2.2.1 Expectation

Definition 2.1 If x is a random variable which assumes values X , Xx,, ..., X, with
probabilities p , p...., p, respectively with X p. = 1,1= 1,2, ..., k, then expectation
of the variable x is defined as

k
E(x) = 2 pixi
i=1 (2.1)

Example 2.1
A fair die is rolled once. If x denotes the number on the upper face of the die, find expected
value of x.

Solution
Here, the random variable x is the number on the upper face of the die. Thus, x can take
any one of the values 1, 2,...,6, each with probability 1/6. Hence using (2.1),
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EQ=g(M+e@+c@+2@+z (5)+¢(6)

=351



Result 2.1 Let a and b be two constants and x a random variable, then
E (ax+b) = aE(x)+b

Result 2.2 If x, x,,...,x, are random variables, and a, a,,..., a, are constants, then
E (ax+a, x,+.+ax) = a E (x)+a,E(x)+.+aE (X))

Result 2.3 If x ,x,,....x, are k mutually independent random variables, then

E (x,.x,..x,) = E(x)).E(x,))...E(x,)



2.2.2 Variance and Covariance
If x is a random variable and E(x) its expected value, then variance of x is defined as

V(x) = E[x-E(x)]? jl
= E(x*)-[E(x)]? (2.2)

When the investigator is interested in linear dependence of pairs of random variables,
such as income x and expenditure y, then it is indicated by a measure called covariance
of x and y. This term is defined as

Cov(x,y) = E[{x-E(x)}{y-E(y)}]

A zero value of the covariance indicates no linear dependence between x and y.



Example 2.2
For the experiment given in example 2.1, determine the variance of random variable x.

Solution
First we work out the term E(x?). This will be

EG) =g (I + 5 Q7 + £ 3 + £ @2 + ¢ (5 + ¢ (67

_al
6

= 15.167

On substituting in (2.2) the value of E(x?) obtained above, and of E(x) from example
2.1, one gets
V(x) = 15.167- (3.5)
=2917 8



Population mean and population variance

Definition 2.2 Any real valued function of variable values for all the population units
is known as a population parameter or simply a parameter.

For any given variable, the population value of a parameter is constant. Some of
the important parameters frequently required to be estimated in surveys are total, mean,
proportion, and variance. For instance, if Y ,Y,,...,Y, are the values of the variable y for
the N units in the population, then

Populationmean= Y = Y, "'er': + Yy
(2.3)
1 N
= = Y Y.
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Population variance = 0* = & ¥ (Y,-Y)?
N j=1 (2.4)
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Sample mean and sample variance(sample mean square):

Definition 2.3 A real valued function of variable values for the units in the sample
is called a sratistic. If it 1s used to estimate a parameter, it is termed as estimator.

The particular value taken by the estimator for a given sample, is known as estimate
or point estimate. For instance, the mean for a given sample, provides an estimate of
population mean. The sample mean ¥ and sample mean square s* for a sample of size
n, are respectively given by

_ ] D
y = "y .2 Y,
1=1 (2.5)
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Sampling Distribution

The probability mechanism underlying the process of sample selection usually
gives rise to different samples. The estimates based on sample observations may differ
from sample to sample, and also from the true value of the parameter. The estimator,
therefore, is a random variable. It leads us to the concept of sampling distribution.

Definition 2.4 For a given population, sampling procedure, and sample size, the array
of possible values of an estimator each with its probability of occurrence, is the
sampling distribution of that estimator.




From the central limit theorem. the sample mean follows the normal distribution provided the

sample size is large. As a result,

approximately follows the standard normal distribution with mean zero and variance unity.



Example 2.3

Four cows in a household marked A, B, C, and D respectively yield 5.00, 5.50, 6.00,
and 6.50 kg of milk per day. Obtain the sampling distribution of average milk yield based
on samples of n=2 cows, when the cows are selected with equal probabilities and WR.
The procedure for drawing a sample has been explained in chapter 3.

Solution
Here N=4 and n=2. The number of possible samples in this case will be 4’=16. The
mean of each sample, along with the cows included in the sample is given in table 2.1.

