable

e Lossy g is insensitive to how badly the model messed up

47

Hinge loss (SVMs)

Losshinge (%, ¥, W) = max{1l — (w - ¢(x))y, 0}

4

—
2 3
= = Lossg.;
g2
= = LosShinge
o
-

margin (w - o(z))y
e Intuition: hinge loss upper bounds 0-1 loss, has non-trivial gradient

e [ry to increase margin if it is less than 1

Advanced

* The hinge loss is an upper bound on the zero-one loss. Minimizing upper bounds
are a general idea; the hope is that pushing down the upper bound leads to
pushing down the actual function.

* The hinge loss corresponds to the Support Vector Machine (SVM) objective
function with one important difference.

The SVM objective function also includes a regularization penalty | |w] |2, which
prevents the weights from getting too large.

Why should we penalize | |[w] |??

One answer is Occam’s razor, which says to find the simplest hypothesis that
explains the data.

Here, simplicity is measured in the length of w.
This can be made formal using statistical learning theory.

A gradient exercise

Loss(x, y, W)

= LosShinge

margin (W - ¢(z))y

K

Compute the gradient of

LosShinge (%, ¥, W) = max{l — (w - ¢(x))y,0}

50

e You should try to "see” the solution before you write things down formally. Pictorially, it should be evident:
when the margin is less than 1, then the gradient is the gradient of 1 — (W - ¢(x))y, which is equal to
—(x)y. If the margin is larger than 1, then the gradient is the gradient of 0, which is 0. Combining the

—0(z)y ifw- o)y <1

two cases: V' LoSShinge (2,1, W) = {0 if w-o(z)y > 1

o What about when the margin is exactly 17 Technically, the gradient doesn't exist because the hinge loss is
not differentiable there. Fear not! Practically speaking, at the end of the day, we can take either —¢(z)y
or 0 (or anything in between).

51

Logistic regression

Losslogistic(xe Y, W) = log(l + e—(W*qf)(mjjy)
4

3

Loss(x, y, w)

margin (w - ¢(x))y

e Intuition: Try to increase margin even when it already exceeds 1

Another popular loss function
used in machine learning is the
logistic loss.

The main property of the
logistic loss is no matter how
correct your prediction is, you
will have non-zero loss, and so
there is still an incentive
(although a diminishing one) to
push the margin even larger.
This means that you’ll update
on every single example.

52

Summary so far

Predictor fw

Relate to correct y

Loss functions

Algorithm

Classification
sign(score)
margin (score y)

zero-one
hinge

logistic

SGD

Linear regression
score

residual (score — y)

squared

absolute deviation

SGD

53

Loss(z, 1y, w)

Review: loss functions

Regression

residual (w - ¢(x)) —y

Loss(x, y, w)

Binary classification

4

54

-g Algorithm: gradient descent-

Initialize w = [0, ..., 0]
Fort=1,...,T":
W W — 1)

- g Algorithm: stochastic gradient descent-

Initialize w = [0, ..., 0]
Fort=1,...,T"
For (x,vy) € Dirain:
w — w — 1. Vyloss(z,y, w)

<
<<
<<
<<

Batch (Gradient Descent) versus incremental
(Stochastic Gradient Descent)

* The incremental version (sometimes called stochastic gradient) is
faster

e But more sensitive to noise
* Better at avoiding local minima

	Slide 1: Linear Predictors
	Slide 2: Linear Predictors
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Training Data (Dtrain)
	Slide 9
	Slide 10
	Slide 11: Feature extraction
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Learning as Optimization
	Slide 19
	Slide 20
	Slide 21: Margin
	Slide 22
	Slide 23
	Slide 24: Regression
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Iterative Optimization
	Slide 37: Hyperparameters
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44: Stochastic Gradient Descent : SGD
	Slide 45: Other Variants of SGD
	Slide 46
	Slide 47: Back to classification and the zero-one loss
	Slide 48
	Slide 49: Advanced
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56: Batch (Gradient Descent) versus incremental (Stochastic Gradient Descent)

