
Linear Predictors
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Linear Predictors
• The simplest yet most practical tool

• Cover both 
• classification and 

• regression and

• are examples of reflex models.

• by formulating an optimization problem based on the loss 
minimization framework.

• Finally, we will discuss gradient descent, an efficient algorithm for 
optimizing (that is, minimizing) the loss that’s tailored for machine 
learning
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A predictor is a function f that maps an input x to an output y (also called a model or a 
hypothesis). 
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Training Data (Dtrain)

• The starting point of machine learning is the data.

• supervised learning, in which our data provides both inputs and outputs, 

• in contrast to unsupervised learning, which only provides inputs.
• Clustering

• Association Rules

• A (supervised) example (also called a data point or instance) is simply an 
input-output pair (x, y), which specifies that y is the ground-truth output 
for x.

• The training data Dtrain is a multiset of examples that forms a partial 
specification of the desired behavior of a predictor.

8



• Learning is about 
• taking the training data Dtrain and 

• producing a predictor f, which is a function that takes inputs x and tries to 
map them to outputs y = f(x). 

• We want the predictor to approximately work even for examples that 
we have not seen in Dtrain. 

• We will first focus on examining what f is, independent of how the 
learning works. 

• Then we will come back to learning f based on data.
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Feature extraction

• We will consider predictors f based on feature extractors. 

• a bit of an art that requires intuition about both 
• the task  (what we are trying to learn) and also
• what machine learning algorithms are capable of.

• The general principle is that features should represent properties of x 
which might be relevant for predicting y. 

• It is okay to add features which turn out to be irrelevant, since the 
learning algorithm can sort it out (not all algorithms, NB and kNN do not)

• But it might require more data to do so.
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• So far, we have defined 
• a feature extractor φ that maps each input x to the feature vector φ(x). 

• A weight vector w= [w1, . . . , wd] (also called a parameter vector or weights) 
specifies the contributions of each feature vector to the prediction.

• In the context of binary classification with binary features (φj(x) ∈ {0, 
1}), the weights wj ∈ R have an intuitive interpretation. 
• If wj is positive, then the presence of feature j (φj(x) = 1) favors a positive

classification.

• Conversely, if wj is negative, then the presence of feature j favors a negative
classification.
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The case of fw(x) =? is a boundary case that isn’t so important. 
We can just predict +1 arbitrarily as a matter of convention.
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Learning as Optimization

• So far we have talked about linear predictors fw which are based on a 
feature extractor φ and a weight vector w.

• Now we turn to the problem of estimating w from training data
• also known as fitting or learning.

• The loss minimization framework is to cast learning as an optimization 
problem. 

• Note the theme of separating our problem into 
• a model (optimization problem) and 

• an algorithm (optimization algorithm).
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Margin

• Suppose the correct label is y ∈ {−1, +1}. 

• The margin of an input x is w· φ(x) y 

• measures how correct the prediction that w makes is. 

• The larger the margin the better, 

• and non-positive margins correspond to classification errors.
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We can plot the loss as a function of the margin. From the graph, it is clear that the loss 
is 1 when the margin is negative and 0 when it is positive.
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Regression

• Now let’s turn for a moment to regression, where the output y is a 
real number rather than {−1, +1}.

• Here, the zero-one loss doesn’t make sense, because it’s unlikely that 
we’re going to predict y exactly.

• Let’s instead define the residual to measure how close the prediction 
fw(x) is to the correct y. 

• The residual will play the analogous role of the margin for 
classification and will let us craft an appropriate loss function.
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Here, the zero-one loss doesn’t make sense, because it’s unlikely that we’re going to 
predict y exactly. So we will use a function based on residuals instead.
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• A popular and convenient loss 
function to use in linear regression is 
the squared loss, which penalizes the 
residual of the prediction 
quadratically. 

• If the predictor is off by a residual of 
10, then the loss will be 100.

• An alternative to the squared loss is 
the absolute deviation loss, which 
simply takes the absolute value of the 
residual.
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• Note that on one example, both the squared and absolute deviation loss 
functions have the same minimum, 
• so we cannot really appreciate the differences here. 

• However, we are learning w based on a whole training set Dtrain, not just 
one example. 

• We typically minimize the training loss also known as 
• the training error or 
• empirical risk. 

• which is the average loss over all the training examples.
• Importantly, such an optimization problem requires making trade offs 

across all the examples.
• i.e. we won’t be able to set w to a single value that makes every example have low 

loss).
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• The problem becomes a Local Search in Continuous Spaces 
• ➔  The Gradient Descent algorithm can be used.  
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Gradient Descent: the basic idea
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Iterative Optimization

• A general approach is to use iterative optimization, 

• Essentially starts at some starting point w (say, all zeros), 

• and tries to tweak w so that the objective function value decreases.

• The gradient of the function tells us which direction to move in to 
decrease the objective the most. 

• The gradient is a valuable piece of information, especially since we 
will often be optimizing in high dimensions (d on the order of 
thousands).

• This iterative optimization procedure is called gradient descent. 
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Hyperparameters

• Gradient descent has two hyperparameters, 
• the step size η (which specifies how  aggressively we want to pursue a 

direction) and 

• the number of iterations T. 
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• If we have one million training examples (which is, by today’s standards, only a modest number), 
• then each gradient computation requires going through those one million examples, and this must 

happen before we can make any progress.
•  Can we make progress before seeing all the data?

41



42



43



Stochastic Gradient Descent : SGD

• The answer is stochastic gradient descent (SGD). Rather than looping 
through all the training examples to compute a single gradient and making 
one step, 

• SGD loops through the examples (x, y) and updates the weights w based on 
each example. 

• Each update is not as good 
• because we’re only looking at one example rather than all the examples,
• but we can make many more updates this way.

• In practice, we often find that just performing one pass over the training 
examples with SGD, touching each example once, often performs 
comparably to taking ten passes over the data with GD.
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Other Variants of SGD

• There are other variants of SGD. You can randomize the order in 
which you loop over the training data in each iteration, which is 
useful. 

• Think about what would happen if you had all the positive examples 
first and the negative examples after that.
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Back to classification and the zero-one loss
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Advanced

• The hinge loss is an upper bound on the zero-one loss. Minimizing upper bounds 
are a general idea; the hope is that pushing down the upper bound leads to 
pushing down the actual function. 

• The hinge loss corresponds to the Support Vector Machine (SVM) objective 
function with one important difference. 

• The SVM objective function also includes a regularization penalty ||w||2, which 
prevents the weights from getting too large. 

• Why should we penalize ||w||2? 

• One answer is Occam’s razor, which says to find the simplest hypothesis that 
explains the data. 

• Here, simplicity is measured in the length of w. 

• This can be made formal using statistical learning theory.  
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•  Another popular loss function 
used in machine learning is the 
logistic loss. 

• The main property of the 
logistic loss is no matter how 
correct your prediction is, you 
will have non-zero loss, and so 
there is still an incentive 
(although a diminishing one) to 
push the margin even larger. 

• This means that you’ll update 
on every single example.
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Batch (Gradient Descent) versus incremental 
(Stochastic Gradient Descent)
• The incremental version (sometimes called stochastic gradient) is 

faster

• But more sensitive to noise

• Better at avoiding local minima
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