Table 2.1 Means of all possible samples

Sample Cows in the Sample Sample Cows in the Sample
sample meany sample mean y

1 A, A 5.00 9 C A 5.50

2 A, B 5.25 10 C,B 575

3 A, C 5.50 11 SR B 6.00

4 A, D 5.75 12 i D 6.25

5 B, A 5.25 13 D, A .79

6 B, B 5.50 14 D, B 6.00

7 B, C 5.75 15 ;€ 6.25

8 B, D 6.00 16 D, D 6.50




From the above table, we get the following sampling distribution :

Table 2.2 Distribution of sample mean

Sample mean Frequency Probability
(¥) (H) (P)
5.00 1 0625
5.25 2 1250
5.50 3 1875
5.75 4 2500
6.00 3 1875
6.25 2 1250
6.50 1 0625

Total 16 1




Properties of the estimator: 1/ Unbiased Estimator

2.4 UNBIASED ESTIMATOR

In survey sampling, a good estimator is expected to have mainly two properties. One
of these properties is known as unbiasedness. The other one, which we consider in the
next section, is the closeness of the values taken by the estimator for different possible
samples, to the actual unknown value of the parameter.

Definition 2.5 The estimator 8 is said to be unbiased for the parameter 0, if
E (0) = 6.




Example 2.4

For the data in example 2.3, verify whether the sample mean based on n=2 cows is an
unbiased estimator for the average milk yield in the population ? Assume that the cows
in the sample are selected with equal probabilities and with replacement.

Solution

In table 2.1 are given the sample mean values for 16 possible samples of size n=2 that
can be selected from a population of size N=4 with equal probabilities and with replacement.
Here, sampling procedure ensures that all these samples have same chance of being
selected. Hence, expected value of sample mean ¥ will be the simple average of 16
possible sample mean values. Thus,

E () = 1g (5.00+5.25+..+6.50)

9200
=716

= 5.75
Using (2.3), it can be easily seen that the population mean Y (the parameter 0

in this case) is also equal to 5.75. Hence, the sample mean ¥ is unbiased for the population
mean Y.



Definition 2.6 If for an estimator 6, E(0) # O.,the estimator 0 is called a biased
estimator of 0. The magnitude of the bias in 0 is given by

B(@©)=E(@®©) -6

The ratio
RB (§) = '—3—((;9)-

is called the relative bias of the estimator O .

Properties of the estimator: 2/ Smaller variance

2.5 MEASURES OF ERROR

As discussed in section 2.4, it is not sufficient that an estimator be unbiased for it to
qualify as a good estimator. In addition to the property of unbiasedness, the estimator
should also have small sampling variance. As pointed out earlier, the value of the
estimator 6 may differ from sample to sample and also from its parameter value 6.




2.5.1 Sampling Variance

Definition 2.7 The sampling variance is a measure of the divergence of the
estimator values from its expected value. Alternatively, it is the variance of the
sampling distribution of an estimator. In the light of (2.1) and (2.2), one gets it

as
V(0) = E [6- E (§))
= E (8)’~ [E (®))
Example 2.5

For the data in example 2.3, compute the sampling variance and standard error of sample
mean for the WR equal probability samples of size 2.

Solution
The sampling distribution of mean ¥ (here the estimator 0 is the sample mean ¥ ) for

n=2 has been obtained in example 2.3. Also from example 2.4, E(¥ ) = 5.75. Thus
from table 2.1, we have

V) = 113 [(5.00) + (5.25)? +..+ (6.50)’] — (5.75)?



which from table 2.2, is equivalent to

V@)= % [(5.00) (1) + (5.25)? (2) +..+ (6.50) (1)]~(5.75)?
= .15625

It gives

SE () = +.15625

=.39528. 1



Properties of the estimator: 3/ Consistency

Remark 2.1 Another property of a good estimator, besides unbiasedness and
small mean square error, is consistency. An estimator 0 is said to be a consistent

estimator of parameter 0, if it approaches © with probability tending to unity as the
sample size tends to infinity. This definition of consistency, thus, strictly applies to

confusion, we shall, therefore, use multiplier 2 in place of 1.96 for bu.ildin'g up confidence
intervals. Thus, the confidence interval for 6 will, in general, be given by

0 = 2Vv(0) (2.8)

Example 2.7

In a survey, the sample mean was computed as 796.3, and the value of the variance

estimator came out to be 1016.9. Build up the confidence interval for population mean
and interpret the results.

