
Linear Predictors

1

Linear Predictors
• The simplest yet most practical tool

• Cover both
• classification and

• regression and

• are examples of reflex models.

• by formulating an optimization problem based on the loss
minimization framework.

• Finally, we will discuss gradient descent, an efficient algorithm for
optimizing (that is, minimizing) the loss that’s tailored for machine
learning

2

3

4

A predictor is a function f that maps an input x to an output y (also called a model or a
hypothesis).

5

6

7

Training Data (Dtrain)

• The starting point of machine learning is the data.

• supervised learning, in which our data provides both inputs and outputs,

• in contrast to unsupervised learning, which only provides inputs.
• Clustering

• Association Rules

• A (supervised) example (also called a data point or instance) is simply an
input-output pair (x, y), which specifies that y is the ground-truth output
for x.

• The training data Dtrain is a multiset of examples that forms a partial
specification of the desired behavior of a predictor.

8

• Learning is about
• taking the training data Dtrain and

• producing a predictor f, which is a function that takes inputs x and tries to
map them to outputs y = f(x).

• We want the predictor to approximately work even for examples that
we have not seen in Dtrain.

• We will first focus on examining what f is, independent of how the
learning works.

• Then we will come back to learning f based on data.

9

10

Feature extraction

• We will consider predictors f based on feature extractors.

• a bit of an art that requires intuition about both
• the task (what we are trying to learn) and also
• what machine learning algorithms are capable of.

• The general principle is that features should represent properties of x
which might be relevant for predicting y.

• It is okay to add features which turn out to be irrelevant, since the
learning algorithm can sort it out (not all algorithms, NB and kNN do not)

• But it might require more data to do so.

11

12

13

• So far, we have defined
• a feature extractor φ that maps each input x to the feature vector φ(x).

• A weight vector w= [w1, . . . , wd] (also called a parameter vector or weights)
specifies the contributions of each feature vector to the prediction.

• In the context of binary classification with binary features (φj(x) ∈ {0,
1}), the weights wj ∈ R have an intuitive interpretation.
• If wj is positive, then the presence of feature j (φj(x) = 1) favors a positive

classification.

• Conversely, if wj is negative, then the presence of feature j favors a negative
classification.

14

15

16

The case of fw(x) =? is a boundary case that isn’t so important.
We can just predict +1 arbitrarily as a matter of convention.

17

Learning as Optimization

• So far we have talked about linear predictors fw which are based on a
feature extractor φ and a weight vector w.

• Now we turn to the problem of estimating w from training data
• also known as fitting or learning.

• The loss minimization framework is to cast learning as an optimization
problem.

• Note the theme of separating our problem into
• a model (optimization problem) and

• an algorithm (optimization algorithm).

18

19

20

Margin

• Suppose the correct label is y ∈ {−1, +1}.

• The margin of an input x is w· φ(x) y

• measures how correct the prediction that w makes is.

• The larger the margin the better,

• and non-positive margins correspond to classification errors.

21

22

We can plot the loss as a function of the margin. From the graph, it is clear that the loss
is 1 when the margin is negative and 0 when it is positive.

23

Regression

• Now let’s turn for a moment to regression, where the output y is a
real number rather than {−1, +1}.

• Here, the zero-one loss doesn’t make sense, because it’s unlikely that
we’re going to predict y exactly.

• Let’s instead define the residual to measure how close the prediction
fw(x) is to the correct y.

• The residual will play the analogous role of the margin for
classification and will let us craft an appropriate loss function.

24

25

Here, the zero-one loss doesn’t make sense, because it’s unlikely that we’re going to
predict y exactly. So we will use a function based on residuals instead.

26

• A popular and convenient loss
function to use in linear regression is
the squared loss, which penalizes the
residual of the prediction
quadratically.

• If the predictor is off by a residual of
10, then the loss will be 100.

• An alternative to the squared loss is
the absolute deviation loss, which
simply takes the absolute value of the
residual.