Solution

From the statement of the example, ¥ =796.3 and v(¥Y)=1016.9. Using relation (2.8),
the confidence interval is computed as

y 2\ v(®
= 796.3 + 2/1016.9
732.5, 860.1



2.7 SAMPLE SIZE DETERMINATION

One of the important aspects in planning a sample survey is to decide about the size of
the sample required for estimating the population parameter with a specified precision.
The maximum difference between the estimate and the parameter value that can be
tolerated on considerations of loss or gain due to policy decisions based on the sample
results is termed as permissible error, tolerable error, or the bound on the error of
estimation. Once the permissible error has been specified, the next objective is to
determine a sample size that meets these requirements. Since the amount of error differs
from sample to sample, the margin of error is specified by the probability statement

P[16-06|<B] = l-o (2.10)

where (1-0t) may be taken as 95%, 99%, or some other desired level of confidence, and
B is the permissible error. Sometimes, the permissible error is specified in terms of
percentage of the value of parameter 6. Such a specification of permissible error can,



2.8 SAMPLING AND NONSAMPLING ERRORS

The probability mechanism inherent in the sampling procedure usually selects different
units in different samples. The estimates based on the sample observations, as already
discussed, will, therefore, differ in general from sample to sample and also from the value
of the parameter under consideration. The resultant discrepancy between the sample
estimate and the population parameter value is the error of the estimate. Such an error
is inherent and unavoidable in any and every sampling scheme, and is termed sampling
error. This error, however, has the favorable characteristic of being controllable through
the size and design of the sample. This kind of error usually decreases with increase
in sample size, and shall theoretically become nonexistent in case of complete enumeration.
In many situations, the decrease is inversely proportional to the square root of sample
size (figure 2.1).

Sample size

Fig 2.1 Relationship between sampling error and sample size



In any survey study, besides sampling error, there are also errors arising due to
defective sampling procedures, ambiguity in definitions, faulty measurement techniques,
mistakes in recording, errors in coding-decoding, tabulation and analysis, etc. These
errors are known as nonsampling errors. For instance, data may be wrongly fed to the
computer, or decimal places may be inadvertently changed. If the analysis of data requires
transformation of per acre yield to per hectare basis, the multiplier used might be wrong.



> #Example 2.3 pg# 18
> #The population data of cows' milk (kg).
> Y= ¢(5,5.5,6,6.5)
> #Population mean
> Ybar= mean(Y)
> Ybar

1] 575

> #Population size and sample size

> N=4

> n=2

> # to obtain population variance SAZ.

> #The denominator N - 1 is used in R.

> Ssquare=var(Y)

> Ssquare

[1] 9.4166667

> #to obtain population variance sigma/Z.

> sigma= Ssquare*((N-1)/n)

> sigma

[1] 9.625

> # to obtain all the sample values WR

> install.packages('tidyverse')

Error in install.packages : Updating loaded packages
> install.packages("tidyverse")



> sample= crossing (Varl=Y, Var2=Y)
> samples= sample (Y, 2,replace= TRUE)

> sample
# A tibble: 16 x 2
Varl Var2
<dbl> <dbl>
] S 5
5 5.8
S 6
S 6.5
5.5 '8
B 5.5 38
9 ©
5.5 B8
S S
6 . -
6 6
6 6.5
3 0N 3
$ 6% 5.5
15 6.5 6
8:5 6.5

> #to obtain all the sample means
> ybars= apply(sample,l , mean)
> ybars
[1] 5.00 5.25 5.50 5.75 5.25 5.5@0 5.75 6.00 5.50 5.75 6.00 6.25 5.75 6.90 6.25 6.50



> #Example 2.4: to verify whether the sample mean is an unbiased estimator

> unbiased=mean(ybars)

> unbiased

111 S:75

> #Example 2.5:compute the sampling variance

> Varybar= mean(ybarsA2)- (mean(ybars))A2

> Varybar

[1] 9.15625

> #to obtain all the sample variances sAZ

> S= apply(sample,l , sd)

> S
[1] 0.0000000 ©.3535534 ©.7071068 1.0606602 ©.3535534 0.0000000 ©.3535534 0.7071068
[9] 0.7071068 ©.3535534 0.0000000 ©.3535534 1.0606602 0.7071068 ©.3535534 0.0000000

> #to obtain CL for eg. sample 2

> CIL= ybars[2]- (1.96*(s[2]/sqrt(n)))

> CIL

[1] 4.76

> CIU= ybars[2]+ (1.96*(s[2]/sqrt(n)))

> CIU

[1] 5.74



HW

Page 28, Do questions 2.4, 2.9, 2.12, 2.22.