27

28

• Note that on one example, both the squared and absolute deviation loss
functions have the same minimum,
• so we cannot really appreciate the differences here.

• However, we are learning w based on a whole training set Dtrain, not just
one example.

• We typically minimize the training loss also known as
• the training error or
• empirical risk.

• which is the average loss over all the training examples.
• Importantly, such an optimization problem requires making trade offs

across all the examples.
• i.e. we won’t be able to set w to a single value that makes every example have low

loss).

29

• The problem becomes a Local Search in Continuous Spaces
• ➔ The Gradient Descent algorithm can be used.

30

31

32

Gradient Descent: the basic idea

34

35

Iterative Optimization

• A general approach is to use iterative optimization,

• Essentially starts at some starting point w (say, all zeros),

• and tries to tweak w so that the objective function value decreases.

• The gradient of the function tells us which direction to move in to
decrease the objective the most.

• The gradient is a valuable piece of information, especially since we
will often be optimizing in high dimensions (d on the order of
thousands).

• This iterative optimization procedure is called gradient descent.

36

Hyperparameters

• Gradient descent has two hyperparameters,
• the step size η (which specifies how aggressively we want to pursue a

direction) and

• the number of iterations T.

37

38

39

40

• If we have one million training examples (which is, by today’s standards, only a modest number),
• then each gradient computation requires going through those one million examples, and this must

happen before we can make any progress.
• Can we make progress before seeing all the data?

41

42

43

Stochastic Gradient Descent : SGD

• The answer is stochastic gradient descent (SGD). Rather than looping
through all the training examples to compute a single gradient and making
one step,

• SGD loops through the examples (x, y) and updates the weights w based on
each example.

• Each update is not as good
• because we’re only looking at one example rather than all the examples,
• but we can make many more updates this way.

• In practice, we often find that just performing one pass over the training
examples with SGD, touching each example once, often performs
comparably to taking ten passes over the data with GD.

44

Other Variants of SGD

• There are other variants of SGD. You can randomize the order in
which you loop over the training data in each iteration, which is
useful.

• Think about what would happen if you had all the positive examples
first and the negative examples after that.

45

46

Back to classification and the zero-one loss

47

48

Advanced

• The hinge loss is an upper bound on the zero-one loss. Minimizing upper bounds
are a general idea; the hope is that pushing down the upper bound leads to
pushing down the actual function.

• The hinge loss corresponds to the Support Vector Machine (SVM) objective
function with one important difference.

• The SVM objective function also includes a regularization penalty ||w||2, which
prevents the weights from getting too large.

• Why should we penalize ||w||2?

• One answer is Occam’s razor, which says to find the simplest hypothesis that
explains the data.

• Here, simplicity is measured in the length of w.

• This can be made formal using statistical learning theory.

49

50

51

• Another popular loss function
used in machine learning is the
logistic loss.

• The main property of the
logistic loss is no matter how
correct your prediction is, you
will have non-zero loss, and so
there is still an incentive
(although a diminishing one) to
push the margin even larger.

• This means that you’ll update
on every single example.

52

53

54

55

Batch (Gradient Descent) versus incremental
(Stochastic Gradient Descent)
• The incremental version (sometimes called stochastic gradient) is

faster

• But more sensitive to noise

• Better at avoiding local minima

	Slide 1: Linear Predictors
	Slide 2: Linear Predictors
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Training Data (Dtrain)
	Slide 9
	Slide 10
	Slide 11: Feature extraction
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Learning as Optimization
	Slide 19
	Slide 20
	Slide 21: Margin
	Slide 22
	Slide 23
	Slide 24: Regression
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Iterative Optimization
	Slide 37: Hyperparameters
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44: Stochastic Gradient Descent : SGD
	Slide 45: Other Variants of SGD
	Slide 46
	Slide 47: Back to classification and the zero-one loss
	Slide 48
	Slide 49: Advanced
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56: Batch (Gradient Descent) versus incremental (Stochastic Gradient Descent)

